七年级数学上册单项式与多项式达标测试题

合集下载

七年级数学单项式与多项式例题及练习

七年级数学单项式与多项式例题及练习

单项式与多项式例题及练习例: 试用尽可能多的方法对下列单项式进行分类: 3a3x, bxy, 5x2, -4b2y, a3, -b2x2, axy2解: (1)按单项式的次数分: 二次式有5x;三次式有bxy, -4b2y, a3;四次式有3a3x, •-b2x2, axy2。

(2)按字母x的次数分: x的零次式有-4b2y, a3;x的一次式有3a3x, bxy, axy2;x的二次式有5x2, -b2x2。

(3)按系数的符号分:系数为正的有3a3x, bxy, 5x2, a3, axy2;系数为负的有-4b2y, -b2x2。

(4)按含有字母的个数分: 只含有一个字母的有5x2, a3;•含有两个字母的有3a3x, •-4b2y, -b2x2;含有三个字母的有bxy, axy2。

评析: 对单项式进行分类的关键在于选择一个恰当的分类角度。

如按单项式的次数、按式中某个字母的次数、按系数的符号、按含有字母的个数等等。

1、把代数式和的共同点填在下列横线上, 例如:都是代数式。

①都是式;②都是。

2.写出一个系数为-1, 含字母、的五次单项式。

3、如果是关于x的五次四项式, 那么p+q= 。

4、若(4 -4)x2yb+1是关于x, y的七次单项式, 则方程ax-b=x-1的解为。

5.下列说法中正确的是()A. 的次数为0 B、的系数为C.-5是一次单项式D. 的次数是3次6.若是关于x, y的一个单项式, 且系数是, 次数是5, 则和b的值是多少7、已知:是关于a、b的五次单项式, 求下列代数式的值, 并比较(1)、(2)两题结果:(1), (2)●体验中考1.(2008年湖北仙桃中考题改编)在代数式, , , , , 中单项式有个。

2、(2009年江西南昌中考题改编)单项式xy2z 的系数是__________, 次数是__________。

3.(2008年四川达州中考题改编)代数式和的共同点是。

4、(2009年山东烟台中考题改编)如果是六次单项式, 则的值是( )A.1B.2C.3D.5参考答案:◆随堂检测1. , 32.—63.C4.D5.①×;②√;③×;④×◆课下作业●拓展提高1.①单项式;②5次2.3.94.x=5.D6. 7、由题意可知: , 解得 。

人教版七年级上单项式、多项式、合并同类项测试

人教版七年级上单项式、多项式、合并同类项测试
2、下列说法中正确的是( )
A、 的次数为0,B、 的系数为 ,
C、-5是一次单项式,D、 的次数是3次
3、多项式 是( )
A、一次二项式B、二次二项式
C、四次二项式D、五次二项式
4、下列各组式子中,是同类项的是( )
A、 B、 C、 D、52与32
5、下列说法正确的是( )
A、 是单项式,它有系数为0B、两个5次多项式的和还是一个5次多项式。
是 ( )
A、7B、-7C、 D、
9、某人以每小时3千米的速度登山,下山以每小时6千米的速度返回原地,则来回的平均速度为( )
A、4千米/小时 B、千米/小时 C、5千米小时 D、千米/小时
10、观察下列等式: ; ;25-9=16;36-16=20;……设 表示正整数,下面符合上述规律的等式是( )
C、多项式 是单项式 、 、 的和
D、如果一个多项式的次数是3,那么这个多项式的任何一项的次数都不大于3
6、,若多项式 中不含3次项,则 m =( )
A、0B、2C、7D、
7、一个两位数,十位上的数字是个位上的数字的3倍,如果十位上的数是 ,则这个两位数是( )
A、 B、 C、 D、
8、已知当x=2时, ,那么当 时, 的值
6、某市出租车的收费标准是:3千米内(含3千米)起步价为8元,若超过3千米,则超过的部分每千米另收费为元。某乘客坐出租车x千米,
(1)试用关于x的代数式分情况表示该乘客的付费。
(2)如果该乘客坐了10千米,应付费多少元?(8分)
单项式、多项式、合并同类项测试题
考号姓名
一、填空题(每小题3分)
1.单项式- 的系数是,次数是.
2.多项式2- -4 是次项式,它的项为

七年级数学上册单项式与多项式达标测试题

七年级数学上册单项式与多项式达标测试题

七年级数学上册单项式与多项式达标测试题(附答案)
1、说出下列单项式的系数和次数
① -5 x3 ② xy3
③ -a ④ - x2
2、指出下列多项式每一项的系数和次数,分别是几次几项式
① 3a-2b+1 ② 2x2-3x+5
③ 2a-ab3 ④ 1-x+ x2
3、已知多项式 - x2y+3x2+2x2y2- ,回答下列问题:
(1) 这个多项式有几项
(2) 这个多项式的最高次项是哪一项写出它的次数和系数;
(3) 这个多项式有常数项吗如果有,是哪一项
数学学科七年级上册第六章第一节单项式与多项式达标测试题B卷
1、下列代数式中,( )是单项式,( )是多项式,( )是整式。

① -x ②③ 2ab ④ 2a+b ⑤⑥ -
2、指出下列多项式每一项的系数和次数
① x5- x2y-2y2 ② 5a2- ab+7b2
③4x2-7x+5 ④、 -2xy2+4x2y+3x2
3、下列多项式分别是几次几项式
①-x2y-2x2y ② x2-xy-2xy2
③ a3-3a2b+ab3 ④ -4m2-3m
数学学科七年级上册第六章第一节单项式与多项式达标测试题C卷1、下列代数式中,哪些是整式
-3x , 5xy + x , x2-7, , x+ .
2、写出下列单项式的系数和次数
① -x2y ② ab
③④ -
3、写出下列多项式是几次几项式
①- ab-5a2-7b2 ② - x2y+3x2+2xy2-
③ 3x2-2xy2+4x2y ④ a3-3a2b+ab3。

七年级数学上册《单项式》同步练习题(附答案解析)

七年级数学上册《单项式》同步练习题(附答案解析)

七年级数学上册《单项式》同步练习题(附答案解析)一、选择题1、下列说法正确的个数是( ) ①单项式a 的系数为0,次数为0. ②ab−12是单项式.③−3xy4的系数为3,次数为1.④6πx 3的系数为6,次数为4. A .0B .1C .3D .42、下列语句中,错误的( ) A .数字0也是单项式 B .单项式a -的系数与次数都是1 C .12xy 是二次单项式D .23ab -的系数是−23 3、下列代数式中,为单项式的是( ) A .5xB .aC .a+b3aD .x 2+y 24、下列各式a 2b 2,13x −1,−25,a+b 2,a 2−2ab +b 2中单项式的个数有( )A .4个B .3个C .2个D .1个5、下列代数式中,全是单项式的一组是( ) A .1a ,2,3ab B .2,a ,12abC .2a b-,1,π D .x +y ,-1,13(x -y)6、下列说法正确的是( ) A .3πxy 的系数是3B .3πxy 的次数是3C .223xy -的系数是−23D .223xy -的次数是27、下列说法中,正确的是( ) A .0.3不是单项式 B .单项式3x 3y 的次数是3 C .单项式﹣2πx 2y 3的系数是﹣2D .4次单项式2234x y -的系数是﹣348、已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.2x2y B.3x2q C.2xy3D.−2xy2二、填空题9、单项式−2a2b3的系数是________,次数是_______.10、在1x ,12π,−5,a,−2x+y2中,是单项式的为_______.11、写出一个系数为−12,次数为3的单项式_______.12、单项式232x yz是______次单项式,系数是______,若(a−2)x2y|a|+1是x,y五次单项式,则a的值为_______.13、下列式子①-1,②−23a2,③16x2y,④−ab2π,⑤abc,⑥3a+b,⑦0,⑧m中,是单项式的是____________________ .(只填序号)14、单项式−ab33的系数为x,次数为y,则xy的值为________.15、若﹣(a﹣1)x2y b+1是关于字母x,y的五次单项式,且系数是﹣12,则a=_____,b=_____.16、填表:三、简答题17、一个含有字母x,y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式的值是32,求这个单项式.18、如果|a+1|+(b-2)2=0,那么单项式-x a+b y b-a的次数是多少?19、观察下列单项式:−x,3x2,−5x3,7x4,…,−37x19,39x20,…写出第n个单项式.为解决这个问题,特提供下面的解题思路:通过观察单项式的结构特征,分三步确定:先确定符号,再确定系数的绝对值,最后确定次数.(1)这组单项式系数的符号规律是________系数的绝对值规律是________;(2)这组单项式的次数的规律是________;第六个单项式是________;(3)根据上面的归纳,可以猜想第n个单项式是________;(4)请你根据猜想,写出第2019个单项式.20、分别写出下列各项的系数与次数(1)2x3;(2)−x2y;xy;(3)35x2y3.(4)−81521、观察下列单项式:−x,3x2,−5x3,7x4,⋯−37x19,39x20,…(1)根据规律,写出第99个单项式,第100个单项式,第n个单项式;(2)当x=1时,求出上述题中第1个到第100个单项式和的值.(3)当x=1时,直接写出上述题中第1个到第n个单项式和的值.(提示:n要分奇数,偶数讨论)参考答案与解析一、选择题1、A【分析】根据单项式的定义以及单项式的系数、次数定义判断即可.【详解】解:①单项式a的系数为1,次数为1,故本项错误;②ab−12不是单项式,故本项错误;③−3xy4的系数为−34,次数为2,故本项错误;④6πx3的系数为6π,次数为3,故本项错误.所以正确的个数是0.故选:A.【点睛】本题考查了单项式的系数、次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.2、B【分析】根据单项式系数、次数的定义来求解;单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数;单独一个数字也是单项式.【详解】A:数字0也是单项式是正确的,不符合题意;B:单项式-a的系数是-1,次数都是1,不正确的,符合题意;C:12xy是二次单项式,不符合题意;D:−2ab3的系数是−23是正确的,不符合题意;故选:B.【点睛】此题考查单项式,解题关键在于掌握其定义.3、B【分析】根据单项式的定义判断即可得出答案.【详解】解:A. 5x为分式不是整式,错误;B. a是单项式,正确;C. a+b3a是分式,错误;D. x2+y2是多项式,错误;故答案选B.【点睛】本题考查单项式的定义:数字与字母的乘积组成的代数式为单项式,需要特别注意的是,单独的一个数字或一个字母也是单项式.4、C【分析】根据单项式的定义进行解答即可.【详解】解:a2b2,是数与字母的积,故是单项式;1 3x−1,a+b2,a2−2ab+b2是单项式的和,故是多项式;-25是单独的一个数,故是单项式.故共有2个.故选:C.【点睛】本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.5、B【分析】根据单项式的定义,从独数,独字母,数与字母三种形式去判断即可.【详解】∵1a 不是单项式,2是单项式,3ab是单项式 ∴选项A 不符合题意;∵12ab 是单项式,2是单项式,a 是单项式, ∴选项B 符合题意; ∵2a b-是多项式,1是单项式,π是单项式, ∴选项C 不符合题意;∵x +y 是多项式,-1是单项式,13(x -y)是多项式, ∴选项D 不符合题意; 故选B .【点睛】本题考查了单项式的定义,熟练掌握单独的数,单独的字母,数与字母的积是单项式的三种基本表现形式是解题的关键. 6、C【分析】分析各选项中的系数或者次数,即可得出正确选项 【详解】A. 3πxy 的系数是3π,π是数字,不符合题意, B. 3πxy 的次数是2,x,y 指数都为1,不符合题意C. 223xy -的系数是−23,符合题意 D. 223xy -的次数是3,不符合题意故选C【点睛】本题考查了单项式的系数:单项式的系数是单项式字母前的数字因数,单项式的次数,单项式的次数是单项式所有字母指数的和,正确理解和运用该知识是解题的关键. 7、D【分析】根据单项式的有关概念即可求出答案. 【详解】解:A 、0.3是单项式,故此选项错误;B 、单项式3x 3y 的次数是4,故此选项错误;C 、单项式﹣2πx 2y 3的系数是﹣2π,故此选项错误;D 、4次单项式2234x y -的系数是﹣34,故此选项正确.故选:D .【点睛】本题考查单项式的相关知识,是基础题,熟练掌握单项式的相关知识是解题关键.8、A【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:A、2x2y系数是2,次数是3,故本选项符合题意;B、3x2q系数是3,次数是3,故本选项不符合题意;C、2xy3系数是2,次数是4,故本选项不符合题意;D、−2xy2系数是-2,次数是3,故本选项不符合题意;故选:A.【点睛】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.二、填空题9、−233【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数进行分析即可.【详解】解:单项式−2a2b3的系数是−23,次数是3,故答案为:−23,3.【点睛】本题考查了单项式的系数与次数的定义,需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.10、12π,−5,a【分析】根据单项式的定义逐个判断即可.【详解】解:在1x ,12π,−5,a,−2x+y2中,单项式有:12π,−5,a,故答案为:12π,−5,a.【点睛】本题考查了单项式,注意:表示数或数与字母的积,叫单项式.11、−12x3【分析】根据单项式的系数次数,可得答案【详解】解:系数为−12,次数为3的单项式为−12x 3, 故答案为:−12x 3.【点睛】本题考查了单项式,熟练掌握单项式的系数、次数的定义是解题的关键. 12、六 −12 -2【分析】根据单项式及其系数和次数的定义求解即可.【详解】解:单项式232x yz 是六次单项式,系数是−12,∵(a −2)x 2y |a |+1是x ,y 五次单项式, ∴|a |+1=3且a -2≠0, 解得:a =-2,故答案为:六,−12,-2.【点睛】此题主要考查了单项式,关键是掌握单项式相关定义. 13、①②③④⑦⑧【分析】根据单项式的定义进行判断即可.【详解】解:⑤中分母上含有字母,不是单项式;⑥是多项式,不是单项式; 而①②③④⑦⑧均是单项式, 故答案为:①②③④⑦⑧.【点睛】本题考查了单项式的定义:由任意个字母和数字的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式). 14、−43【分析】利用单项式的次数与系数的定义得出答案. 【详解】解:∵单项式−ab 33的系数为−13,次数为1+3=4,∴x=−13,y=4, ∴xy=−13×4=−43, 故答案为:−43.【点睛】此题主要考查了单项式的次数与系数,正确把握相关定义是解题关键. 15、32 2.【分析】直接根据单项式的概念即可求解.【详解】解:∵﹣(a ﹣1)x 2y b +1是关于字母x ,y 的五次单项式,且系数是﹣12, ∴﹣(a ﹣1)=﹣12,2+b +1=5,∴a =32,b =2. 故答案为:32,2.【点睛】此题主要考查多项式的概念,正确理解概念是解题关键. 16、见解析【分析】根据单项式系数和次数的概念求解.三、简答题 17、4x 3y 2 .【解析】首先根据题目的条件设出单项式,然后代入x 、y 的值求解即可. 【详解】解答:∵ 这一个含有字母x ,y 的五次单项式,x 的指数为3, ∴ y 的指数为2,∴ 设这个单项式为:ax 3y 2 ,∵ 当x=2,y=-1时,这个单项式的值是32, ∴ 8a=32 解得:a=4.故这个单项式为:4x 3y 2 .【点睛】本题考查了单项式的知识,了解单项式的次数和系数是解决本题的关键. 18、4【详解】试题分析:先根据非负数之和为0的特点求得a ,b 的值,再求算单项的指数和,求单项式的次数.试题解析:因为|a +1|+(b -2)2=0, 所以a +1=0,b -2=0, 即a =-1,b =2.所以-x a +b y b -a =-xy 3.所以单项式-x a +b y b -a 的次数是4.点睛:此题主要考查绝对值的性质和单项式次数的求法,要掌握单项式的次数是所有字母的指数的和.19、(1)(-1)n ,2n-1;(2)从1开始的连续自然数,11x 6;(3)(-1)n (2n-1)x n ;(4)-4037x 2019 【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律; (2)根据已知数据次数得出变化规律; (3)根据(1)(2)中数据规律得出即可; (4)利用(3)中所求即可得出答案.【详解】解:(1)根据各项系数的符号以及系数的值得出:这组单项式的系数的符号规律是(-1)n ,系数的绝对值规律是2n-1. 故答案为:(-1)n ,2n-1;(2)这组单项式的次数的规律是从1开始的连续自然数.第6个单项式为:11x 6 故答案为:从1开始的连续自然数,11x 6. (3)第n 个单项式是:(-1)n (2n-1)x n . 故答案为:(-1)n (2n-1)x n ; (4)第2019个单项式是-4037x 2019. 故答案为:-4037x 2019.【点睛】此题主要考查了单项式变化规律,得出次数与系数的变化规律是解题关键. 20、(1)系数:2,次数:3;(2)系数:-1,次数:3;(3)系数:35,次数:2;(4)系数:−815,次数:5【分析】根据单项式的系数是数字因数,单项式的次数是各字母的次数之和做答即可. 【详解】解:(1)2x 3的系数:2,次数:3; (2)−x 2y 系数:-1,次数:3; (3)35xy 系数:35,次数:2; (4)−815x 2y 3系数:−815,次数:5.【点睛】本题只要考查单项式的系数和次数的知识,根据其定义作答即可.21、(1)−197x99,199x100,(−1)n(2n−1)x n;(2)100;(3)n为奇数时,值为-n;n为偶数时,值为n【分析】(1)观察总结出规律:单项式的系数-1,3,-5,7,…,从1开始的连续的奇数,奇数项为负,偶数项为正,次数的规律是从1开始的连续的整数,从而可得结果;(2)将x=1代入可得−1+3−5+7+...+199,计算即可;(3)分n为奇数和n为偶数,分别将x=1代入计算即可.【详解】解:(1)由题目找出规律,可得第n个单项式为(−1)n(2n−1)x n,当n=99时,(−1)99×(2×99−1)×x99=−197x99,当n=100时,(−1)100×(2×100−1)×x100=199x100;(2)当x=1时,第1个到第100个单项式的和为:−1+3−5+7+...+199=2+2+...+2=2×50=100;(3)当n为奇数时,第1个到第n个单项式的和为:−1+3−5+7−...−(2n−1)−(2n−1)=2×n−12=-n;当n为偶数时,第1个到第n个单项式的和为:−1+3−5+7−...+(2n−1)=2×n2=n【点睛】本题考查单项式的规律,解答本题的关键是明确题意,发现单项式的变化特点,写出相应的单项式.第11页共11页。

青岛版初中数学七年级上册《单项式和多项式》综合测试卷练习题卷练习题3

青岛版初中数学七年级上册《单项式和多项式》综合测试卷练习题卷练习题3

D.0 是单项式
2.下列说法中正确的是( )
A. 3x3 2x2 1是五次三项式
B. 3m2 2 是二次二项式 n
C. x2 2x 34
D. 2x2 2x 3 中一次项系数为-2
3.将多项式 a2 a3 1 a 按字母 a 升幂排列正确的是(

A. a3 a2 a 1
B. a a2 a3 1
三、解答题
1.对于多项式 3x2 3 x4 y 1.3 2xy 2 ,分别回答下列问题: 4
(1)是几项式;
(2)写出它的各项;
(3)写出它的最高次项;
(4)写出最高次项的次数;
(5)写出多项式的次数;
(6)写出常数项. 2.将多项式 x3 y3 4xy4 x4 y y4 1 x2 y2 先按 x 的降幂排列,再按 y 的升幂排
5.五项, a3 a2b ab2 b3 1, 1 a3 a2b ab2 b3 ;
6. m 11 4 ∴ m 4 代入多项式为 2 x3 y x2 y nx2 y y2 又∵这个多项
式为四次三项式∴ x2 y nx2 y 0 ∴ n 1,是按 y 的升幂排列
7.(1) (a b)3 (a b)2 2(a b) 2 , x3 x2 2x 2
x4 y 1 x2 y2 x3 y3 y4 4xy4 ,是六次五项式,常数项为 0,最高次项系数为 3
1;
3. 3a5 , 3a4b , 3a3b2 , 3a2b3 , 3ab4 , 3b5 .
4.(1) x3 0 x2 x 5 ,(2) x5 0 x4 x3 x2 0 x 2
C.1 a3 a2 a
D.1 a a2 a3
4.下列式子中属于二次三项式的是( )
A.2x2+3;

七年级数学单项式与多项式例题及练习

七年级数学单项式与多项式例题及练习

单项式与多项式例题及练习例:试用尽可能多的方法对下列单项式进行分类:3a 3x ,bxy ,5x 2,-4b 2y ,a 3,-b 2x 2,12axy 2解:(1)按单项式的次数分:二次式有5x ;三次式有bxy ,-4b 2y ,a 3;四次式有3a 3x ,•-b 2x 2,12axy 2。

(2)按字母x 的次数分:x 的零次式有-4b 2y ,a 3;x 的一次式有3a 3x ,bxy ,12axy 2;x 的二次式有5x 2,-b 2x 2。

(3)按系数的符号分:系数为正的有3a 3x ,bxy ,5x 2,a 3,12axy 2;系数为负的有-4b 2y ,-b 2x 2。

(4)按含有字母的个数分:只含有一个字母的有5x 2,a 3;•含有两个字母的有3a 3x ,•-4b 2y ,-b 2x 2;含有三个字母的有bxy ,12axy 2。

评析:对单项式进行分类的关键在于选择一个恰当的分类角度。

如按单项式的次数、按式中某个字母的次数、按系数的符号、按含有字母的个数等等。

1、把代数式222a b c 和32a b 的共同点填在下列横线上,例如:都是代数式。

①都是 式;②都是 。

2、写出一个系数为-1,含字母x 、y 的五次单项式 。

3、如果52)2(4232+---+-x x q x xp 是关于x 的五次四项式,那么p+q= 。

4、若(4a -4)x 2y b+1是关于x ,y 的七次单项式,则方程ax -b=x -1的解为 。

5、下列说法中正确的是( ) A 、x -的次数为0 B 、x π-的系数为1- C 、-5是一次单项式D 、b a 25-的次数是3次6、若12--b y ax 是关于x ,y 的一个单项式,且系数是722,次数是5,则a 和b 的值是多少 7、已知:12)2(+-m b a m 是关于a 、b 的五次单项式,求下列代数式的值,并比较(1)、(2)两题结果:(1)122+-m m ,(2)()21-m●体验中考1、(2008年湖北仙桃中考题改编)在代数式a ,12mn -,5,xy a ,23x y-,7y 中单项式有 个。

七年级数学上册《多项式》同步练习题(附答案解析)

七年级数学上册《多项式》同步练习题(附答案解析)

七年级数学上册《多项式》同步练习题(附答案解析)课前练习1. 像ab ,a 2,-m ,12x 这些式子都是数或字母的积,这样的式子叫做_______.单独的一个数或一个字母也是__________.单项式中的数字因数叫做这个单项式的________.一个单项式中,所有字母的指数的和叫做这个单项式的_______.2. 1.3x +5y +2z ,212ab r π-,x 2+2x −18都可以看成几个单项式的和,像这样几个单项式的和,叫做________.其中,每个单项式叫做多项式的________,不含字母的项叫做________.多项式里,次数最高项的次数,叫做这个多项式的_______.例如:x 2+2x −18的项分别为________,常数项是_________,最高次项的次数是_______,因此x 2+2x −18是___次___项式.3. 单项式和多项式统称为__________.4. 多项式xy 2-9xy +5x 2y -25的二次项系数是_____________.5. 多项式4x 2y ﹣5x 3y 2+7xy 3﹣ 67 的次数是________,最高次项是________,常数项是________.6. 一个关于字母x 的二次三项式的二次项系数为4,一次项系数为1,常数项为7,则这个二次三项式为___.7. 多项式(x +3)a y b +12ab 2−5是关于a 、b 的四次三项式,且最高次项的系数为-2,则x =______,y = ___.课前练习参考答案1. ①. 单项式 ②. 单项式 ③. 系数 ④. 次数2. ①. 多项式 ②. 项 ③. 常数项 ④. 次数 ⑤. 2x ,2x ,-18, ⑥. -18,2 ⑦. 2x ⑧. 二 ⑨. 三3.整式【解析】根据整式的定义即可解答.【详解】单项式和多项式统称为整式.故答案是:整式.【点睛】本题考查了整式的定义,理解定义是关键.4. -95. ①. 5 ②. ﹣5x 3y 2③. ﹣676. 4x 2+x +77. ①. -5 ②. 3课堂练习1.下列整式中,单项式是________________;多项式是 ________________.a,25x −by 3,−13x 2y,2πr,x 2+xy +y 2,2x −1. 2.在代数式12x ﹣y ,5a ,x 2﹣y +23,1π,xyz ,−5y ,x+y+z 3中,有( )A .5个整式B .4个单项式,3个多项式C .6个整式,4个单项式D .6个整式,单项式与多项式的个数相同 3.在整式:3x −2y ,−8b 9,b−3y 36,0.2,5mn −n −7,6+a 2−b 中,有_____个单项式,_____个多项式,多项式分别是_______.4.−2xy 23+3xy −4是_______次_______项式.5.下列说法正确的是( )A .−3xy 5系数是-3B .x 2+x-1的常数项为1C .22ab 3的次数是6次D .2x-5x 2+7是二次三项式 6.多项式3232486xy x y x y y ----是____次_____项式,最高次项是______,常数项是_______.7.把多项式7x -12x 2+9按字母x 做降幂排列为___.8.把多项式442239235x y xy x y -+-按y 的降幂排列:______9.已知多项式x 2−3xy 2−4的次数是a ,二次项系数是b ,那么a +b 的值为( )A .4B .3C .2D .110.若A 是一个五次多项式,B 也是一个五次多项式,则A +B 一定是( )A .五次多项式B .不高于五次的整式C .不高于五次的多项式D .十次多项式11.四次三项式2x +5x 2yz -3y 2中,二次项的系数为______.12.多项式−2x −3x 3+4x 2+1,按x 的升幂排列为__________________.13.指出下列代数式中的单项式、多项式和整式.2πx 2, 1x , ﹣5,a ,π2, 0,n+m 2, 1﹣1a , 3ab ﹣2a ﹣1.课堂练习参考答案1.a,−13x 2y,2πr ; 25x −by 3,x 2+xy +y 2,2x −1【解析】单项式的定义:表示数或字母的积的式子叫做单项式.多项式的定义:若干个单项式的和组成的式子叫做多项式,再结合题目即可得出答案.【详解】根据单项式与多项式的定义可知:单项式有:a,−13x 2y,2πr ,多项式有:25x −by 3,x 2+xy +y 2,2x −1,故填a,−13x 2y,2πr ;25x −by 3,x 2+xy +y 2,2x −1.【点睛】本题考查多项式和单项式的定义,解题的关键是熟悉多项式和单项式的定义.2.D【分析】根据整式、单项式、多项式的概念即可判断.【详解】解:12x ﹣y ,5a ,x 2﹣y +23,1π,xyz ,x+y+z 3是整式, 其中式12x ﹣y ,x 2﹣y +23,x+y+z 3是多项式, 5a ,1π,xyz 是单项式,故选:D .【点睛】本题主要考查整式的概念及单项式与多项式,熟练掌握整式及单项式、多项式的概念是解题的关键.3.2 4 3x −2y 、b−3y 36、5mn −n −7、6+a 2−b【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:−8b 9,0.2,,多项式有4个:3x −2y ,b−3y 36,5mn −n −76+a 2−b【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型.4.三三【分析】直接利用多项式的次数与项数确定方法分析得出答案.【详解】解:−2xy23+3xy−4是三次三项式,故答案为:三,三.【点睛】此题主要考查了多项式,正确把握多项式的次数与项数确定方法是解题关键.5.D【分析】根据单项式和多项式的相关概念逐一求解即可得到答案.【详解】解:A.−3xy5的系数是−35,故本选项错误;B.x2+x−1的常数项是−1,故本选项错误;C.22ab3的次数是4次,故本选项错误;D.2x−5x2+7的次数是二次三项式,故本选项正确.故选:D【点睛】本题考查了单项式、多项式的相关基本概念等知识点,熟练掌握相关知识是解题的关键.6.五五 -x3y2 -6【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】解:多项式xy3-8x2y-x3y2-y4-6是五次五项式,最高次项是:-x3y2,常数项是-6.故答案为:五,五,-x3y2,-6.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.7.−12x2+7x+9【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】解:多项式7x-12x2+9的项为7x,-12 x2,9,按字母x降幂排列为−12x2+7x+9,故答案为:−12x2+7x+9.【点睛】本题考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.8.423242539y x y xy x --++【分析】多项式的项的概念和降幂排列的概念,可知多项式的项为:9x 4,−2y 4,+3xy 2,−5x 2y 3将各项按y 的指数由大到小排列为−2y 4,−5x 2y 3,+3xy 2,9x 4.【详解】解:把多项式442239235x y xy x y -+-,按y 的指数降幂排列后为423242539y x y xy x --++. 故答案是423242539y x y xy x --++.【点睛】本题考查了多项式的项的概念和降幂排列的概念.(1)多项式中的每个单项式叫做多项式的项;(2)一个多项式的各项按照某个字母指数从大到小或者从小到大的顺序排列,叫做降幂或升幂排列.在解题时要注意灵活运用.9.A【分析】根据多项式的有关定义得到a 、b 的值,然后计算它们的和即可.【详解】解:根据题意得a=3,b=1,所以a+b=3+1=4.故选:A .【点睛】本题考查了多项式:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.10.B【解析】几个多项式相加后所得的多项式可能增加项数,但不会增加次数.【详解】A 是五次多项式,B 也是五次多项式,∵几个多项式相加后所得的多项式可能增加项数,但不会增加次数,故A+B 的次数不高于五次.故选:B .【点睛】本题考查多项式的知识,难度不大,掌握多项式相加的特点是关键.11.-3【分析】先把多项式按降幂排列,找出二次项,再确定系数即可.【详解】解:四次三项式2x +5x 2yz -3y 2中进行降幂排列5x 2yz -3y 2+2x ,二次项为-3y 2,二次项的系数为-3,故答案为:-3.【点睛】本题考查多项式中二次项系数问题,掌握多项式的定义,项,项数,某项系数,常数项的区别与联系是解题关键.12.2312+43x x x--【分析】按照x的指数从小到大的顺序把各项重新排列即可.【详解】解:多项式−2x−3x3+4x2+1,按x的升幂排列为231243x x x-+-.故答案为:1-2x+4x2-3x3.【点睛】本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.13.2πx2是单项式,是整式;1x 是分式;﹣5是单项式,是整式;a是单项式,是整式;π2是单项式,是整式;0是单项式,是整式;n+m2是多项式,是整式;1﹣1a是分式;3ab﹣2a﹣1是多项式,是整式.【分析】根据整式,单项式,多项式的概念进行分类即可.单项式是字母和数的乘积,多项式是若干个单项式的和,单项式和多项式统称为整式.【详解】解:2πx2是单项式,是整式;1x是分式;﹣5是单项式,是整式;a是单项式,是整式;π2是单项式,是整式;0是单项式,是整式;n+m2是多项式,是整式;1﹣1a是分式;3ab﹣2a﹣1是多项式,是整式.【点睛】主要考查了整式的概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.课后练习1.在下列说法中,正确的是()A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.−ab2,−x都是单项式,也都是整式D.−4a2b,3 ab,5是多项式2435a b ab-+-中的项2.多项式x2﹣3xy2﹣4的次数和常数项分别是()A.2和4 B.2和﹣4 C.3和4 D.3和﹣43.已知x m−1+3x−1是关于x的三次三项式,那么m的值为()A.3 B.4 C.5 D.64.将多项式6a2b+3b3−2ab2−a3按字母b的降幂排列正确的是()A.−a3+3b3−2ab2+6a2b B.3b3−2ab2+6a2b−a3C.3b3−a3+6a2b−2ab2D.−a3+6a2b−2ab2+3b35.在式子:2a , a3, 1x+y, −12, 1−x−5xy2,−x,6xy+1,a2−b2中,其中多项式有____个.6.多项式2x3−x2y2−3xy+x−1是______次______项式,常数项是______.7.若多项式25x3m y+1是四次多项式,m=______.8.若已知3a2−2ab3−7a n−1b2与−32π2x3y5的次数相等,则(−1)n+1=_______.9.指出下列各式中,哪些是单项式、哪些是多项式、哪些是整式?填在相应的横线上:①22m n+;②-x;③a+b3;④10;⑤6xy+1;⑥1x;⑦17m2n;⑧2x2-x-5;⑨a7;⑩2x+y单项式:____________________________;多项式:________________________;整式:________________________;10.已知多项式3x3−y3−5x2y−x2+1.(1)求次数为3的项的系数和.(2)当x=−1,y=−2时,求该多项式的值.11.已知整式(a−1)x3−2x−(a+3).(1)若它是关于x的一次式,求a的值并写出常数项;(2)若它是关于x的三次二项式,求a的值并写出最高次项.12.已知关于x,y的多项式x4+(m+2)x n y﹣xy2+3.(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?课后练习参考答案1.C【分析】直接利用单项式的次数与系数以及多项式的定义、次数与系数分别分析得出答案.【详解】解:A、多项式ax2+bx+c,当a≠0时是二次多项式,故此选项不合题意;B、多项式中次数最高项的次数叫多项式的次数,故此选项不合题意;C、数与字母的积叫单项式,单项式和多项式统称整式,−ab2,−x都是单项式,也都是整式,正确,符合题意;D、−4a2b,3ab,5-是多项式2a b ab-+-中的项,故此选项不合题意.435故选C.【点睛】此题主要考查了多项式以及单项式有关定义,正确把握相关定义是解题关键.2.D【分析】根据多项式的次数和项的定义得出选项即可.【详解】解:多项式x2﹣3xy2﹣4的次数是3,常数项是﹣4,故选:D.【点睛】此题主要考查多项式的次数和项的判定,解题的关键是熟知多项式的次数和项的定义.3.B【分析】式子要想是三次三项式,则x m−1的次数必须为3,可得m的值.【详解】∵x m−1+3x−1是关于x的三次三项式∴x m−1的次数为3,即m-1=3解得:m=4故选:B.【点睛】本题考查多项式的概念,注意,多项式的次数指的是组成多项式的所有单项式中次数最高的那个单项式的次数.4.B【分析】按照字母b的次数由高到低进行排列得到答案.【详解】解:根据题意,6a2b+3b3−2ab2−a3按字母b的降幂排列正确的是3b3−2ab2+6a2b−a3;故选:B.【点睛】本题考查了多项式:几个单项式的和叫多项式.多项式中每个单项式都是多项式的项,这些单项式的最高次数,就是这个多项式的次数.5.3【分析】几个单项式的和为多项式,根据这个定义判定.【详解】2a ,1x y,分母有字母,不是单项式,也不是多项式;a 3,−12,−x,是单项式,不是多项式; 1−x−5xy2,6xy+1,a2−b2都是单项式相加得到,是多项式故答案为:3【点睛】本题考查多项式的概念,在判定中需要注意,当分母中包含字母时,这个式子就既不是单项式也不是多项式了.6.四五 -1【分析】根据多项式的次数、项数判断即可.【详解】解:多项式2x3−x2y2−3xy+x−1最高次项是四次,一共有五项,常数项是-1.故答案为:四,五,-1.【点睛】本题考查了多项式的有关概念,解题关键是熟记多项式的相关概念,注意:每一项都包括它的符号.7.1【分析】由多项式25x3m y+1是四次多项式,可得3m+1=4,解方程可得答案.【详解】解:∵多项式25x3m y+1是四次多项式,∴3m+1=4,∴3m=3,∴m=1.故答案为:1.【点睛】本题考查的是多项式的次数,掌握多项式的次数的概念是解题的关键.8.1【分析】先根据多项式与单项式的次数的定义求出n的值,再代入计算有理数的乘方即可得.【详解】单项式−32π2x3y5的次数为3+5=8,∵3a2−2ab3−7a n−1b2与−32π2x3y5的次数相等,∴n−1+2=8,解得n=7,则(−1)n+1=(−1)7+1=(−1)8=1,故答案为:1.【点睛】本题考查了多项式与单项式的次数、有理数的乘方运算,熟练掌握多项式与单项式的次数的概念是解题关键.9.②④⑦⑨;①③⑤⑧;①②③④⑤⑦⑧⑨.【分析】1x ,2x+y的分母中含有字母,所以它们既不是单项式,也不是多项式,再根据单项式、多项式和整式的概念来分类.【详解】解:单项式有:-x,10,17m2n,a7;多项式有:22m n+,a+b3,6xy+1,2x2-x-5;整式有:22m n+,-x,a+b3,10,6xy+1,17m2n,2x2-x-5,a7.【点睛】本题主要考查了整式的定义,掌握单项式、多项式和整式的概念和关系是解答此题的关键,注意分式与整式的区别在于分母中是否含有字母.10.(1)3;(2)15【分析】(1)先得到次数为3的项,再得到它们的系数,再相加;(2)将x和y值代入计算即可.【详解】解:(1)多项式3x3−y3−5x2y−x2+1中,次数为3的项是3x3,−y3和−5x2y,系数分别是3,-1,-5,∴和为3-1-5=-3;(2)当x=−1,y=−2时,3x3−y3−5x2y−x2+1=15.【点睛】本题考查了多项式的次数和系数,有理数的加法,代数式求值,重点掌握多项式的相关概念是解题的关键.11.(1)1a=,常数项为-4;(2)a=−3,最高次项为−4x3【分析】(1)已知多项式是一次式,则x的最高次数是1,由此可得a-1=0,据此可得a的值,求出常数项−(a+3)的值即可;(2)根据多项式是三次二项式,结合多项式的概念可得到a-1≠0且a+3=0,求解的a的值,再求出(a−1)x3即可解答此题.【详解】解:(1)若它是关于x的一次式,则a−1=0,∴1a=,常数项为−(a+3)=−4;(2)若它是关于x的三次二项式,则a−1≠0,a≠1,a+3=0,∴a=−3,所以最高次项为−4x3.【点睛】本题考查多项式的知识,需要根据多项式次数和项数的定义来解答.12.(1)n=4,m≠﹣2;(2)m=﹣2,n为任意实数【分析】(1)根据多项式是五次四项式可知n+1=5,m+2≠0,从而可求得m、n的取值;(2)根据多项式是四次三项式可知:m+2=0,n为任意实数.【详解】解:(1)∵多项式是五次四项式,∴n+1=5,m+2≠0,∴n=4,m≠﹣2;(2)∵多项式是四次三项式,∴m+2=0,n为任意实数,∴m=﹣2,n为任意实数.【点睛】本题主要考查的是多项式的定义,掌握多项式的定义是解题的关键.第11页共11页。

华东师大版七年级数学:单项式与多项式、同类项、去括号检测题

华东师大版七年级数学:单项式与多项式、同类项、去括号检测题

2008—2009学年第一学期七年级数学单元题单项式与多项式、同类项、去括号一、选择题1、 下列说法正确的是A.单项式x 的系数是1,次数是0B.1a 是单项式 C.单项式5×310的系数是5, D. 2r π的系数是π,次数是22、下列代数式中,二次三项式是A. 22x -+B. 211x x +- C. 23x y x b -+ D. 212x xy +- 3、将多项式3232576a ab b a b --+按某一字母升(降)幂排列正确的是A. 3322756a b ab a b --+B. 3223756b ab a b a --++C. 3232756b ab a a b --++D. 3223567a ab a b b -+-4、下列式子是一次整式的是A. 8B. 43s t +C. 12ah D. 1x 5、下列各组单项式中,属于同类项的是 A. 212m -与212n - B. 23a b 与23ab C. 22与32 D. 213xy 与213xz 6、下列合并同类项中正确的是 A. 2+35ab ab = B. 32x x x -= C. 22440m n nm -+= D. 11133ab ab ab --=- 7.当a =5,b =3时,a -[b -2a -(a -b )]等于A .10B .14C .-10D .48.如果(3x 2-2)-(3x 2-y )=-2,那么代数式(x +y )+3(x -y )-4(x -y -2)的值是A .4B .20C .8D .-69.-[-(-a 2)+b 2]-[a 2-(+b 2)]等于A .2a 2B .2b 2C .-2a 2D .2(b 2-a 2)二、填空题1、m +n -p 的相反数为__________.2、2a 2b -4ab 2+3b 2a -5a 2b =__________.3、已知关于x 的多项式432()(2)2(1)3a b x b x a x ax ++---+-不含3x 与2x 项,则 a = ,b = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册单项式与多项式达标测试题(附答案)
1、说出下列单项式的系数和次数
①-5 x3 ②xy3
③-a ④- x2
2、指出下列多项式每一项的系数和次数,分别是几次几项式
①3a-2b+1 ②2x2-3x+5
③2a-ab3 ④1-x+ x2
3、已知多项式- x2y+3x2+2x2y2- ,回答下列问题:
(1) 这个多项式有几项?
(2) 这个多项式的最高次项是哪一项?写出它的次数和系数;
(3) 这个多项式有常数项吗?如果有,是哪一项?
数学学科七年级上册第六章第一节 6.1单项式与多项式达标测试题B卷
1、下列代数式中,( )是单项式,( )是多项式,( )是整式。

①-x ②③2ab ④2a+b ⑤⑥-
2、指出下列多项式每一项的系数和次数
①x5- x2y-2y2 ②5a2- ab+7b2
③4x2-7x+5 ④、-2xy2+4x2y+3x2
3、下列多项式分别是几次几项式
①-x2y-2x2y ②x2-xy-2xy2
③a3-3a2b+ab3 ④-4m2-3m
数学学科七年级上册第六章第一节6.1单项式与多项式达标测试题C卷1、下列代数式中,哪些是整式?
-3x , 5xy + x , x2-7, , x+ .
2、写出下列单项式的系数和次数
①-x2y ②ab
③-0.5x2y ④-
3、写出下列多项式是几次几项式?
①- ab-5a2-7b2 ②- x2y+3x2+2xy2-
③3x2-2xy2+4x2y ④a3-3a2b+ab3。

相关文档
最新文档