乙烷乙烯乙炔表格
标气一览表

31
95105033
(有效期至2012.7.7)
二氧化硫:51.5 ml/m3氮气:余
32
9453161
(有效期至2012.1.7)
硫化氢:208.4 ml/m3氮气:余
33
10801003
(有效期至2012.1.7)
硫化氢:4.8 ml/m3氮气:余
34
9453200
丙二烯:49.0ml/m3甲基乙炔:50.0ml/m3氮气:余
14
703057#
2011.1.20
丙二烯:497.0ml/m3甲基乙炔:502.0 ml/m3氮气:余
15
901067#
2011.1.24
正丁烯:19.9 ml/m3异丁烯:19.6 ml/m3反丁烯:20.3 ml/m3顺丁烯:20.4 ml/m31.3丁二烯:20.2 ml/m3异戊烷:20.0 ml/m3正戊烷:20.0 ml/m3丙烷:余
4
901096#
2011.1.20
甲烷:10.0 ml/m3一氧化碳:10.0 ml/m3二氧化碳:10.0 ml/m3氮气:余
5
602015#
2011.1.20
乙炔:50.0 ml/m3氮气:余
6
901133#
2011.1.24
乙烯:50.3 ml/m3氮气:余
7
604027#
2011.1.20
乙烯:500.0 ml/m3氮气:余
8
604023#
2011.1.21
丙烯:50.0 ml/m3氮气:余
9
901064#
2011.1.21
丙烯:500.0 ml/m3氮气:余
乙烷乙烯与乙炔结构的对比

CH2=CHCH2CH3、CH3CH=CHCH3、
附表:烷烃的碳原子数与其对应的同分异构体数
碳原
子数 1 2 3 4 5 6 7 8 9 10
同分
异体 数
1
11
2 3 5 9 18 35 75
请仔细观察下面三组有机分子结构,它们是同分异构体吗?为什 么?请与同学交流你的想法。 第一组分子式为C4H10的烷烃 第二组分子式为C4H8的烯烃
3、烷烃同分异构体的写法:减碳法 碳链先长后短;支链由整到散。
口诀
位置从心到边;排布由邻到间。
练习1 、填P24表格 练习2、写出C6H14的同分异构体
分子式
CH
26
CH
38
CH
4 10
CH 5 12
C4H8
可能具有的结构简式
CH CH 33 CH CH CH 323
CH3CH2CH2CH3、CH3CH(CH3)CH3
想一想:有机物中存在什么样 的碳 原子才能有对映异构?
指出下列有机物中具有对映异 构现象的中心碳原子。
CH3-CH2-CH-CH2- CH-CH-CH2-CH3
CH3
CH3CH3
4、同分异构体的类型
⑴碳链异构
⑵位置异构(官能团位置)
⑶类别异构(又称官能团异构)
①烯烃与环烷烃 ②炔烃与二烯烃
③醇和醚
下列各物质中,只表示一种纯净物的是( B ) A.C4H8 B.C3H8 C.C2H4C12 D.C4H6
4、找出下列物质中的饱和碳原子与不饱和碳原子
1
2
3
45 6
A、CH3—CH=CH—C≡C—CF3
1
2
3
乙烷、乙烯的分子式、电子式、结构式和结构简式C 2 H 626页PPT

结构式为
C Ca
C
CaC2 + 2H2OC2H2 + Ca(OH)2
反应过程分析:
C C
Ca
+
HOH HOH
C C
H H
+
Ca(OH)2
乙 2. 乙炔的工业制法
炔
的
过去工业上用电石生产乙炔。
制
锻烧
法 CaCO3
CaO + CO2
电炉
CaO + 3C CaC2 + CO
由于碳化钙生产耗电太多,目前已 改用天然气和石油为原料生产乙炔。
2:易加成.(溴水褪色) 3:能加聚。
【随堂检测】
1.下列描述CH3-CH==CH-C≡C-CH3 分子结构的叙述 中,正确的是[ ]C。 A.6个碳原子有可能都在一条直线上 B.6个碳原子不可能都在一条直线上 C.6个碳原子有可能都在同一平面上 D.6个碳原子不可能都在同一平面上
2.实验室利用电石和饱和食盐水反应生成气体, 并测量该气体的体积,从而测定电石中CaC2的 含量。
化 学 1. 氧化反应
性
(1) 在空气或在氧气中燃烧 —完全氧化
质
C2H2 + O2 → CO2 + H2O
(2) 被氧化剂氧化 使酸性KMnO4溶液褪色
把乙炔通入盛有Br2的CCl4溶液或溴水 的试管中,观察到溶液的颜色消失。
请写出相应的化学反应方程式
+
+
2.加成反应
1, 2—二溴乙烯
1, 1, 2, 2—四溴乙烷
书写下列方程式
催化剂
CHCH + H2
CH2=CH2
催化剂
CH2=CH2 + H2
第六章炔烃

114第六章 炔烃分子中含有碳碳叁键的烃叫做炔烃。
碳碳叁键可位于碳链中的任意位置。
开链炔烃的分子通式为C n H 2n-2 。
碳碳叁键位于碳链一端的炔烃称之为单取代或末端炔烃。
6.1 炔烃的结构与烯烃的碳碳双键相比,炔烃的碳碳叁键经历了不同的杂化。
在此杂化过程中,碳的2s 轨道和三个2p 轨道中的一个进行杂化。
每个杂化轨道含有1/2 s 轨道和1/2 p 轨道的成分。
这些杂化轨道称之为sp 轨道。
由于sp 轨道的s 成分增加,乙炔中碳氢键的极性比乙烷和乙烯中的大很多。
乙烯的pK a 值大约在44,而乙炔的pK a 值大约在25,所以末端炔烃在一些特定的情况下,可以当成弱酸,尽管酸性甚至比水还弱很多。
碳碳叁键是两个sp 杂化的碳原子相互之间形成的。
碳原子中的两个sp 杂化轨道沿一轴线呈180 o 伸展 ,该轴线与非杂化的2p x 和2p y 轨道垂直。
当两个sp 杂化碳原子相互靠近时,sp-sp σ 键形成,于是每个碳原子其它两个p 轨道之间就以肩并肩方式重叠,形成两个相互垂直的π键,如图6.1所示。
因此,乙炔C 2H 2是一个线形分子,四个原子都排布在同一条直线上。
由于此线形特性,环状炔烃至少含有十个碳原子才能消除过多的张力。
此外,围绕炔烃叁键部分的电子云密度要比乙烷、乙烯大得多。
与烯烃类似,炔烃容易与亲电试剂相互作用。
(a)(b)图6.1 乙炔的模型(a )乙炔 sp 杂化示意图(b)乙炔的电子云结构模型乙炔碳碳叁键的长度为120pm,键能大约是836 kJ/mol,所以碳碳叁键是已知的键能最大,键长最短的碳碳键。
表格6.1 乙烷,乙烯,乙炔的共价键参数乙烷乙烯乙炔C-C 键键能(KJ) 368 607 836C-C 键长度(pm) 154 134 120C-H 键键能(KJ) 410 444 506C-H键长度(pm) 110 108 106 很明显可以看出(836-368) 并不是(607-368)的两倍,而且实验结果表明,要打开乙炔中的π键需要大约318 KJ/mol的能量,而对于乙烯需要268KJ/mol,所以我们可以得到结论,炔烃与亲电试剂的反应比烯烃与亲电试剂的反应要迟钝。
乙烷乙烯乙炔的比较

资源信息表11.3 煤化工和乙炔(共3课时)第3课时乙烷、乙烯、乙炔的比较一、设计思想本节课教学内容主要有两个方面,一方面通过介绍常见的塑料,让学生体验化学的魅力,激发学习化学的热情;另一个方面是通过对乙烷、乙烯、乙炔的比较,形成比较、归纳、推断、演绎能力;形成严谨求实的科学态度与科学系统认识物质的方法;体会乙烷、乙烯和乙炔分子的对称美。
因此,教学设计时,教师根据学生对塑料合成、特性等了解不多、不深的特点,采用实物或投影相关资料,用讲解的方式介绍常见的塑料合成、特性及用途;在比较乙烷、乙烯、乙炔的教学时,采用让学生自己讨论、练习、交流、归纳的方法,加深学生对乙烷、乙烯、乙炔的认识,同时体验科学系统认识物质的方法。
二、教学目标1.知识与技能(1)常识性知道几种常见塑料性能、用途。
(2)通过乙烷、乙烯和乙炔之间的比较,知道烃烷、烯烷和炔烷组成、结构与性质特点;学会从原理着手设计乙烯、乙炔的实验室制法和收集方法。
2.过程与方法通过乙烷、乙烯和乙炔分子结构的比较,以及实验室制取乙烯和乙炔装置的选择、条件控制,体验科学的实验与研究方法。
3.情感态度与价值观(1)通过了解新型高分子材料研制、应用的未来,体验化学的魅力,激发学化学、用化学的热情。
(2)通过对乙烷、乙烯和乙炔的比较,体验严谨求实的科学态度;领悟化学现象与化学本质的辩证认识。
三、教学重点与难点教学重点、难点:乙烷、乙烯和乙炔组成、结构与性质的比较。
四、教学用品媒体:电脑、投影仪五、教学流程1.流程图2.流程说明引入:出示或投影日常生活中用的塑料制品:食品袋、包装袋、电灯开关等。
教师讲解:几种常见的塑料的合成、特性、用途。
学生讨论:合成PVC塑料原料主要有焦炭、石灰石、水、食盐等,请同学们根据所学知识,用化学方程式表示合成PVC塑料的过程。
学生练习:书本P36-37上作业11.3,并归纳乙烷、乙烯、乙炔的异同点。
师生交流:1.比较物质一般从那几个方面进行?2.乙烷、乙烯、乙炔组成、结构有什么特点?3.推断乙烷、乙烯、乙炔的化学性质的异同点? 4.实验室制取甲烷、乙烯、乙炔的异同点?归纳小结:比较甲烷(乙烷)、乙烯、乙炔组成、结构、性质、用途、实验室制取。
乙烷乙烯乙炔的鉴别

乙烷乙烯乙炔的鉴别一、引言乙烷、乙烯和乙炔都是有机化合物中常见的碳氢化合物。
它们在化学性质、物理性质和结构上有一定的区别。
准确地鉴别乙烷、乙烯和乙炔对于理解它们的性质和应用具有重要意义。
本文将介绍乙烷、乙烯和乙炔的一些特征,以方便进行鉴别。
二、乙烷、乙烯和乙炔的特征1. 乙烷乙烷是一种无色、无臭的气体,化学式为C2H6。
乙烷是一种饱和烃,由两个碳原子和六个氢原子组成。
以下是乙烷的特征: - 燃烧:乙烷能够燃烧,生成二氧化碳和水。
- 反应性:乙烷是相对稳定的,不容易参与其他化学反应。
- 储存:乙烷应储存在密闭容器中,避免泄漏。
2. 乙烯乙烯是一种无色、具有刺激性气味的气体,化学式为C2H4。
乙烯是一种不饱和烃,由两个碳原子和四个氢原子组成。
以下是乙烯的特征: - 燃烧:乙烯能够燃烧,生成二氧化碳和水。
1- 反应性:乙烯具有较高的反应活性,可与其他物质发生加成反应。
- 应用:乙烯是许多塑料和合成化学品的重要原料。
3. 乙炔乙炔是一种无色、具有类似洋葱的气味的气体,化学式为C2H2。
乙炔是一种不饱和烃,由两个碳原子和两个氢原子组成。
以下是乙炔的特征: - 燃烧:乙炔能够燃烧,生成二氧化碳和水。
- 反应性:乙炔具有很高的反应活性,容易参与燃烧、加成、聚合等化学反应。
- 应用:乙炔是焊接、切割和金属加工中常用的燃料。
三、乙烷、乙烯和乙炔的鉴别方法1. 使用气味鉴别•乙烷:乙烷无臭。
•乙烯:乙烯有刺激性气味。
•乙炔:乙炔具有类似洋葱的气味。
2. 燃烧试验•乙烷:乙烷能够完全燃烧,产生蓝色火焰。
2•乙烯:乙烯能够燃烧,但燃烧不完全,产生黄色火焰。
•乙炔:乙炔能够燃烧,产生亮丽的蓝色火焰。
3. 进一步鉴别•乙烷、乙烯和乙炔的化学结构不同,可以利用化学试剂进行判定。
例如,可以使用溴水进行试验,乙炔可被溴水迅速分解生成溴化氢。
四、结论通过气味鉴别、燃烧试验和进一步的化学试验,可以准确地鉴别乙烷、乙烯和乙炔。
第六章 炔烃

114第六章 炔烃分子中含有碳碳叁键的烃叫做炔烃。
碳碳叁键可位于碳链中的任意位置。
开链炔烃的分子通式为C n H 2n-2 。
碳碳叁键位于碳链一端的炔烃称之为单取代或末端炔烃。
6.1 炔烃的结构与烯烃的碳碳双键相比,炔烃的碳碳叁键经历了不同的杂化。
在此杂化过程中,碳的2s 轨道和三个2p 轨道中的一个进行杂化。
每个杂化轨道含有1/2 s 轨道和1/2 p 轨道的成分。
这些杂化轨道称之为sp 轨道。
由于sp 轨道的s 成分增加,乙炔中碳氢键的极性比乙烷和乙烯中的大很多。
乙烯的pK a 值大约在44,而乙炔的pK a 值大约在25,所以末端炔烃在一些特定的情况下,可以当成弱酸,尽管酸性甚至比水还弱很多。
碳碳叁键是两个sp 杂化的碳原子相互之间形成的。
碳原子中的两个sp 杂化轨道沿一轴线呈180 o 伸展 ,该轴线与非杂化的2p x 和2p y 轨道垂直。
当两个sp 杂化碳原子相互靠近时,sp-sp σ 键形成,于是每个碳原子其它两个p 轨道之间就以肩并肩方式重叠,形成两个相互垂直的π键,如图6.1所示。
因此,乙炔C 2H 2是一个线形分子,四个原子都排布在同一条直线上。
由于此线形特性,环状炔烃至少含有十个碳原子才能消除过多的张力。
此外,围绕炔烃叁键部分的电子云密度要比乙烷、乙烯大得多。
与烯烃类似,炔烃容易与亲电试剂相互作用。
(a)(b)图6.1 乙炔的模型(a )乙炔 sp 杂化示意图(b)乙炔的电子云结构模型乙炔碳碳叁键的长度为120pm,键能大约是836 kJ/mol,所以碳碳叁键是已知的键能最大,键长最短的碳碳键。
表格6.1 乙烷,乙烯,乙炔的共价键参数乙烷乙烯乙炔C-C 键键能(KJ)C-C 键长度(pm) 154 134 120C-H 键键能(KJ) 410 444 506C-H键长度(pm) 110 108 106 很明显可以看出(836-368) 并不是(607-368)的两倍,而且实验结果表明,要打开乙炔中的π键需要大约318 KJ/mol的能量,而对于乙烯需要268KJ/mol,所以我们可以得到结论,炔烃与亲电试剂的反应比烯烃与亲电试剂的反应要迟钝。
高中化学乙烷乙烯乙炔表格练习苏教版必修

高中化学乙烷乙烯乙炔表格练习苏教版必修1. 乙烷1.1 基本信息•分子式:C2H6•分子量:30g/mol•分子式结构:H H| |C-C| |H H•化学性质:–热稳定性:稳定–燃烧性:易燃,可与空气或氧气发生燃烧反应,生成二氧化碳和水–反应类型:•单质反应:能和氧气发生反应,在氧气的存在下燃烧•反应物反应:能和一些卤素发生反应•氧化还原反应:做还原剂,与一些氧化剂反应1.2 物理性质•状态:气体•沸点:-89.0℃•密度:0.769 g/L1.3 应用领域1.热能来源2.化学制品3.热力学工业4.辅助燃料2. 乙烯2.1 基本信息•分子式:C2H4•分子量:28g/mol•分子式结构:H|H-C=C-H|H•化学性质:–热稳定性:不稳定–燃烧性:易燃,可与空气或氧气发生燃烧反应,生成二氧化碳和水–反应类型:•反应物反应:与卤素反应•加成反应:与氢气、水和醇等发生加成反应2.2 物理性质•状态:气态•密度:0.92 g/L•沸点:-103.7 ℃2.3 应用领域1.制造塑料2.聚合物制造3.化学品制造4.工艺助剂3. 乙炔3.1 基本信息•分子式:C₂H₂•分子量:26g/mol•分子式结构:H|H-C≡C-H|H•化学性质:–热稳定性:不稳定–燃烧性:能与空气形成爆炸性混合物–反应类型:•单质反应:与卤素发生反应。
•加成反应:和氢气发生加成反应生成乙烯。
•氧化还原反应:做还原剂,与铜氧化物等氧化剂反应。
3.2 物理性质•状态:气态•密度: 1.097 g/cm3•沸点:-84 ℃3.3 应用领域1.合成强力粘合剂、发动机零件和切割和焊接金属。
2.控制控制氢气、从空气中分离氧气和铁炉供给用三氯乙烯。
3.制造石墨烯、硅和合成橡胶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、与溴水反应
3、氧化反应
4、反应
5、反应
烷烃
烯烃
炔烃
结构
代表
乙烷
乙烯
乙炔
分子式
结构式
结构简式
空间构型
通式
性质
物理性质
化
学
性
质
A.氧化反应
1.燃烧
2.酸性高锰酸钾溶液能否褪色()
A.氧化反应
1.燃烧
2.酸性高锰酸钾溶液
能否褪色()
A.氧化反应
1.燃烧
2.酸性高锰酸钾溶液
能否褪色()
B.取代反应
B.加成反应
B.加成反应
碳碳键结构特点
化学性质
烷烃
碳碳单键
1、与酸性高锰酸钾溶液反应
2、与溴水反应
3、氧化反应
4、反应(特征反应)
烯烃
碳碳单键、碳碳双键
1、与酸性高锰酸钾溶液反应
2、与溴水反应
3、氧化反应
4、反应(特征反应)
炔烃
碳碳单键、碳碳叁键
1、与酸性高锰酸钾溶液反应
2、与ቤተ መጻሕፍቲ ባይዱ水反应
3、氧化反应
4、反应(特征反应)
苯
碳碳单键与碳碳双键之间的特殊键