植物组织渗透势的测定
植生实验 植物组织渗透势的测定

实验一、植物组织渗透势的测定(质壁分离法)一、实验原理:将植物组织分别投入一系列浓度梯度的溶液中,使细胞将要产生初始质壁分离的浓度,就等于细胞液的浓度,根据浓度可计算出渗透势。
【注::典型植物细胞水势(Ψw)组成为:ψw=ψs+ψp+ψm (ψs 为渗透势,ψp为压力势,ψm为衬质势)。
渗透势(osmotic potential,ψs):由于溶质的存在而使水势降低的值称为渗透势或溶质势(solute potential,ψs),以负值表示。
渗透势值按公式ψs=-iCRT来计算(C为溶液的摩尔浓度;T为绝对温度,即实验温度+273;R为气体常数,R=0.0083;i为渗透系数,表示电解质溶液的渗透压非电解质溶液渗透压的倍数,如蔗糖i=1,NaCl i=1.8)。
压力势(pressure potential,ψp):由于细胞吸水膨胀时原生质向外对细胞壁产生膨压(turgor),而细胞壁向内产生的反作用力——壁压使细胞内的水分向外移动,即等于提高了细胞的水势。
由于细胞壁压力的存在而引起的细胞水势增加的值叫压力势,一般为正值。
当细胞失水时,细胞膨压降低,原生质体收缩,压力势则为负值。
当刚发生质壁分离时压力势为零。
衬质势(matrix potential, ψm):衬质势是细胞胶体物质亲水性和毛细管对自由水的束缚而引起的水势降低值,如处于分生区的细胞、风干种子细胞中央液泡未形成。
对已形成中心大液泡的细胞含水量很高,ψm只占整个水势的微小部分,通常一般忽略不计。
因此一个具有液泡的成熟细胞的水势主要由渗透势和压力势组成,即ψw=ψs+ψp 】。
将细胞置于纯水或稀溶液中,外液水势高于细胞水势,外侧水分向细胞内渗透,细胞吸水,体积变大;外液水势等于细胞水势,水分进出平衡,细胞体积不变;将植物置于浓溶液中,外液水势低于细胞水势,水从细胞内向外渗透,细胞失水,体积变小。
将植物材料(带色洋葱表皮组织)置于浓溶液中,由于细胞壁的伸缩性有限,而原生质层的伸缩性较大,当细胞继续失水时,原生质层便和细胞壁慢慢分离开来,这种现象被称为质壁分离。
植物组织渗透式的测定

• 结果分析
注意寻找在两个相邻浓度的蔗糖溶液中,其中 一个大约有50%的细胞发生初始质壁质壁分 离,而在其后一个浓度的蔗糖溶液中不发生 质壁分离,以这两个浓度的平均浓度作为等 渗浓度,其对应的渗透势即为细胞的渗透势。
.
未发生质壁分离 .
箭头所示角隅处发.生初始质壁分离
胞表箭 内皮头 容时所 物被示 流撕细 失破胞
当发生质壁分离时, ψp =0,这时Ψ = Ψs
.
质壁分离法
• 实验原理
生活细胞的原生质膜是一种选择透性膜,可以看作是半透 膜,它对于水是全透性的,而对于一些溶质如蔗糖的透 性较低。因此当把植物组织放在一定浓度的外液中,组 织内外的水分便可通过原生质膜根据水势梯度的方向而 发生水分的迁移,当外液浓度较高时(高渗溶液),细 胞内的水分便向外渗出,引起质壁分离;而在外液浓度 低时(低渗溶液),外液中的水则进入细胞内。当细胞 在一定浓度的外液中刚刚发生质壁分离时(初始质壁分 离,质壁分离仅在细胞角隅处发生),细胞的压力势等 于零,细胞的渗透势等于细胞的水势,也就等于外液的 渗透势。该溶液即称为细胞或组织的等渗溶液,其浓度 称为等渗浓度。
.
• 注意 1. 加样时测定管中不允许有气泡,否 则会发生不冻现象或结果不准确。 2. 若样品挤出液含有植物残渣,要离 心去掉杂质后再测定。 3. 仪器长期不用后需校正后再用。
.
2. 材料取出后,用剪刀将材料剪碎,放入注射器 内融冰,然后用加压方法将细胞液挤出,存于 Eppendorf管内,如暂时不能测,可放入冰箱冰室内保存。
3. 打开冰点渗透压计的电源,如果仪器需要校正 则按仪器使用说明用标准液进行校正。
4. 取20ul待测液倒入测定管中,把测定管放入致冷 槽内,按下探头,按“COOL”键致冷,约70Sec后,测 定管内发出强振声,同时数字显示器显示数字,待数 字稳定不变后,即可记下读数。
植物组织渗透势测定

• 引言 • 植物组织渗透势测定的原理 • 实验材料与设备 • 实验步骤与操作 • 结果与讨论 • 结论
01
引言
植物组织渗透势的概念
01
植物组织渗透势是指植物组织内 部的水势,与外部溶液的水势相 比较,反映了植物组织吸水或失 水的能力。
02
渗透势的高低与溶液中溶质的浓 度、种类和温度等因素有关,浓 度越高,渗透势越低;反之,浓 度越低,渗透势越高。
位。
用于称量植物组织和渗 透溶液的重量,以计算
渗透势。
保持实验环境温度恒定, 以减少温度对渗透势测
定的影响。
04
实验步骤与操作
样品制备
选取健康植物组织
选择健康、无病虫害的植物组织 作为实验材料,确保实验结果的
准确性。
清洗与处理
将植物组织清洗干净,去除表面的 污垢和杂质,然后进行适当的处理, 如切片或研磨,以便进行后续测定。
06
结论
本实验的结论
植物组织渗透势的测定对于了解植物水分关系和生理状态具有重要意义。
通过本实验,我们成功地测定了植物组织的渗透势,并得到了较为准确的 结果。
在实验过程中,我们发现植物组织渗透势受到多种因素的影响,如植物种 类、生长环境、组织状态等。
对植物组织渗透势测定的意义和影响
植物组织渗透势的测定有助于了 解植物对水分的吸收、运输和利
将植物组织渗透势的测定应用于更多的植物种类 和实际生产中,以扩大其应用范围和价值。
THANKS
感谢观看
渗透势的高低与水分子的浓度有关,水分子的浓度越高,渗透势越低;反之,水 分子的浓度越低,渗透势越高。
渗透势的物理意义
渗透势反映了水分在植物组织中的流 动状态,是植物水分运输和吸收的重 要驱动力。
测定植物组织水势的方法及其原理

测定植物组织水势的方法及其原理测定植物组织水势是研究植物生理学中的重要课题之一。
水势是指植物细胞内外水分的自由能差,是植物体内水分运输和调节的关键指标。
本文将介绍几种常用的测定植物组织水势的方法及其原理。
一、压力室法压力室法是一种直接测定植物组织水势的方法。
其原理基于植物细胞内外水势的平衡关系。
在实验中,将待测组织样品放入一个密封的压力室中,通过增加压力,使压力室内外的水势达到平衡。
通过测量加入压力之前和之后的压力差,可以计算出组织的水势值。
二、渗透势法渗透势法是一种间接测定植物组织水势的方法。
其原理基于渗透压对水势的影响。
在实验中,将待测组织样品放入含有不同浓度溶液的渗透槽中,使组织与外界形成渗透平衡。
通过测量组织与溶液之间的渗透压差,可以计算出组织的水势值。
三、压力-容积曲线法压力-容积曲线法是一种间接测定植物组织水势的方法。
其原理基于植物细胞的压力-容积关系。
在实验中,将待测组织样品置于不同的外界压力下,测量组织的容积变化。
通过绘制压力-容积曲线,可以确定组织的压力势和水势值。
四、气体法气体法是一种间接测定植物组织水势的方法。
其原理基于气体扩散对水势的影响。
在实验中,将待测组织样品置于密闭的容器中,通过测量容器内气体的湿度变化,可以计算出组织的水势值。
以上所述的方法各有优缺点,选择合适的方法取决于实验目的、样品特性和实验条件等因素。
此外,还可以结合其他生理指标的测定结果,综合分析植物组织的水势状况。
测定植物组织水势的方法包括压力室法、渗透势法、压力-容积曲线法和气体法等。
这些方法基于不同的原理,通过测量不同的参数来间接或直接地确定植物组织的水势值。
在实际应用中,需要根据具体情况选择合适的方法,并结合其他指标进行综合分析,以全面了解植物的水分状况。
09 质壁分离植物组织渗透势的测定

植物组织渗透势的测定一、实验目的1. 观察植物组织的细胞质壁分离过程及其原理和方法的掌握。
2. 学会用质壁分离法测定植物细胞渗透势的方法。
二、实验原理渗透势是指因溶质溶解而使水的自由能降低(与纯水相比)的数值,降低的值与溶质的浓度成正比,纯水的水势最大(值定为零),当水中具有溶质,水势便降低,此时的水势称为渗透势,故是负值(渗透势的绝对值等于溶质的渗透压,渗透压为正值)。
渗透势的单位以巴表示,1巴 = 0.985大气压(或1大气压 = 1.013巴)。
植物成熟的细胞都具有液泡,液泡中具有各种溶质,故具有一定的渗透势,液泡外面包裹着活的原生质,原生质外面有细胞壁包围,细胞壁可看作是层透膜,活的原生质具有选择性,所以整个细胞类似一个渗透系统。
可用质壁分离法测量细胞渗透势。
质壁分离法当细胞放在一种渗透势比其细胞液渗透势低的溶液中时,细胞液中的水向外渗,液泡体积缩小,原生质的胞壁也跟着向内收缩,如水分继续外渗,液泡体积缩小,而胞壁弹性有限,不能继续收缩,原生质就和细胞壁脱离,这就是质壁分离现象。
当细胞放在某一溶液中,细胞内外水分交换达到平衡,即处于渗透平衡状态,此时细胞内的压力势为零,那么细胞液的渗透势就等于该溶液的渗透势,该溶液浓度称为等渗浓度。
利用一系列梯度浓度的溶液,观察质壁分离现象时,细胞的等渗浓度将介于刚刚引起初始质壁分离现象时(即细胞只是角偶上与胞壁分离)的浓度和与其相邻的尚不能引起质壁分离浓度梯度之间的溶液浓度。
代人公式Ψ= - RTiC即可算出其渗透势。
s三、实验用品(一)材料洋葱鳞茎或紫鸭跖草叶片。
(二)器材显微镜、载玻片、盖玻片、镊子、刀片。
(三)试剂 1 mol/L蔗糖溶液。
四、实验操作1.以1 mol/L的蔗糖溶液作母液,用蒸馏水配成0.10,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.60 mol/L的一系列浓度的蔗糖溶液各10 ml。
各溶液分别装入具塞子试管中,按浓度梯度递减的次序排成一行,并在试管壁上贴上标签注明浓度。
09 质壁分离植物组织渗透势的测定

植物组织渗透势的测定一、实验目的1. 观察植物组织的细胞质壁分离过程及其原理和方法的掌握。
2. 学会用质壁分离法测定植物细胞渗透势的方法。
二、实验原理渗透势是指因溶质溶解而使水的自由能降低(与纯水相比)的数值,降低的值与溶质的浓度成正比,纯水的水势最大(值定为零),当水中具有溶质,水势便降低,此时的水势称为渗透势,故是负值(渗透势的绝对值等于溶质的渗透压,渗透压为正值)。
渗透势的单位以巴表示,1巴 = 0.985大气压(或1大气压 = 1.013巴)。
植物成熟的细胞都具有液泡,液泡中具有各种溶质,故具有一定的渗透势,液泡外面包裹着活的原生质,原生质外面有细胞壁包围,细胞壁可看作是层透膜,活的原生质具有选择性,所以整个细胞类似一个渗透系统。
可用质壁分离法测量细胞渗透势。
质壁分离法当细胞放在一种渗透势比其细胞液渗透势低的溶液中时,细胞液中的水向外渗,液泡体积缩小,原生质的胞壁也跟着向内收缩,如水分继续外渗,液泡体积缩小,而胞壁弹性有限,不能继续收缩,原生质就和细胞壁脱离,这就是质壁分离现象。
当细胞放在某一溶液中,细胞内外水分交换达到平衡,即处于渗透平衡状态,此时细胞内的压力势为零,那么细胞液的渗透势就等于该溶液的渗透势,该溶液浓度称为等渗浓度。
利用一系列梯度浓度的溶液,观察质壁分离现象时,细胞的等渗浓度将介于刚刚引起初始质壁分离现象时(即细胞只是角偶上与胞壁分离)的浓度和与其相邻的尚不能引起质壁分离浓度梯度之间的溶液浓度。
代人公式Ψ= - RTiC即可算出其渗透势。
s三、实验用品(一)材料洋葱鳞茎或紫鸭跖草叶片。
(二)器材显微镜、载玻片、盖玻片、镊子、刀片。
(三)试剂 1 mol/L蔗糖溶液。
四、实验操作1.以1 mol/L的蔗糖溶液作母液,用蒸馏水配成0.10,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.60 mol/L的一系列浓度的蔗糖溶液各10 ml。
各溶液分别装入具塞子试管中,按浓度梯度递减的次序排成一行,并在试管壁上贴上标签注明浓度。
实验植物组织渗透势的测定(质壁分离法)

实验1 植物组织渗透势的测定(质壁分离法)一、实验目的观察植物组织在不同浓度溶液中细胞质壁分离的产生过程及其用于测定植物组织渗透势的方法。
二、实验原理当植物组织细胞内的汁液与其周围的某种溶液处于渗透平衡状态,植物细胞内的压力势为零时,细胞汁液的渗透势就等于该溶液的渗透势。
该溶液的浓度称为等渗浓度。
当用一系列梯度浓度溶液观察细胞质壁分离现象时,细胞的等渗浓度将介于刚刚引起初始质壁分离的浓度和尚不能引起质壁分离的浓度之间的溶液浓度。
代入公式即可计算出渗透势。
三、实验仪器、试剂、材料等显微镜;载玻片及盖玻片;镊子;刀片配成0.5—0.1mol/L梯度浓度的蔗糖溶液各50ml。
称34.23g蔗糖用蒸馏水配成100ml,其浓度为1m0le/L(母液)。
再配制成下列各种浓度:0.50mol/L:吸母液25ml+水25ml0.45mol/L:吸母液22.5ml+水27.5ml0.40mol/L:吸母液20.0ml+水30.0ml0.35mol/L:吸母液17.5ml+水32.5ml0.30mol/L:吸母液15.0ml+水35.0ml0.25mol/L:吸母液12.5ml+水37.5ml0.20mol/L:吸母液10.0ml+水40.0ml0.15mol/L:吸母液7.5ml+水42.5ml0.10mol/L:吸母液5.0ml+水45.0ml四、实验方法将带有色素的植物组织(叶片),一般选用有色素的洋葱鳞片的外表皮、紫鸭跖草、苔藓、红甘蓝或黑藻、丝状藻等水生植物,也可用蚕豆、玉米、小麦等作物叶的表皮。
撕取下表皮,迅速分别投入各种浓度的蔗糖溶液中,使其完全浸入,5—10分钟后,从0.5mol/L开始依次取出表皮薄片放在滴有同样溶液的载玻片上,盖上盖玻片,于低倍显微镜下观察,如果所有细胞都产生质壁分离的现象,则取低浓度溶液中的制片作同样观察,并记录质壁分离的相对程度。
实验中必须确定一个引起半数以上细胞原生质刚刚从细胞壁的角隅上分离的浓度,和不引起质壁分离的最高浓度。
实验一植物细胞渗透势的测定

实验一植物细胞渗透势的测定(质壁分离法)植物细胞的渗透势主要取决于细胞的溶质浓度,因此又称溶质势。
渗透势与植物水分代谢、生长及抗性等有密切关系。
已知在干旱、盐渍等条件下,一些植物常在细胞内主动积累溶质,以降低其渗透势,增加吸水能力,而在一定程度上维持澎压,保障细胞的生长和气孔的开放,这种现象叫做渗透调节作用。
渗透调节能力的大小可以用逆境条件下细胞渗透势地降低值来表示,在水分生理与抗性生理研究中经常需要测定。
以下介绍两种测定方法。
[原理] 将植物组织放入一系列不同浓度的蔗糖溶液中,经过一段时间,植物细胞与蔗糖溶液间将达到渗透平衡状态。
如果在某一溶液中细胞脱水达到一平衡时刚好处于临界质壁分离状态,则细胞的压力势ψs 等与外液的渗透势ψso,即ψs=ψso,此溶液称为该组织的等渗溶度,其溶度称为该组织的等渗浓度,即可计算出细胞也渗透度(ψs0)。
实际测定时,由于临界质壁分离状态难以在显微镜下直接观察到,所以一般均以初始质壁分离作为判断等渗浓度的标准。
处于初始质壁分离状态的细胞体积,比吸水饱和时略少,故细胞也浓缩而渗透势略低于吸水饱和时的渗透度,此种状态下的渗透势称基态渗透势。
[仪器与用具] 显微镜1台;载玻片与盖玻片各若干;温度计1支;尖头镊子1把;刀片1片;100ml试剂瓶9套;500ml试剂瓶9套;烧杯、容量平、量筒、吸管等;吸水纸适量。
[试剂]1 mol浓度的蔗糖溶液(1000ml水溶解342.3g蔗糖)称取预先在60~80℃下烘干的蔗糖34.2g,溶于100ml蒸馏水中,即为1摩尔浓度的蔗糖溶液。
0.03%中性红溶液。
蔗糖系列标准液:取干燥洁净的小试剂瓶9号编号,用1摩尔浓度的蔗糖溶液依C 1V1=C2V2公式配置0.30、0.35、0.40、0.45、0.50、0.60、0.70摩尔浓度等一系列不同浓度的蔗糖溶液(具体范围可根据材料不同而加以调整),贮于试剂瓶中,瓶口加塞以防蒸发浓缩。
[方法]:1.用洋葱的外内表皮或紫色鸭跖草的表皮等作实验材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1 植物组织渗透势的测定(质壁分离法)一、实验目的观察植物组织在不同浓度溶液中细胞质壁分离的产生过程及其用于测定植物组织渗透势的方法。
二、实验原理当植物组织细胞内的汁液与其周围的某种溶液处于渗透平衡状态,植物细胞内的压力势为零时,细胞汁液的渗透势就等于该溶液的渗透势。
该溶液的浓度称为等渗浓度。
当用一系列梯度浓度溶液观察细胞质壁分离现象时,细胞的等渗浓度将介于刚刚引起初始质壁分离的浓度和尚不能引起质壁分离的浓度之间的深液浓度。
代入公式即可计算出春渗透势。
三、实验仪器、试剂、材料等显微镜;载玻片及盖玻片;镊子;刀片配成0.5—0.1mol/L梯度浓度的蔗糖溶液各50ml。
称34.23g蔗糖用蒸馏水配成100ml,其浓度为1m0le/L(母液)。
再配制成下列各种浓度:0.50mol/L:吸母液25ml+水25ml0.45mol/L:吸母液22.5ml+水27.5ml0.40mol/L:吸母液20.0ml+水30.0ml0.35mol/L:吸母液17.5ml+水32.5ml0.30mol/L:吸母液15.0ml+水35.0ml0.25mol/L:吸母液12.5ml+水37.5ml0.20mol/L:吸母液10.0ml+水40.0ml0.15mol/L :吸母液7.5ml+水42.5ml 0.10mol/L :吸母液5.0ml+水45.0ml 四、实验方法将带有色素的植物组织(叶片),一般选用有色素的洋葱鳞片的外表皮、紫鸭跖草、苔藓、红甘蓝或黑藻、丝状藻等水生植物,也可用蚕豆、玉米、小麦等作物叶的表皮。
撕取下表皮,迅速分别投入各种浓度的蔗糖溶液中,使其完全浸入,5—10分钟后,从0.5mol/L 开始依次取出表皮薄片放在滴有同样溶液的载玻片上,盖上盖玻片,于低倍显微镜下观察,如果所有细胞都产生质壁分离的现象,则取低浓度溶液中的制片作同样观察,并记录质壁分离的相对程度。
实验中必须确定一个引起半数以上细胞原生质刚刚从细胞壁的角隅上分离的浓度,和不引起质壁分离的最高浓度。
在找到上述浓度极限时,用新的溶液和新鲜的叶片重复进行几次,直至有把握确定为止。
在此条件下,细胞的渗透势与两个极限溶液浓度之平均值的渗透势相等。
将结果记录下表。
测出引起质壁分离刚开始的蔗糖溶液最低浓度和不能引起质壁分离的最高浓度平均值之后,可按下列公式计算在常压下该组织细胞质液的渗透势。
RTiC s =-ϕs ϕ-为细胞渗透势。
R 为气体常数=0.083×105/L·Pа/mol·K。
T 为绝对温度,单位K ,即273℃+t ,t 为实验湿度。
I为解离系数,蔗糖为1。
C为等渗溶液的浓度,单位为mol/L。
-=0.083×105×(273℃+t)×1×C则:sϕ实验人时间材料名称实验时室五、实验作业:1、叙述细胞渗透作用的原理。
2、测定并计算不同植物组织的渗透势。
实验2 植物组织水势的测定(小液流法)一、实验目的了解植物组织中水分状况的另一种表示方法及用于测定的方法和它们的优缺点。
二、实验原理将植物组织分别放在一系列浓度递增的溶液中,当找到某一浓度的溶液与植物组织之间水分保持动态平衡时,则可认为此植物组织的水势等于该溶液的水势。
因溶液的浓度是已知的,可以根据公式算出其渗透压,取其负值,为溶液的渗透势(ψπ),即代表植物的水势(ψw)(waterpotential)。
ψw=ψπ=-P=-CRT(大气压)三、实验仪器、试剂、材料等(一)材料:小白菜或其它作物叶片(二)仪器设备:1.带塞青霉素小瓶12个;2.带有橡皮管的注射针头;3.镊子;4.打孔器5.培养皿。
(三)试剂:1.0.05、0.10、0.15、0.20、0.25、0.30mol/L蔗糖溶液;2.甲烯蓝粉末。
四、实验方法1、取干燥洁净的青霉素瓶6个为甲组,各瓶中分别加入0.05~0.30mol/L蔗糖溶液约4ml(约为青霉素瓶的2/3处),另取6个干燥洁净的青霉素瓶为乙组,各瓶中分别加入0.05~0.30mol/L蔗糖溶液1ml和微量甲烯蓝粉末着色,上述各瓶加标签注明浓度。
2、取待测样品的功能叶数片,用打孔器打取小圆片约50片,放至培养皿中,混合均匀。
用镊子分别夹入5~8个小圆片到盛有不同浓度的甲烯蓝蔗糖溶液的青霉素瓶中(乙组)。
盖上瓶塞,并使叶圆片全部浸没于溶液中。
放置约30~60min,为加速水分平衡,应经常摇动小瓶。
3、经一定时间后,用注射针头吸取乙组各瓶蓝色糖液少许,将针头插入对应浓度甲组青霉素瓶溶液中部,小心地放出少量液流,观察蓝色液流的升降动向。
(每次测定均要用待测浓度的甲烯蓝蔗糖溶液清洗几次注射针头)。
如此方法检查各瓶中液流的升降动向。
若液流上升,说明浸过小圆片的蔗糖溶液浓度变小(即植物组织失水);表明叶片组织的水势高于该浓度糖溶液的渗透势;如果蓝色液流下降则说明叶片组织的水势低于该糖溶液的渗透势,若蓝色液流静止不动,则说明叶片组织的水势等于该糖溶液的渗透势,此糖溶液的浓度即为叶片组织的等渗浓度4、将求得的等渗浓度值代入如下公式:ψw=ψπ=-CRTi×1.013×0.1。
式中:ψw=植物组织的水势(单位:Mpa)ψπ=溶液的渗透势C =等渗浓度(mol/L)R=气体常数(0.008314MPa/L/mol/K)T =绝对温度i=解离系数(蔗糖=1,CaCl2=2.60)1大气压=1.013=0.1MPa。
五、实验作业用小液流法测定植物组织的水势与用质壁分离法测定植物细胞的渗透势都是以外界溶液的浓度算出的溶质势,它们之间的区别何在?实验3 蒸腾速率的测定(快速称重法)一、实验目的学会用快速称重法测定植物的蒸腾速率,加深对植物水分代谢的认识。
二、实验原理植物蒸腾失水,重量减轻。
因此,用称重法测得一定面积或一定重量的蒸腾器官在一定时间里的失水量,即可测得其蒸腾速率。
三、实验仪器、试剂、材料等精度为10mg 的扭力天平1架;枝剪1把;剪刀1把;铅笔1支;线1根;坐标方格纸1张;标签1个;尺子1把;各种树木的带叶枝条。
四、实验方法1、将扭力天平放在被测树木附近的平稳处,调平,然后在被测植株上选一重约10g 左右且有代表性的枝条,在其基部挂上标签,并缚一细线。
在绑线处上方1~2cm 处将、枝条剪下,立即称重(记为W 1,精确至0.001g ),并在读数时准确计时(t 1)。
2、迅速将枝条用线悬挂原处,使其在原环境中蒸腾,约15min 后,取下枝条,第二次称重(记为W 2,精确至0.001g ),并准确计时(t 2)。
两次所称重量只差即是这段时间内枝条蒸腾部位的鲜重。
3、求算叶面积或蒸腾部位的鲜重。
(1)用称纸法求算叶面积 用尺量出坐标纸边长,算出全纸面积,称出全纸重,精度同上。
摘下叶子,平摊在坐标纸上,在坐标纸上用铅笔绘出叶子轮廓,剪下叶形,称重,精度同上。
按下式计算叶面积(S ):S(cm2)=剪下的叶形纸重(g )×)全纸重()全纸面积(g cm 2(2)求算蒸腾部位的鲜重 剪下枝条上的叶片和嫩梢,称枝重(W 3),精度同上,W 1减去W 3即为蒸腾部分的鲜重:蒸腾部位的鲜重=W 1-W 24、计算蒸腾速率。
蒸腾速率[g /(m 2·h 1)]=)(min)()(6010000))((12221t t cm S g W W -⨯⨯⨯-或:蒸腾速率[mg /(g·min)]=)(min)())(())((122131t t g W W mg W W -⨯--五、实验作业计算所测植物的蒸腾强度。
实验4 单盐毒害及离子间拮抗现象一、实验目的通过简单试验说明培养液中各种离子平衡(各种离子及其浓度)的重要性。
二、实验原理离子间的拮抗现象的本质是复杂的,它可能反映不同离子对原生质亲水胶粒的稳定度、原生质膜的透性,以及对各类酶活性调节等方面的相互制约作用,从而维持机体的正常生理状态。
三、实验仪器、试剂、材料等烧杯;纱布;石蜡; 0.12mol/L KCl;0.06mol/L CaCl2;0.12mol/L NaCl(所用药品均需用AR)四、实验方法实验前3—4天选择饱满的小麦种子100粒浸种,在室温下萌发,待根长1cm时即可用作材料。
取4个小烧杯,依次分别倒人不列盐溶液:(1)0.12mol/L KCI(2)0.06 mol/L CaCl2(3)0.12 mol/L NaCI(4)0.12 mol/L NaCl 100 ml+0.06 mol/L CaCl2 1 ml十0.12mol/L KCl 2.2 ml小烧杯用涂石蜡的纱布盖上。
挑选大小相等及根系发育一致的小麦幼苗10株或20株,小心种植在纱布盖的孔眼里,使根系接触到溶液,在室温下培育2—3星期后,即可看出在单盐溶液中,小麦幼苗生长,特别是它们的根部出现畸形。
五、实验作业比较小麦在不同盐溶液中的生长情况并加以解释。
实验5 叶绿体色素的提取和分离(纸层析法)一、实验目的了解叶绿体色素提取分离的原理以及它们在光合作用中的意义。
二、实验原理叶绿体色素是植物吸收太阳光能进行光合作用的重要物质,主要由叶绿素a、叶绿素b、胡萝卜素和叶黄素组成。
从植物叶片中提取和分离色素是对其认识和了解的前提。
利用叶绿体色素能溶于有机溶剂的特性,可用丙酮提取。
分离色素的方法有多种,纸层析是其中最简便的一种。
当溶剂不断地从层析滤纸上流过时,由于混合物中各成分在两相(即流动相和固定相)间具有不同的分配系数,它们的移动速度不同,使样品中的混合物得到分离。
三、实验仪器、试剂、材料等大试管台天平研钵量筒烧怀漏斗软木层新华滤纸丙酮四氯化碳无水硫酸钠碳酸钙石英砂四、实验方法1、称取新鲜叶子 2 g,放入研钵中加丙酮 5ml,少许碳酸钙和石英砂,研磨成匀浆,再加丙酮 5 ml,然后以漏斗过滤之,即为色素提取液。
2、取准备好的滤纸条(2×2 cm),将其一端剪去两侧,中间留一长约1.5cm,宽约0.5cm的窄条。
3、用毛细管取叶绿素溶液点于窄条的上方,注意一次所点溶液不可过多。
如色素过淡,用电吹风吹干后再点1一2次。
4、在大试管中加入四氯化碳3—5ml及少许无水硫酸钠。
然后将滤纸条固定于软木塞上,插入试管内,使窄端浸入溶剂中(色素点要略高于液面,滤纸条边缘不可碰图到试管壁),盖紧软木塞,直立于阴暗处进行层析。
5、经过0.5一1小时后,观察分离后色素带的分布。
最上端橙黄色为胡萝卜素,其次黄色为叶黄素,再下面蓝绿色为叶绿素a,最后的黄绿色为叶绿素b。
五、实验作业提取叶绿素时为什么要加少量的碳酸钙,加多了会出现什么问题?。