2020届高三数学三校联考试卷

合集下载

2019-2020 学年高三第二学期三校联考理科数学试卷

2019-2020 学年高三第二学期三校联考理科数学试卷
个函数模型:① y x2 ,② y ext ,其中 、 、 、 t 均为常数, e 为自然对数
的底数.并得到一些统计量的值.令 ui xi2 , vi ln yi i 1, 2,,12 ,经计算得如下数据:
x
y
12
2
xi x
i 1
20
66
77
12
2
yi y
i 1
2
u
田地内拟修建笔直小路mnap其中mn分别为acbc的中点点p在bc划在小路mn与ap的交点oo不重合处设立售蜜点图中阴影部分为蜂巢区空白部分为蜂源植物生长为出入口小路的宽度不计
2019—2020 学年高三第二学期三校联考
理科数学
注意事项: 1.答 题 前 ,先 将 自 己的 姓 名 、准 考 证 号填 写 在 试 题 卷 和 答题 卡 上 ,并 将 准 考证
(1)求不等式 g(x) 6 的解集;(5 分)
(2)若存在 x1 , x2 R ,使得 f (x1) 和 g(x2 ) 互为相反数,求 a 的取值范围.(5 分)
的值;(4 分)
(3)对于 x 轴上给定的点 D(n,0)(其中 n>2),若过点 D 和 B 两点的直线交抛物线 C 准 线 P 点,求证:直线 AP 与 x 轴交于一定点.(5 分)
20.某公司为了了解年研发资金投人量 x (单位:亿元)对年销售额 y (单位:亿元)的影 响.对公司近12 年的年研发资金投入量 xi 和年销售额 yi 的数据,进行了对比分析,建立了两
A.
B. 2
C. 3 D. 4
5.从集合 A 1, 2,3, 4,5, 6, 7,8,9,10 中任取两个数,欲使取到的一个数大于 k ,另一个数
2 小于 k (其中 k A )的概率是 5 ,则 k ( )

2020届高三基地学校第三次大联考(数学参考答案)(1)

2020届高三基地学校第三次大联考(数学参考答案)(1)

2020届高三基地学校第三次大联考数学参考答案与评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1. {}102−,, 2.3. 5 4.24 5. 236.必要不充分 7. 8 8. 1− 9.13 10. 45 11.9 12.1()2−∞−, 13. 14.2参考解析:12.【解】作出函数()f x 的图象,结合图象及1x x −<−可得, 当1x −≥,即1x −≤时,不等式成立; 当11x −≤,即0x ≥时,不等式不成立; 当10x −<<时,(01)x −∈,,1(12)x −∈,, 所以222(1)2(1)x x x x +<−−−,解得112x −<<−.综上,不等式()(1)f x f x −<−的解集为1()2−∞−,.13.【解】由0AB BC AD DC ⋅=⋅=,得90ABC ADC ∠=∠=,所以四边形ABCD 的外接圆是以AC 为直径的圆. 设AC ,BD 的中点分别为O ,E ,则OE BD ⊥,所以2AC BD AO BD ⋅=⋅2()AB BE EO BD =++⋅212()2AB BD BD =⋅+,结合4AC BD ⋅=1AC BD ⋅=,2AB BD ⋅=−32AB BD ⋅=−, 得2142(2)2BD =−+,所以28BD =,即22BD =BD 的长为14.【解】方程24()()ln(e 1)2x f x g x x a −=⇔+=+−242e1e 0x x a −+−⇔+−=. 令242()e 1e x x a h x x −+−=+−∈R ,,则显然()h x 为偶函数,所以方程()()f x g x =有四个实根⇔函数242()e 1e 0x x a h x x −+−=+−>,有2个零点. 令2e 0x t x −=>,,则关于t 的方程2e 10a t t −+=, 即1e a t t=+在2(e )−+∞,内有2个不相等的实根, 结合函数21e y t t t−=+>,的图象,得222<e e e a −<+,即4ln 2ln(e 1)2a <<+−.AB CDOE从而存在[1]()a n n n Z ∈+∈,,使得4ln 2ln(e 1)2a <<+−, 所以4ln(e 1)2ln 21n n ⎧<+−⎨<+⎩,,结合n ∈Z ,得max 2n =.二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)【证】(1)因为EA ABC ⊥平面,AB AC ABC ⊂,平面,所以EA AB ⊥,EA AC ⊥. …… 2分又DC EA ∥,所以DC AB ⊥,DC AC ⊥. …… 4分 因为ABAC A =,AB AC ABC ⊂,平面, 所以DC ABC ⊥平面. …… 6分 (2)取AB 中点M ,连结CM ,FM .在△ABE 中,F ,M 分别为EB ,AB 中点, FM ∥EA ,且2EA FM =. 又DC EA ∥且2EA DC =, 于是DC ∥FM ,且DC FM =.所以四边形DCMF 为平行四边形. …… 10分则DF CM ∥,CM ABC ⊂平面,DF ABC ⊄平面,所以DF ABC ∥平面. …… 14分16.(本小题满分14分)【证】(1)在△ABC 中,πA B C ++=,所以()3sin sin 5C A B =+=,即3sin cos cos sin 5A B A B +=,① …… 2分又()1sin 5A B −=,即1sin cos cos sin 5A B A B −=, ② …… 4分由①②得,21sin cos cos sin 55A B A B ==,.因为2A B π≠,,所以两式相除得,tan 2tan A B =. …… 6分【解】(2)由题意,22tan tan AB A B +=,得3tan AB B=. …… 8分在△ABC中,4cos 5C ==,所以sin 3tan cos 4C C C ==. …… 10分A DC BEFM又()()2tan tan 3tan 3tan tan tan 1tan tan 412tan A B B C A B A B A B B +=π−+=−+=−=−=⎡⎤⎣⎦−−,…… 12分即22tan 4tan 10B B −−=,解得tan 1B =+所以2)AB =. …… 14分17.(本小题满分14分)【解】(1)由题意知OM OA R ==,且060θ︒<︒≤. …… 2分在OMN △中,由正弦定理得sin 60sin(120)MN OM θ=︒−,于是)MN θ=︒−, …… 4分从而市民从点O 出发沿道路OM,MN 行走所经过的路径长 ())f OM MN R θθ=+=︒−,060θ︒<︒≤.当12090θ︒−=︒,即30θ=︒时,()f θ取最大值.即当30θ=︒时,市民从点O 出发沿道路OM ,MN 行走所经过的路径最长.6分 (2)市民从点A 出发沿道路AM ,MN 行走所经过的路径长())g AM MN R θθθ=+=+︒−1sin )2R θθθ=++,060θ︒<︒≤. ……8分1()cos )2g R θθθ'=++30)R θ=−−︒,当060θ︒<︒≤时,11sin(30)22θ−<−︒≤,从而()0g θ'>恒成立, 所以()g θ在区间(03π⎤⎥⎦,上单调递增,所以当60θ=︒时,()g θ取最大值. 即当60θ=︒时,市民从点A 出发沿道路AM ,MN 行走所经过的路径最长.14分 18.(本小题满分16分)【解】(1)设圆C 的方程为222()()(0)x a y b r r −+−=>,由题设,222222()))()a b r a b r r ⎧+−=⎪⎪+−=⎪⎨=,,,①②③ …… 3分①−②整理得a b =2r −=,结合①得222((2)a a ++=− 所以0a =,从而0b =,2r =,所以圆C 的方程为224x y +=. …… 5分 (2)(i )设0(4)P y ,,因为PM ,PN 是圆C 的两条切线,所以PM MC ⊥,PN NC ⊥,所以P M N C ,,,在以PC 为直径的圆上,该圆方程为22040x y x y y +−−=. …… 7分设11()M x y ,,22()N x y ,,则221110140x y x y y +−−=④. 因为11()M x y ,在圆C 上,所以22114x y +=⑤, 由④⑤得101440x y y +−=,同理202440x y y +−=, 由此得直线MN 的方程为0440x y y +−=,所以直线MN 过定点(10),. …… 10分 (ii )由(i ),(10)Q ,,设直线PQ 的方程为(1)y k x =−,则(0)D k −,. 设3344()()A x y B x y ,,,,由22(1)4y k x x y =−⎧⎨+=⎩,,得2222(1)2(4)0k x k x k +−+−=, 所以23422342214.1k x x k k x x k ⎧=⎪⎪+⎨−⎪=⎪+⎩+,…… 12分 由DA QA λ=,DB QB μ=,得3344(1)(1)x x x x λμ=−⎧⎨=−⎩,,即334411x x x x λμ⎧=⎪−⎪⎨⎪=⎪−⎩,, …… 14分所以33443434342211()1x x x xx x x x x x λμ+−+=+=+−−−++22222222281223342111k k k k k k−+=+=+=−−+++. …… 16分 19.(本小题满分16分)【解】(1)当1b=−时,1()ln f x ax x x=++,所以222111()ax x f x a x x x+−'=−+=. …… 2分若函数()f x 有两个极值,则0102140a aa <⎧⎪⎪−>⎨⎪+>⎪⎩,,,解得104a −<<.故a 的取值范围是1(0)4−,. …… 4分(2)当1a b +=时,1()(1)ln f x ax a x x=+−−,所以2222(1)1(1)(1)11()ax a x x ax a f x a x x x x +−−+−−'=−+==. 当0a ≤时,()0f x '<,所以()f x 是(0)+∞,上的减函数,所以函数()f x 无最小值,舍去; …… 6分 当0a >时,由()0f x '>得,1x a>,所以()f x 在1(0)a ,上单调递减,在1()a+∞,上单调递增, 所以函数()f x 的最小值为1()1(1)ln f a a a a =++−.由1(1)ln 2a a a ++−=,得(1)(1ln )0a a −−=,解得1a =,或e a =. …… 9分 (3)对任意给定的正实数a b ,,有()1ln ln f x ax b x ax b x x=+−>−. …… 11分(方法一)设()ln g x ax b x =−,则()ax b g x x −'=,所以()g x 在(0)b a ,上单调递减,在(+)b a∞,)上单调递增, 所以min ()()(1ln )b b g x g b a a ==−. 当e b a≤时,()0g x ≥恒成立,所以存在0b x a=,当0x x >时,()0g x >,即当0x x >时,()0f x >. …… 13分当>e b a 时,()0b g a<, 以下证明e b a b a <,且(e )0bag >.令e bx a=>,2()e x h x x =−,则()e 2x h x x '=−, 因为(e 2)e 20x x x '−=−>,所以()e 2x h x x '=−是(e,)+∞上的增函数, 由()(e)0h x h ''>>,得2()e x h x x =−是(e,)+∞上的增函数, 所以()(e)0h x h >>,故当e x >时,2e x x x >>.故<e b a b a ,2(e )e ln e e ()0b b bb a a aa b g a b a a ⎡⎤=⋅−=−>⎢⎥⎣⎦, 由零点存在性定理知,存在0(e )ba b x a∈,,使0()0g x =,故当0x x >时,()0g x >,即当0x x >时,()0f x >. …… 16分(方法2)设()ln ln )g x ax b x ax b x =−=−+. …… 13分设ln y x =,0x >,则1y x'=−=,易知当4x =时,min 22ln 20y =−>,故ln 0y x >.又由0ax −,得2()b x a ≥,对于任意给定的正实数a b ,,取0x 为2()b a与4中的较大者,则当0x x >时,恒有()0g x >,即当0x x >时,()0f x >. …… 16分20.(本小题满分16分)【解】(1)因为12n n nS a a =+,所以221n n n S a a =+.当2n n *∈N ,≥时,2112()()1n n n n n S S S S S −−−=−+, 即2211n n S S −=+,2211(2)n n S S n n *−−=∈N ≥,. 又1n =时,11112S a a =+,得11a =(舍负)所以{}2n S 是以1为首项公差为1的等差数列. …… 4分(2)由(1)知,211n S n n =+−=.又{}n a 是各项都为正数,0n S >,所以n S =.当2n n *∈N ,≥时,1n n n a S S −=−又11a =,所以)n a n *=∈N .于是(1)nn n b ==−+. …… 6分 当n 为奇数时,123n n T b b b b =++++1)(n =−−++−+=当n 为偶数时,123n n T b b b b =++++1)(n =−−++++=所以(1)n T =−. …… 8分(3)由22122p m m pT T −=得122m p p m −=,即222m pp m ⨯=. …… 10分 设2n n n c =,则11111222n n nn n n n n c c ++++−−=−=, 所以12345c c c c c =>>>>. …… 12分由222m ppm ⨯=,2p m m c c c =>,所以m p >,则1m p +≥. 当1m p =+时,222m ppm ⨯=显然不成立; 当1m p >+时,222m pp m ⨯=,则12m p m p −−=. 记1m p t −−=,则t *∈N ,12t p tp ++=,得121t t p +=−. …… 14分记121n n n d +=−,则1111112102121(21)(21)nn n n n n n n n n d d ++++++−⨯−−=−=<−−−−恒成立, 故数列{}n d 单调递减.又12342117d d d ===<,,,则3n ≥时,1n d <恒成立. 从而方程121t t p +=−的解为12t p ==,或21t p ==,. 所以满足条件的m p ,存在,4142m p m p ====,或,. 所以()(){}221()414222p m m p T T m p m p *−⎧⎫⎪⎪=∈=⎨⎬⎪⎪⎩⎭N ,,,,,,. …… 16分数学Ⅱ(附加题)21A .[选修4-2:矩阵与变换](本小题满分10分)【解】设a b c d ⎡⎤=⎢⎥⎣⎦A (a b c d ∈R ,,,),则152103101a b c d −⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA , …… 3分 所以5312053021a b a b c d c d +=⎧⎪+=⎪⎨+=⎪⎪+=⎩,,,,解得1a =−,2b =,3c =,5d =−,所以1235−⎡⎤=⎢⎥−⎣⎦A .… 7分 因为12133527−⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥−−⎣⎦⎣⎦⎣⎦, 所以点(12)P ,在矩阵A 对应的变换作用下得到点Q 的坐标为(37)−,. …… 10分 21B .[选修4-4:坐标系与参数方程](本小题满分10分)【解】将sin()13ρθπ+=20y +−=, …… 2分将2ρ=化为普通方程为224x y +=. …… 4分联立22204y x y +−=+=⎪⎩,,消y 得240x −=,所以0x =或x = 所以AB 的中点M 的直角坐标为1)2,, …… 8分 所以点M 的极坐标为(1)6π,. …… 10分 21C .[选修4-5:不等式选讲](本小题满分10分)【解】因为22262a b c −=+ …… 2分22222122(2)(1)()(3)3233b c b c a =+++=−≥, …… 6分即25120a a −≤,所以 1205a ≤≤. …… 10分22.(本小题满分10分)【解】三棱锥P ABC −中,因为PA ⊥平面ABC ,所以AP AB ⊥,AP AC ⊥,又AB AC ⊥,所以,可以以{}AB AC AP ,,建立如图所示空间直角坐标系A xyz −. 因为1PA =,2AB AC ==,所以(000)A ,,,(200)B ,,,(020)C ,,,(001)P ,,. 所以(020)AD AC λλ==,,,即(020)D λ,,.…… 2分 所以(201)PB =−,,,(021)PD λ=−,,. 设平面PBD 的法向量为1111()x y z =n ,,,则1111112020PB x z PD y z λ⎧⋅=−=⎪⎨⋅==⎪⎩n n ,-,取1(12)λλ=n ,,. …… 4分(1)当12λ=时,11(11)2=n ,,,又可取2(001)=n ,,为平面BDC 的一个法向量,所以1212122cos ||||3⋅<>===⋅n n n n n n ,,由图可知二面角P BD C −−的余弦值值为23−. …… 6分(2)(021)PC =−,,,平面PBD 的一个法向量为1(12)λλ=n ,,. 设直线PC 与平面PBD 所成角为θ,则111||sin cos ||||PC PC PC θ⋅=<>==⋅n nn , …… 8分=22940λλ−+=, 解得12λ=或4λ=−, 因为01λ<<,所以12λ=. …… 10分 23.(本小题满分10分)【解】(1)因为每个服务区入口处设置宣传标语A 的概率为23, 所以每个服务区入口处设置宣传标语B 的概率为13,所以1~(2)3X B n ,,所以12()233E X n n =⨯=. …… 2分(2)长途司机在走该高速全程中,随机的选取3个服务区,共有32n C 种选取方法.长途司机在走该高速全程中,随机的选取3个服务区,记这3个服务区看到相同的宣传标语的事件数为M ,则其概率32nMP C =. …… 4分设该高速公路全程2(4)n n n *∈N ≥,个服务区中,入口处设置醒目的宣传标语A 的有 m (2)m m n ∈N ,≤个.①当323m n −≤≤时,332m n m M C C −=+.令332()m n m f m C C −=+,323m n −≤≤, 则当324m n −≤≤时,33331212(1)()m n m m n m f m f m C C C C +−−−+−=+−−33331221()()m m n m n m C C C C +−−−=−−−2221m n m C C −−=−212(1)()2n n m −=−− 所以当1m n −≤时,(1)()f m f m +<;当m n ≥时,(1)()f m f m +>,所以当m n =时,3min [()]()2n f m f n C ==,即3min ()2n M f n C ==. …… 6分②当3m <,m ∈N 时,32n m M C −=.显然33322122n n n C C C −−>>,所以33222n m n M C C −−=≥.因为4n ≥,所以23n n −>,所以322(22)(23)(24)4(1)(2)(23)66n n n n n n n C −−−−−−−==334(1)(2)426n n n n n C C −−>=>,即32n M C >. …… 8分③当232n m n −<≤,m ∈N 时,3m M C =.因为232n m n −<≤,m ∈N 时,22m n =−,或21m n =−,或2m n =,所以同②,32n M C >.综上,m n =时,3min ()2nM f n C ==,3min min33222242nn n C M n P n C C −===−, 即两种宣传标语1∶1设置时,符合题设的概率最小,其最小值为242n n −−.… 10分。

2020届三省三校高三12月联考数学(理)试题(解析版)

2020届三省三校高三12月联考数学(理)试题(解析版)

2020届三省三校高三12月联考数学(理)试题一、单选题1.2019年国庆黄金周影市火爆依旧,《我和我的祖国》、《中国机长》、《攀登者》票房不断刷新,为了解我校高三2300名学生的观影情况,随机调查了100名在校学生,其中看过《我和我的祖国》或《中国机长》的学生共有80位,看过《中国机长》的学生共有60位,看过《中国机长》且看过《我和我的祖国》的学生共有50位,则该校高三年级看过《我和我的祖国》的学生人数的估计值为( ) A .1150 B .1380C .1610D .1860【答案】C【解析】根据样本中看过《我和我的祖国》的学生人数所占的比例等于总体看过《我和我的祖国》的学生人数所占的比例,即可计算出全校中看过该影片的人数. 【详解】依题有接受调查的100名学生中有70位看过《我和我的祖国》,故全校学生中约有23000.7=1610人看过《我和我的祖国》这部影片,故选C . 【点睛】本题考查根据样本的频率分布与总体的频率分布的关系求值,难度较易.注意样本的频率和总体的频率分布一致. 2.若复数z 满足2iz+=i ,则|z |=( )A B C .D 【答案】D【解析】由复数代数形式的乘除运算化简,然后利用复数模的计算公式求解,也可以运用复数模的运算性质,等式两侧直接求模. 【详解】方法1:由2ii z+=,得|2i||i|||||z z +==,方法2:由2i i z+=,可得2i1-2i z i +==,z D . 【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.某单位共有老年人120人,中年人360人,青年人n 人,为调查身体健康状况,需要从中抽取一个容量为m 的样本,用分层抽样的方法进行抽样调查,样本中的中年人为6人,则n 和m 的值不可以是下列四个选项中的哪组( ) A .n =360,m =14 B .n =420,m =15 C .n =540,m =18 D .n =660,m =19【答案】C【解析】个体有明显差异的几个部分组成时往往采用分层抽样,分层抽样中每个个体被抽到的可能性和个体在每个部分中被抽到的可能性相等,总人数等于各层抽取人数的和,列出等式即可进行求解. 【详解】某单位共有老年人120人,中年人360人,青年人n 人,样本中的中年人为6人,则老年人为61202360⨯=, 青年人为636060n n =, 2686060n n m m ++=⇒+=,代入选项计算,C 不符合,故选C . 【点睛】本题考查分层抽样方法,是一个基础题,解题的依据是在抽样过程中每个个体被抽到的概率是相等的,这种题目经常出现在高考卷中,属于基础题. 4.()221(1)+-ax ax 的展开式中4x 项的系数为-8,则a 的值为( ) A .2 B .-2C.D.-【答案】B【解析】利用二项展开式,得到4x 项,即可得到a 的值. 【详解】解:22(1)(1)ax ax +-的展开式中,4x 项为34a x ,382a a =-=-∴,, 故选:B. 【点睛】本题考查二项式定理,考查计算能力,属于基础题.5.已知n S 是等差数列{n a }的前n 项和,若24836149a a a a a ++=+,则149=S S ( ) A .149B .73C .32D .2【答案】B【解析】先通过24836149a a a a a ++=+,设首项和公差分别为1a 和d ,代入即可找出二者之间的关系,再由()112n n n S na d -=+,计算可得149S S 的值. 【详解】设{}n a 的公差为d ,由24836149a a a a a ++=+,10a d =≠,1141419914()1415729()91032a a S d a a S d +⨯===+⨯,故选B . 【点睛】本题考查等差数列的基本量以及前n 项和公式,关键是求出1a 和d 的值,考查了计算能力,是中档题. 6.已知函数sin a x y x =在点M (π,0)处的切线方程为xb y π-+=,则( ) A .a =-1,b =1 B .a =-1,b =-1C .a =1,b =1D .a =1,b =-1【答案】C【解析】先对函数求导,求得()af ππ'=-,(0)0f =,再由点斜式求得切线方程.【详解】 由题意可知2cos sin ax x a xy x -'=,故在点(π0)M ,处的切线方程为 1(π)ππa y x x -=-=-b +,11a b =⎧⎨=⎩,则,故选C .【点睛】本题考查导数的几何意义,求切线的方程即函数()f x 在()()00,x f x 处的切线方程为()()()000y f x f x x x '-=-.7.函数2cos2()1x xf x x =+的图象大致为( ) A . B .C .D .【解析】根据函数的奇偶性排除C ,D ,再根据函数值的正负即可判断. 【详解】由()f x 为奇函数,得()f x 的图象关于原点对称,排除C ,D ;又当π04x <<时,()0f x >,故选B . 【点睛】有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:①由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.8.如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,且AB =1,BC =2, ∠ABC =60°,PA ⊥平面ABCD ,AE ⊥PC 于E ,下列四个结论:①AB ⊥AC ;②AB ⊥平面PAC ;③PC ⊥平面ABE ;④BE ⊥PC .正确的个数是( ) A .1 B .2 C .3 D .4【答案】D【解析】在ABC ∆中,由余弦定理可求出90o BAC ∠=,再由P A ⊥平面ABCD ,可证出AB ⊥平面P AC ,再由AE ⊥PC 于E ,线面垂直的判定定理,可证明PC ⊥平面ABE ,根据线面垂直的判定,可证出BE ⊥PC ,因此可知正确命题的个数. 【详解】已知1260AB BC ABC ==∠=︒,,,由余弦定理可得2222cos60AC AB BC AB BC =+-⋅︒3=,所以22AC AB +2BC =,即AB AC ⊥,①正确; 由PA ⊥平面ABCD ,得AB PA ⊥,所以AB ⊥平面PAC ,②正确;AB ⊥平面PAC ,得AB ⊥PC ,又AE PC ⊥,所以PC ⊥平面ABE ,③正确;由PC ⊥平面ABE ,得PC BE ⊥,④正确,【点睛】本题考查线面垂直的判定定理和线面垂直的性质定理,考查了逻辑推理能力,属于中档题.9.已知i 为虚数单位,执行如图所示的程序框图,则输出的z 为( )A .-iB .iC .0D .1+i【答案】C【解析】由程序框图,先确定n 的值,再判定其和20之间的关系,逐次运行,即可求出结果. 【详解】由程序框图得0z =,第一次运行011101011a z n =+==+==+=,,; 第二次运行0i i 1i 112b z n =+==+=+=,,;第三次运行,…, 故(1111)(i i i)z =-++-+-+-L L 0=,故选C . 【点睛】本题考查的是算法与流程图,对算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,分清是求和还是求项.10.双曲线E :22221x y a b-=(a >0,b >0)的一条渐近线方程为y =2x ,过右焦点F 作x 轴的垂线,与双曲线在第一象限的交点为A ,若△OAF 的面积是5O 为原点),则双曲线E 的实轴长是( )A .4B .C .1D .2【答案】D【解析】先由近线方程为2y x =,可求出,,a b c 之间的关系,再结合△OAF 的面积是【详解】因为双曲线E 的一条渐近线方程为2y x =,所以2b a =, c e a ===OAF △的面积是221422b c b b a⨯===得所以,,所以1a =,双曲线的实轴长为2,故选D . 【点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题. 11.已知函数()x x g x e e -=-,()()f x xg x =,若53,,(3)22⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭a fb fc f ,则a ,b ,c 的大小关系为( ) A .a <b <c B .c <b <a C .b <a <c D .b <c <a【答案】C【解析】由题意可得()e exxg x -=-为奇函数,且在R 上单调递增,进而判断出()f x 为偶函数,且在(0)+∞,上递增,即可比较大小. 【详解】解:依题意,有()()g x g x -=-,则()e e xxg x -=-为奇函数,且在R 上单调递增,所以()f x 为偶函数. 当0x >时,有()(0)g x g >,任取120x x >>,则()()120g x g x >>,由不等式的性质可得()()11220x g x x g x >>, 即()()120f x f x >>,所以,函数()f x 在(0)+∞,上递增, 因此,355(3)222f f f f ⎛⎫⎛⎫⎛⎫<-=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故选:C . 【点睛】本题考查函数值大小的比较,考查函数的单调性与奇偶性的应用,考查推理与转化能力,12.已知圆O :2214x y +=,直线l :y =kx +b (k ≠0),l 和圆O 交于E ,F 两点,以Ox 为始边,逆时针旋转到OE ,OF 为终边的最小正角分别为α,β,给出如下3个命题: ①当k 为常数,b 为变数时,sin (α+β)是定值; ②当k 为变数,b 为变数时,sin (α+β)是定值; ③当k 和b 都是变数时,sin (α+β)是定值. 其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】B【解析】首先设出11()E x y ,,22()F x y ,,进而可得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,,再将直线和圆联立方程组,运用韦达定理即可进行判断. 【详解】设点11()E x y ,,22()F x y ,,由三角函数的定义得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,,将直线EF 的方程与的方程联立2214y kx b x y =+⎧⎪⎨+=⎪⎩,, 得2221(1)204k x kbx b +++-=, 由韦达定理得122212221141kb x x k b x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩,,所以2112sin()sin cos cos sin 44x y x y αβαβαβ+=+=+=222112121222188244()4()84()11k b kb k x kx b x kx b kx x b x x k k ⎛⎫-- ⎪⎝⎭+++=++==-++,因此,当k 是常数时,sin()αβ+是常数,故选B (特值法可秒杀)本题考查了三角函数的定义和韦达定理,运算求解是关键,考查了转化和化归思想,属于中档题.二、填空题13.已知|a r |=1,|b r |=8,·()3a b a ⋅-=r r r,则向量a r 与b r 向量的夹角是________.【答案】π3【解析】由()3a b a ⋅-=r r r,运算可求得4a b ⋅=r r ,再由平面向量的数量积即可求出向量a r 与b r向量的夹角.【详解】由()3a b a ⋅-=r r r ,得3a b a a ⋅-⋅=r r r r ,即4a b ⋅=r r ,故1cos 2||||a b a b a b ⋅〈〉==⋅r rr r r r ,,则向量a r 与b r 的夹角为π3.【点睛】本题考查平面向量的数量积,由公式cos ||||a ba b a b ⋅〈〉=⋅r rr r r r ,即可求出夹角,属于基础题. 14.数列{n a }的前n 项和2n S An Bn =+(A ≠0),若1=1a ,125,,a a a 成等比数列,则3=a ________.【答案】5【解析】由题意,设等差数列{}n a 的公差为d ,由125,,a a a 成等比数列,求得0d =或2d =,进而求得3a .【详解】由n S 的表达式知,{}n a 为等差数列,设公差为d ,则1114d d ++,,成等比数列,故2(1)14d d +=+,即220d d -=,解得0d =或2d =,若01n n d a S n ===,,,与0A ≠矛盾,故32125d a d ==+=,.【点睛】本题主要考查了等比数列和等差数列的前n 项和公式的应用,其中根据等差数列的前n 项和公式求出通项,再由等比数列列出方程,求解公差是解题的关键,着重考查了推理15.如图,正八面体的棱长为2,则此正八面体的体积为____.【答案】823【解析】上下是两个相同的正四棱锥,由棱长由勾股定理求得斜高,再由棱锥的体积公式即可求解. 【详解】由边长为22213-=312-=222822⨯⨯=. 【点睛】本题考查了棱锥的体积公式,考察了运算求解能力,属于基础题.16.已知点F 1,F 2,是椭圆C :22221x y a b+=(a >b >0)的左、右焦点,以F 1为圆心,F 1F 2为半径的圆与椭圆在第一象限的交点为P .若椭圆C 的离心率为23,1215PF F S =△则椭圆C 的方程为________.【答案】22195x y +=【解析】首先由椭圆的定义可得2||22PF a c =-,再求得21sin PF F ∠,结合三角形12PF F 的面积,即可求得椭圆的方程. 【详解】依题意,112||||2PF F F c ==,由椭圆的定义可得2||22PF a c =-,所以21cos PF F ∠=212||2||PF F F=1111224a c c e -⎛⎫=-= ⎪⎝⎭,从而2115sin PF F ∠=因为离心率23c a =,所以12PF F S =△12g212||||PF F F ⋅21sin PF F ∠=21515()c a c c -=,又1215PF F S =△,解得24c =,所以2295a b ==,故椭圆C 的方程为22195x y +=.【点睛】本题考查了椭圆的定义和性质,合理转化和求解是解题的关键,属于中档题.三、解答题17.根据阅兵领导小组办公室介绍,2019年国庆70周年阅兵有59个方(梯)队和联合军乐团,总规模约1.5万人,是近几次阅兵中规模最大的一次.其中,徒步方队15个.为了保证阅兵式时队列保持整齐,各个方队对受阅队员的身高也有着非常严格的限制,太高或太矮都不行.徒步方队队员,男性身高普遍在175cm 至185cm 之间;女性身高普遍在163cm 至175cm 之间,这是常规标准.要求最为严格的三军仪仗队,其队员的身高一般都在184cm 至190cm 之间.经过随机调查某个阅兵阵营中女子100人,得到她们身高的直方图,如图,记C 为事件:“某一阅兵女子身高不低于169cm ”,根据直方图得到P (C )的估计值为0.5.(1)求直方图中a ,b 的值;(2)估计这个阵营女子身高的平均值 (同一组中的数据用该组区间的中点值为代表) 【答案】(1)a=0.125 0.075b = (2)169.12cm【解析】(1)根据频率分布直方图可得频率,结合P (C )的估计值为0.5从而可计算,a b . (2)利用组中值可计算这个阵营女子身高的平均值. 【详解】解:(1)由已知得(0.110.065)20.5b ++⨯=, 故0.075b =法一:212(0.110.0750.0750.0650.05)a =-⨯++++,0.125a =∴.法二:1()10.50.5P C -=-=,2(0.050.075)0.50.125a a ⨯++==∴,∴. (2)2(0.0520.07540.12560.1180.075100.06512)⨯⨯+⨯+⨯+⨯+⨯+⨯ 2(0.10.30.750.880.750.78)=⨯+++++ 2 3.567.12=⨯=,估计女子的平均身高为163(7.121)169.12+-=(cm ). 【点睛】本题考查频率的计算及频率分布直方图的应用,属于基础题.18.在锐角△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,bcosC +(c -2a )cosB =0. (1)求角B ;(2)若a =1,求b +c 的取值范围. 【答案】(1) π3B =.(2) 2⎫⎪⎪⎝⎭【解析】(1)先根据正弦定理可求得1cos 2B =,再由特殊角的三角函数求得B ; (2)根据正弦定理求b +c 的表达式,再由23B A π=-,结合A 的范围即得b +c 的取值范围. 【详解】解:(1)cos (2)cos 0b C c a B +-=∵,cos cos 2cos b C c B a B ∴+=,由正弦定理得sin cos cos sin 2sin cos B C B C A B +=, sin()sin(π)sin 0B C A A +=-=≠, 12cos 1cos 2B B ==∴, 又B 是ABC V 的内角,π3B ∴=. (2)ABC QV 为锐角三角形,π13B a ==,,2πππ362A C A +=<<∴,,由正弦定理得1sin sin sin b cA B C==, 2πsin πsinsin sin 33sin sin sin sin A B C b c A A A A⎛⎫- ⎪⎝⎭+=+=+∴31cos sin 333cos 13(1cos )122sin sin 22A AA A A A ++=+=+⨯+=+, ππ62A b c <<+∵,∴关于A 为减函数 ππ31cos 31cos 1126ππ222sin 2sin 26b c ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+<+<+∴, 3132b c +<+<+∴,即b c +的取值范围是3132⎛⎫++ ⎪ ⎪⎝⎭,. 【点睛】本题考查正弦定理,考查了三角函数的单调性,求出A 的范围是解题的关键,考查了运算求解能力,属于中档题.19.如图,在三棱锥P -ABC 中,已知22====,AC AB BC PA ,顶点P 在平面ABC 上的射影为ABC V 的外接圆圆心.(1)证明:平面PAC ⊥平面ABC ; (2)若点M 在棱PA 上,||||=λAM AP ,且二面角P -BC -M 533,试求λ的值.【答案】(1)证明见解析 (2)12λ=【解析】(1)设AC 的中点为O ,连接PO ,易知点O 为ABC V 的外接圆圆心,从而PO ⊥平面ABC ,即可证明平面PAC ⊥平面ABC ;(2)以OC ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系, 求出平面MBC 与平面PBC 的法向量,代入公式即可建立λ的方程,解之即可. 【详解】(1)证明:如图,设AC 的中点为O ,连接PO ,由题意,得222BC AB AC +=,则ABC V 为直角三角形, 点O 为ABC V 的外接圆圆心.又点P 在平面ABC 上的射影为ABC V 的外接圆圆心, 所以PO ⊥平面ABC ,又PO ⊂平面PAC ,所以平面PAC ⊥平面ABC . (2)解:由(1)可知PO ⊥平面ABC , 所以PO OB ⊥,PO OC ⊥,OB AC ⊥,于是以OC ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则(000)O ,,,(100)C ,,,(010)B ,,,(100)A -,,,(001)P ,,, 设[01](101)(10)AM AP AP M λλλλ=∈=-u u u u v u u u v u u u v,,,,,,,,,(110)BC =-u u u v ,,,(101)PC =-u u u v ,,,(20).MC λλ=--u u u u v,,设平面MBC 的法向量为111()m x y z =u r,,,则·0·0m BC m MC ⎧=⎨=⎩u u u v v u u u u v v ,,得11110(2)0x y x z λλ-=⎧⎨--=⎩,, 令11x =,得11y =,12z λλ-=,即211m λλ-⎛⎫= ⎪⎝⎭v,,. 设平面PBC 的法向量为222()n x y z =r,,,由·0·0n BC n PC ⎧=⎨=⎩u u u v r u u u v r ,,得222200x y x z -=⎧⎨-=⎩,, 令1x =,得1y =,1z =,即(111)n =r,,,22·cos||?||33n mn mn mλ-+〈〉===r vr vr v,解得111222⎛⎫=-⎪⎝⎭,,,,λM即M为P A的中点.【点睛】本题考查平面与平面垂直的判定,二面角的平面角的求法,考查空间想象能力以及计算能力.20.已知函数2()(1)xf x k x e x=--,其中k∈R.(1)当k=-1时,求函数()f x的单调区间;(2)当k∈[1,2]时,求函数()f x在[0,k]上的最大值.【答案】(1) ()f x的单调递增区间为(0)()f x-∞,,的单调递减区间为(0)+∞,(2)2max()(1)e kf x k k k=--【解析】(1) 首先求出()'f x,再由()'0f x>求得单调递增区间,由()'0f x<,解不等式即可求出单调减区间;(2) 首先求得()0f x'=,结合k的范围,可求得函数在20lnk⎛⎫⎪⎝⎭,上单调递减;在2ln kk⎛⎫⎪⎝⎭,上单调递增,再比较(0)()f f k,的大小,即可求得最大值.【详解】解:(1)21()(1)e xk f x x x=-=---,,令()e2(e2)00x xf x x x x x'=--=-+=⇒=,故(0)()0(0)()0x f x x f x''∈-∞>∈+∞<,,;,,,()f x的单调递增区间为(0)()f x-∞,,的单调递减区间为(0)+∞,(2)()e2(e2)x xf x kx x x k'=-=-,令2()0ln[0ln2]f x xk'=⇒=∈,,其中[12]k∈,.令2()ln[12]g k k kk=-∈,,,211()21102kg kkk⎛⎫'=⨯--=--<⎪⎝⎭,故()g k在[12],上单调递减,故2()(1)ln210lng k g kk=-<⇒<≤,故220ln ()0ln ()0x f x x k f x k k ⎛⎫⎛⎫∈<∈> ⎪ ⎪⎝⎭⎝⎭'',,;,,, 从而()f x 在20ln k ⎛⎫ ⎪⎝⎭,上单调递减;在2ln k k ⎛⎫⎪⎝⎭,上单调递增, 故在[0]k ,上,函数2max ()max{(0)()}max{(1)e }[12].k f x f f k k k k k k ==---∈,,,, 由于2()(0)(1)e [(1)e 1]kkf k f k k k k k k k -=--+=--+, 令()(1)e 1[12]k h k k k k =--+∈,,, ()e 10k h k k '=->,对于[12]k ∀∈,恒成立, 从而()(1)0h k h =≥,即()(0)f k f ≥,当1k =时等号成立, 故2max ()()(1)e k f x f k k k k ==--. 【点睛】本题考查函数的单调性和函数的最值,(1)一般来说,判断函数的单调区间,就要考察函数的导函数在此区间上的符号,若函数中含有参数,这就可能引起分类讨论;(2)求函数在某区间上的最值,一般仍是先考察函数在此区间上的单调性,再求其最值,本题中的参数是引起分类讨论的原因,难度较大,分类时要层次清晰.21.已知抛物线E :2y x =,的焦点为F ,过点F 的直线l 的斜率为k ,与抛物线E 交于A ,B 两点,抛物线在点A ,B 处的切线分别为l 1,l 2,两条切线的交点为D . (1)证明:∠ADB =90°;(2)若△ABD 的外接圆Γ与抛物线C 有四个不同的交点,求直线l 的斜率的取值范围.【答案】(1)证明见解析 (2) k >k <【解析】(1)首先设出直线l 的方程,再设1122()()A x y B x y ,,,,直线与抛物线联立方程组,进而求出1212x x x x +,的值,再对抛物线求导,结合导数的几何意义,即可证明; (2)外接圆的直径为AB,进而写出圆的方程,圆和抛物线联立方程组,消去y,等价于方程有两个不同的根,即可求出k 的范围. 【详解】(1)证明:依题意有104F ⎛⎫⎪⎝⎭,,直线14l y kx =+:,设1122()()A x y B x y ,,,,直线l 与抛物线E 相交,联立方程214y x y kx ⎧=⎪⎨=+⎪⎩,,消去y ,化简得2104x kx --=,所以,121214x x k x x +==-,. 又因为2y x '=,所以直线1l 的斜率112k x =. 同理,直线2l 的斜率222k x =, 所以,121241k k x x ==-,所以,直线12l l ⊥,即90ADB ∠=︒.(2)解:由(1)可知,圆Γ是以AB 为直径的圆, 设()P x y ,是圆Γ上的一点,则0PA PB ⋅=u u u r u u u r,所以,圆Γ的方程为1212()()()()0x x x x y y y y --+--=,又因为22212121212121211111444216x x k x x y y kx kx k y y x x +==-+=+++=+==,,,,所以,圆Γ的方程可化简为222130216x y kx k y ⎛⎫+--+-= ⎪⎝⎭,联立圆Γ与抛物线E 得2222130216x y kx k y y x ⎧⎛⎫+--+-=⎪ ⎪⎝⎭⎨⎪=⎩,, 消去y ,得422130216x k x kx ⎛⎫----= ⎪⎝⎭,即22211042x kx ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,即2213044x kx x kx ⎛⎫⎛⎫--++= ⎪⎪⎝⎭⎝⎭,若方程2104x kx --=与方程2304x kx ++=有相同的实数根0x , 则20020020010114032404x kx kx x x kx ⎧--=⎪⎪⇒=-⇒+=⎨⎪++=⎪⎩,,矛盾,所以,方程2104x kx --=与方程2304x kx ++=没有相同的实数根, 所以,圆Γ与抛物线E 有四个不同的交点等价于221030k k k k ⎧+>⇔><⎨->⎩,综上所述,k k >< 【点睛】本题考查了直线、圆和抛物线的交汇,联立方程组,运用韦达定理是解题的关键,考查了运算求解能力和化归思想,属于难题.22.已知曲线C 的极坐标方程是ρ=6sinθ,建立以极点为坐标原点,极轴为x 轴正半轴的平面直角坐标系.直线l 的参数方程是cos 2sin x t y t θθ=⎧⎨=+⎩,(t 为参数).(1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|ABk .【答案】(1) 22(3)9x y +-=. (2) 1k =±.【解析】(1)运用x =ρcosθ,y =ρsinθ,即可将曲线C 的极坐标方程化为直角坐标方程; (2)方法1:化直线的参数方程为普通方程,再由条件,即可得到直线方程,再求出圆心到直线的距离,结合|AB2:直接把直线的参数方程代入圆,运用韦达定理,计算12t t -,结合|AB率. 【详解】解:(1)由曲线C 的极坐标方程是6sin ρθ=,得直角坐标方程为226x y y +=,即22(3)9x y +-=.(2)把直线l 的参数方程cos 2sin x t y t θθ=⎧⎨=+⎩,,(t 为参数),代入圆C 的方程得22(cos )(sin 1)9t t θθ+-=, 化简得22sin 80t t θ--=.设A B ,两点对应的参数分别是12t t ,,则122sin t t θ+=,128t t =-故12||||AB t t =-=得sin 2θ=±, 得1k =±. 【点睛】本题考查参数方程、极坐标方程和普通方程的互化,考查直线与圆相交的弦长问题,运用点到直线的距离公式,结合弦长运用勾股定理即可求得斜率,考查运算能力,属于中档题.23.已知a ,b ,c ∈R +,且a +b +c =2.求证:(1)1346a b c++≥+; (2)2222c a b a b c++≥.【答案】(1) 证明见解析 (2)证明见解析【解析】(1)运用柯西不等式,求1134()2a b c a b c ⎛⎫++++ ⎪⎝⎭的最小值,即可证明;(2)运用柯西不等式,计算2221()2c a b a b c a b c ⎛⎫++++ ⎪⎝⎭,即可证明. 【详解】证明:(1)由柯西不等式,得213411341()622a b c a b c a b c ⎛⎫++=++++=+ ⎪⎝⎭≥,所以1346a b c++≥+. (2)由柯西不等式,得222222211()()222c a b c a b a b c c a b ab c a b c ⎛⎫⎛⎫++=++++++= ⎪ ⎪⎝⎭⎝⎭≥, 所以2222c a b a b c++≥.【点睛】本题考查了柯西不等式的应用,考查了推理论证能力.。

广东省深圳市2020届高三三校联考数学(理)试卷

广东省深圳市2020届高三三校联考数学(理)试卷

数学(理科)参考公式:柱体的体积公式V Sh =.一、选择题:(本大题共12小题,每小题5分,共计60分.每小题只有一个正确答案,请把正确答案填涂在答题卡相应位置)1.设集合{}{}2320,230A x x x B x x =++<=+>,则A B =()A .(2,1)--B .3(2,)2--C .3(,1)2--D .3(,)2-+∞ 2.在ABC ∆内角A B 、、C 的对边分别为a b c 、、,135,30,2A B a =︒=︒=,则b 等于()A .1B .2C .3D .23.已知复合命题()p q ∧⌝是真命题,则下列命题中也是真命题的是() A .()p q ⌝∨B .()()p q ⌝∧⌝C .p q ∧D .p q ∨4.科学研究表明,一个人的智力、体力和情绪都呈周期性变化,比如智力周期为7天的一个人,本周三智力水平 处于最佳状态的话,下周三智力水平也会最佳,如果某人 智力周期为6天,体力周期为3天,情绪周期为4天,现 知道此人某天三项指标都处于最佳状态,204天后此人三项 指标分别是() A .高、中、低 B .高、高、高 C .中、中、中 D .低、低、低5.已知3sin sin 4410ππθθ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,则44sin cos θθ+等于() A .1725-B .1725C .58-D .586.已知过原点的直线交函数2log y x =的图像于A,B 两点,过A,B 分别作y 轴的平行线交函数8log y x =的图像于C,D 两点,则直线CD ()A .过定点()1,0-B .过定点()0,0C .过定点()1,0D .与AB 平行 7.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是() 中低高8.已知函数()f x 是奇函数,()g x 为偶函数,若()()xf xg x e +=,则()1f 等于()A .1e e +B .1e e -C .122e e -D .122e e+ 9.已知函数()f x 的定义域为D ,如果存在实数M ,使对任意的x D ∈,都有()f x M ≤,则称函数()f x 为有界函数,下列函数:①()2,xf x x R -=∈②()()ln ,0,f x x x =∈+∞③()()()2,,00,1xf x x x =∈-∞+∞+;④()()sin ,0,f x x x x =∈+∞为有界函数的是() A .①③B .②③④C .②④D .①③④10.为测量江边一座古塔的高度,选择了江面上与塔底处于同一 水平面的A 、B 两处,如图所示,在A 处测得塔顶仰角60︒, B 处测得塔顶仰角30︒,AB 两点的连线垂直于A 与塔底的连 线,已知AB 10063m ,则塔高为(). A .500m B .506m C .503m D .50m11.已知()y f x '=为R 上的偶函数()y f x =的导函数,且()11f =,若0x ≥时,()()20f x xf x '+>恒成立,则不等式()21f a a ≤的解为() A .[)(]1,00,1-B .[)1,0-C .(]0,1D .[]1,1-12.设n n n A B C ∆的三内角分别为,,n n n A B C ,所对边为,,n n n a b c ,n n n A B C ∆的面积为*,n S n N ∈,若11B C >,11111112,,,,22n n nnn n n n n n C A B A B C A A A a a B C +++++++=====,则()A .{}n S 为递减数列B .{}21n S -为递增数列,{}2n S 为递减数列C .{}n S 为递增数列D .{}21n S -为递减数列,{}2n S 为递增数列二、填空题(每小题5分,共20分.答案填在答题卡里)13.ABC ∆中,60,2A a b ===,则c =14.函数()ln f x x x =在点()(),e f e 处的切线方程为______________. 15.ABC ∆中,已知2,2BC AB AC ==,则ABC ∆面积的最大值为16.积分运算不仅可以用来求曲边梯形的面积,还可以进行体积运算,在平面直角坐标系中,将直线y x =与直线1x =以及x 轴所围成的图像绕x 轴旋转一周得到一个圆锥,圆锥的体积112333V x dx x πππ===⎰.类似的,函数cos ,0,2y x x π⎡⎤=∈⎢⎥⎣⎦的图像与x 轴,y 轴围成的图像面积为 ,将此图像绕x 轴旋转一周得到一个几何体,体积为 .三、解答题(10+12+12+12+12+12=70分)17.(本小题满分10分)函数()sin cos sin 2,0,2f x x x x x π⎛⎫=++∈ ⎪⎝⎭的值域为集合A ,函数()g x =的定义域为集合B ,记:,:p x A q x B ∈∈.⑴若0a =,试判断p 是q 的什么条件?(以充分不必要,必要不充分,充要,既不充分也不必要之一作答)⑵若p 是q 的充分不必要条件,求实数a 的取值范围.18.(本小题满分12分)已知函数()sin 1f x x x ωω=+(其中0,x R ω>∈)的最小正周期为6π.⑴求ω的值; ⑵设,0,2παβ⎡⎤∈⎢⎥⎣⎦,13217f πα⎛⎫-= ⎪⎝⎭,()1135f βπ+=,求()cos αβ+的值. 19.(本小题满分12分)已知定义域为R 的函数()1x xm e f x n e+-=+是奇函数. (1)求,m n 的值;(2)若对任意的t R ∈,不等式()2()0f t t f t k ++-<恒成立,求k 的取值范围.20.(本小题满分12分)如图,矩形ABCD中,AB =2AD =,点P 是以AB 为直径的半圆弧上的一点.(1)若PB =PC 的长;(2)若150BPC ∠=︒,求tan PBC ∠.ABCDP21.(本小题满分12分)已知函数()()(),ln xf x eg x x t kx ==+-(1)若0t =且0k >,讨论函数()g x 的零点个数; (2)若2,1t k ≤=,求证:()()0f x g x '+>.22.(本小题满分12分)(1)我们知道,如果从一个正方形的四个角剪下四个相同的小正方形,可将剩下的部分折叠成一个正四棱柱,如果剪下的四个小正方形边长合适,剪下的部分刚好可以拼接成为一个和正四棱柱底面相同的盖子,如图①所示,类似的,请将图②中的边长为a 的等边三角形,通过裁减、折叠、拼接,得到一个正三棱柱(底面为等边三角形,侧棱垂直于底面),只需分步列出制作步骤,无需证明;(2)任意三角形中,一边长度为a ,两邻角分别为2,2αβ,现剪下三个角做废料处理,无需做盖子,用余下的部分折叠成一个直三棱柱,问如何裁减所得三棱柱体积最大?最大值是多少?①②③数学答案一、选择题CADBBBDCADAC二、填空题(13)3(14)20x y e --=(15)43(16)1(2分),24π(3分)三、解答题(10+12+12+12+12+12=70分)17.解:令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,因为0,2x π⎛⎫∈ ⎪⎝⎭,所以(t ∈……2分且2sin 21x t =-………………………………………………………………………3分 函数()f x的值域也就是函数(21,y t t t =+-∈的值域,根据二次函数的图像特征可知,函数21y t t =+-在(t ∈上单调递增 (4)分于是可求得(1A ⎤=⎦………………………………………………………………5分 函数()2lnx a g x a x-=-有意义需要20x a a x->-,即(()()20x ax a --<22112024a aa ⎛⎫+-=-+> ⎪⎝⎭,所以(2,B a a =……………………7分⑴若0a =,则(B =,p 是q 的既不充分也不必要条件………………………8分下底面侧面侧面侧面侧面a2α2β⑵若p 是q 的充分不必要条件,则A B ⊂≠,即201a a ≤⎧⎪⎨+>⎪⎩………………9分 解得:1a <-………………………………………………………………………10分18.解:⑴()sin 12sin()13f x x x x πωωω=+=-+………………3分26T ππω==,所以13ω=.…………………………………………………………6分 ()12sin()133f x x π=-+注:如果()2cos()16f x x πω=-++等正确结果的话相应给分即可.⑵1132sin (3)12sin 12cos 12323217f ππππαααα⎛⎫⎛⎫⎛⎫-=--+=-+=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 所以8cos 17α=……………………………………………………………………7分 ()11132sin (3)12sin 1335f πβπβπβ⎛⎫+=+-+=+= ⎪⎝⎭所以3sin 5β=…………8分因为,0,2παβ⎡⎤∈⎢⎥⎣⎦,所以154sin ,cos 175αβ====…………10分所以()13cos cos cos sin sin 85αβαβαβ+=-=-.…………………………12分 19.解:(1)∵()f x 是R 上的奇函数,所以()001m ef n -==+,即m e =……2分∴又()(1)1f f =--,得211e e e n e n e ---=-++,解得1n =.…………………………4分 此时()11x xe ef x e+-=+,检验知为R 上的奇函数,故所求m e =,1n =.………………6分(2)()1121111x x x x xe e ef x e e e e e +--⎛⎫==⋅=⋅- ⎪+++⎝⎭,在R 上单调递减………………8分 原不等式恒成立即为:2t t k t +>-当t R ∈时恒成立.………………………………10分即220t t k +->恒成立,故440k ∆=+<.…………………………………………11分解得:1k <-.…………………………………………………………………………12分 20.解:(1)根据题意有90APB ∠=︒,因为2AB PB =,所以60,30ABP PBC ∠=︒∠=︒根据余弦定理可得:23422cos301PC =+-⨯︒=故1PC =………………………………………………………………………………6分 (2)设PBC θ∠=,则,PAB PB θθ∠==,在BPC ∆中,2,,150,30BC PB BPC BCP θθ==∠=︒∠=︒- 根据正弦定理得:2sin150=︒tan 6PBC ∠=…………12分 21.解:(1)若0t =,()1111kx g x k k x x x x k -⎛⎫'=-==-⋅- ⎪⎝⎭……………………1分 令()10,g x x k'==……………………………………………………………………2分 当10,x k ⎛⎫∈ ⎪⎝⎭,()()0,g x g x '>单调递增;当1,x k ⎛⎫∈+∞ ⎪⎝⎭,()()0,g x g x '<单调递减…………………………………………………………………………………3分由()max 1ln 1g x g k k ⎛⎫==--⎪⎝⎭得: 当10,k e ⎛⎫∈ ⎪⎝⎭时,()max 0g x >,两个零点,当1k e=时,()max 0g x =,一个零点,当1,k e ⎛⎫∈+∞ ⎪⎝⎭时,()max 0g x <,无零点.………………………………………………6分注:也可以用图像说明,酌情给分。

三省三校(贵阳一中、云师大附中、南宁三中)2020届高三数学12月联考试题 文(扫描版)

三省三校(贵阳一中、云师大附中、南宁三中)2020届高三数学12月联考试题 文(扫描版)

三省三校(贵阳一中、云师大附中、南宁三中)2020届高三数学12月联考试题文(扫描版)2020届“3+3+3”高考备考诊断性联考卷(一)文科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)【解析】1.依题有接受调查的100名学生中有70位看过《我和我的祖国》,故全校学生中约有2300*0.7=1610人看过《我和我的祖国》这部影片,故选C .2.由2ii z+=,得|2i||i|||||z z +==,D .3.某单位共有老年人120人,中年人360人,青年人n 人,样本中的中年人为6人,则老年人为61202360⨯=, 青年人为636060n n =, 2686060n n m m ++=⇒+=,代入选项计算,C 不符合,故选C .4.原不等式等价于|sin ||cos |x x ≥,即正弦线长度长于或等于余弦线长度,故选D . 5.设{}n a 的公差为d ,由24836149a a a a a ++=+,10a d =≠,1141419914()1415729()91032a a S d a a S d +⨯===+⨯,故选B . 6.由题意可知2cos sin ax x a x y x -'=,故在点(π0)M ,处的切线方程为1(π)ππa y x x -=-=-b +,11a b =⎧⎨=⎩,则,故选C .7.由()f x 为奇函数,得()f x 的图象关于原点对称,排除C ,D ;又当π04x <<时,()0f x >,故选B .8.已知1260AB BC ABC ==∠=︒,,,由余弦定理可得2222cos60AC AB BC AB BC =+-︒g3=,所以22AC AB +2BC =,即AB AC ⊥,①正确;由PA ⊥平面ABCD ,得AB PA ⊥,所以AB ⊥平面PAC ,②正确;AB ⊥平面PAC ,得AB ⊥PC ,又AE PC ⊥,所以PC ⊥平面ABE ,③正确;由PC ⊥平面ABE ,得PC BE ⊥,④正确,故选D .9.由程序框图得0z =,第一次运行011101011a z n =+==+==+=,,;第二次运行0i i 1i 112b z n =+==+=+=,,;第三次运行,…,故(1111)(i i i)z =-++-+-+-L L0=,故选C .10.因为双曲线E 的一条渐近线方程为2y x =,所以2ba=,c e a ==由OAF△的面积是221422b c b b a===g 得所以,,所以1a =,双曲线的实轴长为2,故选D .11.当00x y ==,时,即220x y +≤符合题意,此时0m =,排除A ,D ,由题意可知,以(00),为圆心的圆在不等式24x y x y ⎧+⎪⎨-⎪⎩≤≤所表示的区域内,半径最大的圆22x y m +=应与直线相切,圆心到240x y --=的距离为1d ==,圆心到x y +=为22d =,由于12d d <,∴符合题意的最大的圆为222165x y +==,故选B . 12.设点11()E x y ,,22()F x y ,,由三角函数的定义得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,,将直线EF 的方程与圆的方程联立2214y kx b x y =+⎧⎪⎨+=⎪⎩,,得2221(1)204k x kbx b +++-=,由韦达定理得122212221141kb x x k b x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩,,所以211221sin()sin cos cos sin 444()x y x y x kx b αβαβαβ+=+=+=+2212121222188244()84()11k b kb k x kx b kx x b x x k k ⎛⎫-- ⎪⎝⎭++=++==-++,因此,当k 是常数时,sin()αβ+是常数,故选B .二、填空题(本大题共4小题,每小题5分,共20分)【解析】13.由()3a b a -=r r r ,得3a b a a -=r r r r g g ,即4a b =r r g ,故1cos 2||||a b a b a b 〈〉==r rr r g r r g ,,则向量a r 与b r 的夹角为π3. 14.由n S 的表达式知,{}n a 为等差数列,设公差为d ,则1114d d ++,,成等比数列,故2(1)14d d +=+,即220d d -=,解得0d =或2d =,若01n n d a S n ===,,,与0A ≠矛盾,故32125d a d ==+=,.152=. 16.依题意,112||||2PF F F c ==,由椭圆的定义可得2||22PF a c =-,所以21cos PF F ∠=212||2||PF F F=1111224a c c e -⎛⎫=-= ⎪⎝⎭,从而21sin PF F ∠=因为离心率23c a =,所以12PF F S =△12g 212||||PF F F g 21sin PF F ∠=2()a c -=,又12PF F S △,解得24c =,所以2295a b ==,,故椭圆C 的方程为22195x y +=.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)解:(1)由已知得(0.110.065)20.5b ++⨯=,故0.075b =.……………………………………………………………………………(3分)法一:212(0.110.0750.0750.0650.05)a =-⨯++++,0.125a =∴.……………………………………………………………………………(6分) 法二:1()10.50.5P C -=-=,2(0.050.075)0.50.125a a ⨯++==∴,∴.………………………………………………(6分) (2)2(0.0520.07540.12560.1180.075100.06512)⨯⨯+⨯+⨯+⨯+⨯+⨯ 2(0.10.30.750.880.750.78)=⨯+++++2 3.567.12=⨯=,………………………………………………………………………(10分) 估计女子的平均身高为163(7.121)169.12+-=(cm).……………………………………………………………………………………(12分)18.(本小题满分12分)解:(1)cos (2)cos 0b C c a B +-=∵,cos cos 2cos b C c B a B +=∴,…………………………………………………………(1分) 由正弦定理得sin cos cos sin 2sin cos B C B C A B +=,…………………………………(2分) sin()sin(π)sin 0B C A A +=-=≠, ……………………………………………………(3分)12cos 1cos 2B B ==∴,,………………………………………………………………(5分)(2)ABC ∵△为锐角三角形,π13B a ==,,2πππ362A C A +=<<∴,,……………………………………………………………(7分)由正弦定理得1sin sin sin b cA B C==, 2πsin πsinsin sin 33sin sin sin sin A B C b c A A A A ⎛⎫- ⎪⎝⎭+=+=+∴ …………………………………………(8分) 1sin cos 1122sin sin 22A AA A A +=+=+=+g ,ππ1cos1cos1126ππ222sin2sin26b c⎫⎫++⎪⎪⎝⎭⎝⎭+<+<+∴,……………………………………(11分)2b c<+<,即bc+的取值范围是2⎫⎪⎪⎝⎭.……………………………………………………………………………………(12分)19.(本小题满分12分)解:(1)由已知底面ABCD为正方形,PD⊥平面ABCD,2PD AD==,得PD⊥AD,PD⊥AB,AD⊥AB.………………………………………………………(1分)又PD AD D=I,∴AB⊥平面PAD,∴PA⊥AB,∴PA=PB=………………………………………………………………………………………(2分)∴PABS=△2PADS=△,…………………………………………………………(3分)同理PCBS=△2PCDS=△,4ABCDS=,∴8S=四棱锥表面积,…………………………………………………………………(4分)1833P ABCD ABCDV S PD-==g.………………………………………………………………(6分)(2)设内切球的半径为r,球心为O,则球心O到平面PAB,平面PAD,平面PCB,平面PCD,平面ABCD的距离均为r,由P ABCD O PAB O PAD O PCB O PCD O ABCDV V V V V V------=++++,可得11111113333333ABCD PAB PAD PCB PCD ABCD S PD S r S r S r S r S r S r =++++=g g g g g g g △△△△正方形四棱锥表面积,………………………………………………………………………………………(8分)∴2ABCD S PD r S ==-g 正方形四棱锥表面积………………………………………………………(10分)∴24π(24πS r ==-内切球表面积.……………………………………………………………………………………(12分)20.(本小题满分12分)解:(1)21()(1)e x k f x x x =-=---,, 令()e 2(e 2)00x x f x x x x x '=--=-+=⇒=,………………………………………………………………………………………(2分) 故(0)()0(0)()0x f x x f x ''∈-∞>∈+∞<,,;,,, ………………………………………………………………………………………(3分) ()f x 的单调递增区间为(0)()f x -∞,,的单调递减区间为(0)+∞,.………………………………………………………………………………………(4分) (2)()e 2(e 2)x x f x kx x x k '=-=-,令2()0ln [0ln 2]f x x k '=⇒=∈,,其中[12]k ∈,.……………………………………(5分)令2()ln [12]g x x x x =-∈,,, 211()21102x g x x x⎛⎫'=--=--< ⎪⎝⎭g ,……………………………………………………(6分) 故()g x 在[12],上单调递减,故2()(1)ln 210lng x g k k=-<⇒<≤,…………………………………………………(7分) 故220ln ()0ln ()0x f x x k f x k k ⎛⎫⎛⎫''∈<∈> ⎪ ⎪⎝⎭⎝⎭,,;,,, 从而()f x 在20ln k ⎛⎫ ⎪⎝⎭,上单调递减;在2ln k k ⎛⎫⎪⎝⎭,上单调递增,………………………………………………………………………………………(8分) 故在[0]k ,上,函数2max ()max{(0)()}max{(1)e }[12].k f x f f k k k k k k ==---∈,,,, ………………………………………………………………………………………(9分) 由于2()(0)(1)e [(1)e 1]k k f k f k k k k k k k -=--+=--+,令()(1)e 1[12]x h x x x x =--+∈,,,……………………………………………………(10分) ()e 10x h x x '=->,对于[12]x ∀∈,恒成立, 从而()(1)0h x h =≥,即()(0)f k f ≥,当1k =时等号成立,…………………………………………………(11分) 故2max ()()(1)e k f x f k k k k ==--.……………………………………………………(12分) 21.(本小题满分12分)(1)证明:依题意有104F ⎛⎫⎪⎝⎭,,直线14l y kx =+:,…………………………………(1分)设1122()()A x y B x y ,,,,直线l 与抛物线E 相交,联立方程214y x y kx ⎧=⎪⎨=+⎪⎩,,消去y ,化简得2104x kx --=,………………………………(2分) 所以,121214x x k x x +==-,.…………………………………………………………(3分) 又因为2y x '=,所以直线1l 的斜率112k x =.同理,直线2l 的斜率222k x =,…………………………………………………………(4分)所以,121241k k x x ==-,………………………………………………………………(5分) 所以,直线12l l ⊥,即90ADB ∠=︒.…………………………………………………(6分) (2)解:由(1)可知,圆Γ是以AB 为直径的圆, 设()P x y ,是圆Γ上的一点,则0PA PB =u u u r u u u rg ,所以,圆Γ的方程为1212()()()()0x x x x y y y y --+--=,………………………………………………………………………………………(7分)又因为22212121212121211111444216x x k x x y y kx kx k y y x x +==-+=+++=+==,,,,所以,圆Γ的方程可化简为222130216x y kx k y ⎛⎫+--+-= ⎪⎝⎭,………………………………………………………………………………………(8分) 联立圆Γ与抛物线E 得2222130216x y kx k y y x ⎧⎛⎫+--+-=⎪ ⎪⎝⎭⎨⎪=⎩,,即22211042x kx ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,即2213044x kx x kx ⎛⎫⎛⎫--++= ⎪⎪⎝⎭⎝⎭,………………………………………………………………………………………(9分) 若方程2104x kx --=与方程2304x kx ++=有相同的实数根0x , 则20020020010114032404x kx kx x x kx ⎧--=⎪⎪⇒=-⇒+=⎨⎪++=⎪⎩,,矛盾, ……………………………………………………………………………………(10分) 所以,方程2104x kx --=与方程2304x kx ++=没有相同的实数根,所以,圆Γ与抛物线E 有四个不同的交点等价于221030k k k k ⎧+>⎪⇔><⎨->⎪⎩,22.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(1)由曲线C 的极坐标方程是6sin ρθ=,得直角坐标方程为226x y y +=, 即22(3)9x y +-=.……………………………………………………………………(3分) (2)把直线l 的参数方程cos 2sin x t y t θθ=⎧⎨=+⎩,,(t 为参数),代入圆C 的方程得22(cos )(sin 1)9t t θθ+-=,化简得22sin 80t t θ--=.……………………………………………………………………………………(5分)设A B ,两点对应的参数分别是12t t ,,则122sin t t θ+=,128t t =-,………………………………………………………………………………(6分)故12||||AB t t =-=…………………………………………………………………………………(8分)得sin θ=,…………………………………………………………………………(9分) 得1k =±.………………………………………………………………………………(10分) 23.(本小题满分10分)【选修4−5:不等式选讲】证明:(1)由柯西不等式,得213411341()622a b c a b c a b c ⎛⎫++=++++=+ ⎪⎝⎭≥,所以1346a b c+++≥………………………………………………………………(5分) (2)由柯西不等式,得222222211()()222c a b c a b a b c c a b ab c a b c ⎛⎫⎛⎫++=++++++= ⎪ ⎪⎝⎭⎝⎭≥, 所以2222c a b a b c++≥.………………………………………………………………(10分)。

2020年三省三校高三联考 文科数学答案

2020年三省三校高三联考 文科数学答案

2020届“3+3+3”高考备考诊断性联考卷(一)文科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)【解析】1.依题有接受调查的100名学生中有70位看过《我和我的祖国》,故全校学生中约有2300*0.7=1610人看过《我和我的祖国》这部影片,故选C .2.由2ii z+=,得|2i||i|||||z z +=,D .3.某单位共有老年人120人,中年人360人,青年人n 人,样本中的中年人为6人,则老年人为61202360⨯=, 青年人为636060n n =, 2686060n n m m ++=⇒+=,代入选项计算,C 不符合,故选C .4.原不等式等价于|sin ||cos |x x ≥,即正弦线长度长于或等于余弦线长度,故选D .5.设{}n a 的公差为d ,由24836149a a a a a ++=+,10a d =≠,1141419914()1415729()91032a a S d a a S d +⨯===+⨯,故选B .6.由题意可知2cos sin ax x a x y x -'=,故在点(π0)M ,处的切线方程为1(π)ππa y x x -=-=-b +,11a b =⎧⎨=⎩,则,故选C .7.由()f x 为奇函数,得()f x 的图象关于原点对称,排除C ,D ;又当π04x <<时,()0f x >,故选B .8.已知1260AB BC ABC ==∠=︒,,,由余弦定理可得2222cos60AC AB BC AB BC =+-︒g3=,所以22AC AB +2BC =,即AB AC ⊥,①正确;由PA ⊥平面ABCD ,得AB PA ⊥,所以AB ⊥平面PAC ,②正确;AB ⊥平面PAC ,得AB ⊥PC ,又AE PC ⊥,所以PC ⊥平面ABE ,③正确;由PC ⊥平面ABE ,得PC BE ⊥,④正确,故选D .9.由程序框图得0z =,第一次运行011101011a z n =+==+==+=,,;第二次运行0i i 1i 112b z n =+==+=+=,,;第三次运行,…,故(1111)(i i i)z =-++-+-+-L L0=,故选C .10.因为双曲线E 的一条渐近线方程为2y x =,所以2ba=,c e a ===,由OAF △的面积是221422b c b b a===g 得所以,,所以1a =,双曲线的实轴长为2,故选D .11.当00x y ==,时,即220x y +≤符合题意,此时0m =,排除A ,D ,由题意可知,以(00), 为圆心的圆在不等式24x y x y ⎧+⎪⎨-⎪⎩≤≤所表示的区域内,半径最大的圆22x y m +=应与直线相切,圆心到240x y --=的距离为1d ==,圆心到x y +=的距离为22d ==,由于12d d <,∴符合题意的最大的圆为222165x y +==,故选B . 12.设点11()E x y ,,22()F x y ,,由三角函数的定义得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,,将直线EF 的方程与圆的方程联立2214y kx b x y =+⎧⎪⎨+=⎪⎩,,得2221(1)204k x kbx b +++-=,由韦达定理得122212221141kb x x k b x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩,,所以211221sin()sin cos cos sin 444()x y x y x kx b αβαβαβ+=+=+=+ 2212121222188244()84()11k b kb k x kx b kx x b x x k k ⎛⎫-- ⎪⎝⎭++=++==-++,因此,当k 是常数时,sin()αβ+是常数,故选B .二、填空题(本大题共4小题,每小题5分,共20分)【解析】13.由()3a b a -=r r r ,得3a b a a -=r r r r g g ,即4a b =r r g ,故1cos 2||||a b a b a b 〈〉==r rr r g r r g ,,则向量a r 与b r 的夹角为π3. 14.由n S 的表达式知,{}n a 为等差数列,设公差为d ,则1114d d ++,,成等比数列,故2(1)14d d +=+,即220d d -=,解得0d =或2d =,若01n n d a S n ===,,,与0A ≠矛盾,故32125d a d ==+=,.1522233⨯=. 16.依题意,112||||2PF F F c ==,由椭圆的定义可得2||22PF a c =-,所以21cos PF F ∠=212||2||PF F F=1111224a c c e -⎛⎫=-= ⎪⎝⎭,从而21sin PF F ∠=因为离心率23c a =,所以12PF F S =△12g 212||||PF F F g 21sin PF F ∠=2()a c -,又12PF F S =△,解得24c =,所以2295a b ==,,故椭圆C 的方程为22195x y +=.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)解:(1)由已知得(0.110.065)20.5b ++⨯=,故0.075b =.……………………………………………………………………………(3分) 法一:212(0.110.0750.0750.0650.05)a =-⨯++++,0.125a =∴.……………………………………………………………………………(6分)法二:1()10.50.5P C -=-=,2(0.050.075)0.50.125a a ⨯++==∴,∴.………………………………………………(6分)(2)2(0.0520.07540.12560.1180.075100.06512)⨯⨯+⨯+⨯+⨯+⨯+⨯ 2(0.10.30.750.880.750.78)=⨯+++++2 3.567.12=⨯=,………………………………………………………………………(10分)估计女子的平均身高为163(7.121)169.12+-=(cm).……………………………………………………………………………………(12分)18.(本小题满分12分)解:(1)cos (2)cos 0b Cc a B +-=∵,cos cos 2cos b C c B a B +=∴,…………………………………………………………(1分)由正弦定理得sin cos cos sin 2sin cos B C B C A B +=,…………………………………(2分) sin()sin(π)sin 0B C A A +=-=≠, ……………………………………………………(3分)12cos 1cos 2B B ==∴,,………………………………………………………………(5分) (2)ABC ∵△为锐角三角形,π13B a ==,,2πππ362A C A+=<<∴,,……………………………………………………………(7分)由正弦定理得1sin sin sin b cA B C==, 2πsin πsinsin sin 33sin sin sin sin A B C b c A A A A ⎛⎫- ⎪⎝⎭+=+=+∴ …………………………………………(8分) 1sin cos 1122sin sin 22A AA A A +=+=++=+g ,ππ1cos 1cos 1126ππ222sin 2sin 26b c ⎫⎫++⎪⎪⎝⎭⎝⎭+<+<+∴,……………………………………(11分)2b c <+,即b c +的取值范围是2⎫⎪⎪⎝⎭. ……………………………………………………………………………………(12分)19.(本小题满分12分)解:(1)由已知底面ABCD 为正方形,PD ⊥平面ABCD ,2PD AD ==,得PD ⊥AD ,PD ⊥AB ,AD ⊥AB .………………………………………………………(1分) 又PD AD D =I ,∴AB ⊥平面P AD ,∴P A ⊥AB ,∴PA =PB =………………………………………………………………………………………(2分)∴PAB S =△2PAD S =△,…………………………………………………………(3分)同理PCB S =△2PCD S =△,4ABCD S =,∴8S =四棱锥表面积,…………………………………………………………………(4分)1833P ABCD ABCD V S PD -==g .………………………………………………………………(6分)(2)设内切球的半径为r ,球心为O ,则球心O 到平面P AB ,平面P AD ,平面PCB ,平面PCD ,平面ABCD 的距离均为r , 由P ABCD O PAB O PAD O PCB O PCD O ABCD V V V V V V ------=++++,可得11111113333333ABCD PAB PAD PCB PCD ABCD S PD S r S r S r S r S r S r =++++=g g g g g g g △△△△正方形四棱锥表面积,………………………………………………………………………………………(8分)∴2ABCD S PD r S ==g 正方形四棱锥表面积………………………………………………………(10分)∴24π(24πS r ==-内切球表面积.……………………………………………………………………………………(12分)20.(本小题满分12分)解:(1)21()(1)e x k f x x x =-=---,, 令()e 2(e 2)00x x f x x x x x '=--=-+=⇒=,………………………………………………………………………………………(2分) 故(0)()0(0)()0x f x x f x ''∈-∞>∈+∞<,,;,,, ………………………………………………………………………………………(3分) ()f x 的单调递增区间为(0)()f x -∞,,的单调递减区间为(0)+∞,.………………………………………………………………………………………(4分) (2)()e 2(e 2)x x f x kx x x k '=-=-,令2()0ln [0ln 2]f x x k'=⇒=∈,,其中[12]k ∈,.……………………………………(5分) 令2()ln [12]g x x x x =-∈,,, 211()21102x g x x x⎛⎫'=--=--< ⎪⎝⎭g ,……………………………………………………(6分) 故()g x 在[12],上单调递减, 故2()(1)ln 210lng x g k k=-<⇒<≤,…………………………………………………(7分) 故220ln ()0ln ()0x f x x k f x k k ⎛⎫⎛⎫''∈<∈> ⎪ ⎪⎝⎭⎝⎭,,;,,,从而()f x 在20ln k ⎛⎫ ⎪⎝⎭,上单调递减;在2ln k k ⎛⎫⎪⎝⎭,上单调递增,………………………………………………………………………………………(8分) 故在[0]k ,上,函数2max ()max{(0)()}max{(1)e }[12].k f x f f k k k k k k ==---∈,,,, ………………………………………………………………………………………(9分) 由于2()(0)(1)e [(1)e 1]k k f k f k k k k k k k -=--+=--+,令()(1)e 1[12]x h x x x x =--+∈,,,……………………………………………………(10分) ()e 10x h x x '=->,对于[12]x ∀∈,恒成立, 从而()(1)0h x h =≥,即()(0)f k f ≥,当1k =时等号成立,…………………………………………………(11分) 故2max ()()(1)e k f x f k k k k ==--.……………………………………………………(12分) 21.(本小题满分12分)(1)证明:依题意有104F ⎛⎫⎪⎝⎭,,直线14l y kx =+:,…………………………………(1分)设1122()()A x y B x y ,,,,直线l 与抛物线E 相交,联立方程214y x y kx ⎧=⎪⎨=+⎪⎩,,消去y ,化简得2104x kx --=,………………………………(2分)所以,121214x x k x x +==-,.…………………………………………………………(3分) 又因为2y x '=,所以直线1l 的斜率112k x =.同理,直线2l 的斜率222k x =,…………………………………………………………(4分) 所以,121241k k x x ==-,………………………………………………………………(5分) 所以,直线12l l ⊥,即90ADB ∠=︒.…………………………………………………(6分)(2)解:由(1)可知,圆Γ是以AB 为直径的圆, 设()P x y ,是圆Γ上的一点,则0PA PB =u u u r u u u rg ,所以,圆Γ的方程为1212()()()()0x x x x y y y y --+--=,………………………………………………………………………………………(7分)又因为22212121212121211111444216x x k x x y y kx kx k y y x x +==-+=+++=+==,,,,所以,圆Γ的方程可化简为222130216x y kx k y ⎛⎫+--+-= ⎪⎝⎭,………………………………………………………………………………………(8分) 联立圆Γ与抛物线E 得2222130216x y kx k y y x ⎧⎛⎫+--+-=⎪ ⎪⎝⎭⎨⎪=⎩,,即22211042x kx ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,即2213044x kx x kx ⎛⎫⎛⎫--++= ⎪⎪⎝⎭⎝⎭,………………………………………………………………………………………(9分) 若方程2104x kx --=与方程2304x kx ++=有相同的实数根0x , 则20020020010114032404x kx kx x x kx ⎧--=⎪⎪⇒=-⇒+=⎨⎪++=⎪⎩,,矛盾, ……………………………………………………………………………………(10分) 所以,方程2104x kx --=与方程2304x kx ++=没有相同的实数根, 所以,圆Γ与抛物线E有四个不同的交点等价于221030k k k k ⎧+>⎪⇔><⎨->⎪⎩,22.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(1)由曲线C 的极坐标方程是6sin ρθ=,得直角坐标方程为226x y y +=,即22(3)9x y +-=.……………………………………………………………………(3分) (2)把直线l 的参数方程cos 2sin x t y t θθ=⎧⎨=+⎩,,(t 为参数),代入圆C 的方程得22(cos )(sin 1)9t t θθ+-=,化简得22sin 80t t θ--=.……………………………………………………………………………………(5分)设A B ,两点对应的参数分别是12t t ,,则122sin t t θ+=,128t t =-,………………………………………………………………………………(6分)故12||||AB t t =-=…………………………………………………………………………………(8分)得sin θ=,…………………………………………………………………………(9分) 得1k =±.………………………………………………………………………………(10分) 23.(本小题满分10分)【选修4−5:不等式选讲】证明:(1)由柯西不等式,得213411341()622a b c a b c a b c ⎛⎫++=+++++=+ ⎪⎝⎭≥所以1346a b c+++≥5分) (2)由柯西不等式,得222222211()()222c a b c a b a b c c a b ab c a b c ⎛⎫⎛⎫++=++++++= ⎪ ⎪⎝⎭⎝⎭≥,所以2222c a b a b c++≥.………………………………………………………………(10分)。

2020届全国示范性名校高三第三次联考数学(理)试卷及参考答案

2020届全国示范性名校高三第三次联考数学(理)试卷及参考答案

绝密★启用前(在此卷上答题无效)姓名:________________准考证号:________________2020届全国示范性名校高三三联数学(理科)试题(150分,120分钟)一、选择题(共12小题,每小题5分,共60分)1.设集合A ={1,2,3,4,5,6},B ={4,5,6,7},则满足S A 且S ∩B ≠∅的集合S 的个数为( ) A . 57 B . 56 C . 49 D . 82.一个样本a,3,5,7的平均数是b ,且a ,b 是方程x 2-5x +4=0的两根,则这个样本的方差是( )A . 3B . 4C . 5D . 63.在球O 内任取一点P ,使得点P 在球O 的内接正方体中的概率是( ) A .π B .π C .π D .π4.在某学校组织的数学竞赛中,学生的竞赛成绩ξ~N(95,σ2),p(ξ>120)=a ,P(70<ξ<95)=b ,则直线ax +by +=0与圆x 2+y 2=2的位置关系是( ) A . 相离 B . 相交 C . 相离或相切 D . 相交或相切5.在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满足= (a +b ).曲线C ={P|=a cos θ+b sin θ,0≤θ<2π},区域Ω={P|0<r ≤| |≤R ,r <R}.若C ∩Ω为两段分离的曲线,则( )A . 1<r <R <3B . 1<r <3≤RC .r ≤1<R <3D . 1<r <3<R6.已知二次函数f(x)=ax 2-(a +2)x +1(a ∈Z ),且函数f(x)在(-2,-1)上恰有一个零点,则不等式f(x)>1的解集为( )A . (-∞,-1)∪(0,+∞)B . (-∞,0)∪(1,+∞)C . (-1,0)D . (0,1)7.如图所示,有三根柱子和套在一根柱子上的n 个盘子,按下列规则,把盘子从一根柱子上全部移到另一根柱子上.(1)每次只能移动一个盘子;(2)在每次移动过程中,每根柱子上较大的盘子不能放在较小的盘子上面.若将n 个盘子从1号柱子移到3号柱子最少需要移动的次数记为f(n),则f(5)等于( )A . 33B . 31C . 17D . 15 8.已知z 1,z 2是复数,定义复数的一种运算“”为:z 1z 2=若z 1=2+i 且z 1z 2=3+4i ,则复数z 2等于( )A . 2+iB . 1+3iC . 2+i 或1+3iD . 条件不够,无法求出9.已知函数f(x)= x 3+ax 2-bx +1(a ,b ∈R ) 在区间[-1,3]上是减函数,则b 的最小值是( ) A . 1 B . 2 C . 3 D . 410.由9个互不 相 等 的 正 数 组 成 的 数 阵中,每 行 中 的 三 个 数 成 等 差 数 列,且、、成等比数列,下列四个判断正确的有( ) ①第2列必成等比数列 ②第1列不一定成等比数列-1-(20-GSSL-QGYB ) -24-52GH-③④若9个数之和等于9,则A. 4个 B. 3个 C. 2个 D. 1个11.tan(π-θ)+tan(π+θ)+tan(π-θ)tan(π+θ)的值是( )A. B. C. 2 D.12.已知偶函数f(x):Z Z,且f(x)满足:f(1)=1,f(2 015)≠1,对任意整数a,b都有f(a+b)≤max{f(a),f(b)},其中max(x,y)=则f(2 016)的值为( )A. 0 B. 1 C. 2 015 D. 2 016二、填空题(共4小题,每小题5分,共20分)13.已知正数a,b,c满足3a-b+2c=0,则的最大值为________.14.已知平面区域C1:x2+y2≤4(+|y|),则平面区域C1的面积是________.15.已知(x+2)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,|a1|+|a2|+…+|a9|的值为________.16.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1,第二次取2个连续偶数2、4;第三次取3个连续奇数5、7、9;第四次取4个连续偶数10、12、14、16;第五次取5个连续奇数17、19、21、23、25.按此规则一直取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,….则在这个子数列中,由1开始的第29个数是________;(2分)第2 014个数是________.(3分)三、解答题(共70分)(一)必考题(60分)17.(本小题满分12分)设f(x)=cos2x+asinx--(0≤x≤π).(1)用a表示f(x)的最大值M(a);(2)当M(a)=2时,求a的值.18.(本小题满分12分)一种电子玩具按下按钮后,会出现红球或绿球,已知按钮第一次按下后,出现红球与绿球的概率都是,从按钮第二次按下起,若前次出现红球,则下一次出现红球、绿球的概率分别为,;若前次出现绿球,则下一次出现红球、绿球的概率分别为,,记第n(n∈Z,n≥1)次按下按钮后出现红球的概率为P n.(1)当n∈Z,n≥2时,用P n-1表示P n;(2)求P n关于n的表达式.19.(本小题满分12分)已知函数f(x)=e x-ln (x+m).(1)设x=0是f(x)的极值点,求函数f(x)在[1,2]上的最值.(2)若对任意x1,x2∈[0,2]且x1>x2,都有>-1,求m的取值范围.(3)当m≤2时,证明f(x)>0.-2-(20-GSSL-QGYB) -24-52GH-20.(本小题满分12分)已知椭圆C:+=1(a>b>0)的上顶点M与左、右焦点F1,F2构成△MF1F2的面积为,又椭圆C的离心率为.(1)若直线l与椭圆C交于A(x1,y1),B(x2,y2)两点,且x1+x2=2,又直线l1:y=k1x+m是线段AB的垂直平分线,求实数m的取值范围;(2)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的k倍,求k的最大值.21.(本小题满分12分)已知Q2=称为x,y的二维平方平均数,A2=称为x,y的二维算术平均数,G2=称为x,y的二维几何平均数,H2=称为x,y的二维调和平均数,其中x,y均为正数.(1)试判断G2与H2的大小,并证明你的猜想;(2)令M=A2-G2,N=G2-H2,试判断M与N的大小,并证明你的猜想;(3)令M=A2-G2,N=G2-H2,P=Q2-A2,试判断M,N,P三者之间的大小关系,并证明你的猜想. (二)选考题(10分)(请从22,23题中任选一题作答,如果多做,按22题记分)-3-(20-GSSL-QGYB) -24-52GH-23.(选修4-5:不等式选讲)伯努利不等式,又称贝努利不等式,是分析不等式中最常见的一种不等式,由数学家伯努利提出。

2020高三第三次联考数学试卷

2020高三第三次联考数学试卷

xx 届高三第三次联考数学试卷本试卷分选择题和非选择题两部分,共4页,满分150,考试时间120分钟,答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的班级、姓名、座位号填写在答题卷的密封线内.所有题目必须用黑色字迹的钢笔或签字笔答在答题卷上,否则答案无效.一、选择题:(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项).1、设集合{}1,2,3P =,集合{}23Q x R x =∈≤≤,那么下列结论正确的是: ( ) A .P Q P ⋂= B. Q P Q ⊆⋂ C. P Q P ⋂⊆ D. P Q Q ⋂= 2、设(32()log f x x x =+,则对任意实数,a b ,0a b +≥是()()0f a f b +≥的( )A. 充分必要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件 3、方程2sin 2sin 0x x a ++=一定有解,则a 的取值范围是 ( )A .[3,1]-B .(,1]-∞C .[1,)+∞D .4、如果执行下面的程序框图,那么输出的S = ( ). A.2450 B.2500 C.2550 D.26525、将函数sin(2)3y x π=-的图象先向左平移6π,然后将所得图象上所有的点的横坐标变为原来的2倍(纵坐标不变),则所得到的图象对应的函数解析式为( ). A .cos y x =- B .sin 4y x = C .sin y x =D .sin()6y x π=-6、等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且3457-+=n n T S n n ,则使得nn b a为整数的正整数n 的个数是( ) A .3 B .4C .5D .67、右图是一个正方体,它的展开图可能是下面四个展开图中的( )A .B .C .D .8、 如图,设P 、Q 为△ABC 内的两点,且2155AP AB AC =+u u u r u u u r u u u r , AQ uuu r =23AB u u u r +14AC u u ur ,则△ABP 的面积与△ABQ 的面积之比为( ) A .15 B . 45 C . 14 D .13第8题第Ⅱ卷(非选择题,共100分)二.填空题:(本大题共6小题,每小题5分,满分30分).9、化简:2(1)i i+= .10、 一物体在力F (x )=4x+2(力的单位:N )的作用下,沿着与力F 相同的方向,从x =0处运动到x =5处(单位:m ),则力F (x )所作的功___________11、已知点(,)P x y 的坐标满足条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩,点O 为坐标原点,那么||PO 的最大值等于_______,最小值等于____________.12、从装有1n +个球(其中n 个白球,1个黑球)的口袋中取出m 个球()0,,m n m n N <≤∈,共有1mn C +种取法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届高三数学三校联考试卷一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 1、函数)01(31<≤-=+x y x 的反函数是…………………………………………………( )A .)0(log 13>+=x x yB .)0(log 13>+-=x x yC .)31(log 13<≤+=x x yD .)31(log 13<≤+-=x x y2、在ABC ∆中,“︒>30A ”是“21sin >A ”的…………………………………… ( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3、若)(x f 为偶函数并在),0(+∞上是减函数,若0)2(=f ,则0)(<xx f 的解集为………………………………………………………………………………………………( ) A .)2,0()0,2(Y - B .)2,0()2,(Y --∞ C .),2()2,(+∞--∞Y D .),2()0,2(+∞-Y 4) A .)6sin(π+=x yB .)62cos(π-=x yC .)62sin(π-=x yD .)34cos(π-=x y5、已知,log 1)(2x x f +=设数列}{n a 满足*))((N n n fa n ∈=,则数列}{n a 的前n 项和nS 等于……………………………………………………………………………………………( ) A .12-nB .121--n C .141--n D .14-n6、由函数x y 2log =与函数)2(log 2-=x y 的图象及2-=y 与3=y 所围成的封闭图形的面积是……………………………………………………………………………………………( ) A .15 B .20 C .10 D .以上都不对7、若函数)24lg(xa y ⋅-=在]1,(-∞上有意义,则实数a 的取值范围是…………… ( ) A .)2,(-∞B .]2,(-∞C .)2,0(D .]2,0(8、已知函数)2sin(5)(ϕ+=x x f ,若5)(=a f ,则)12(π+a f 与)65(π+a f 的大小关系是………………………………………………………………………………………………( )A .)65()12(ππ+>+a f a fB .)65()12(ππ+=+a f a f C .)65()12(ππ+<+a f a f D .与ϕ和a 有关x9、将2n 个正整数2,3,2,1n Λ填入n n ⨯方格中,使其每行,每列,每条对角线上的数的和相等,这个正方形叫做n 阶幻方.记)(n f 为n 阶幻方对角线的和,如右图就是一个3阶幻方,可知,15)3(=f 则=)5(f ………………………………………………………( ) A .63B .64C .65D .6610、已知方程01)1(2=+++++b a x a x 的两根为21,x x ,并且2110x x <<<,则ab的取值范围是………………………………………………………………………………………… ( ) A .]21,1(--B .)21,1(--C .]21,2(--D .)21,2(--二、填空题:本大题共6小题,每小题5分,共30分,把答案填在横线上. 11、设n S 是等差数列}{n a 的前n 项和,若,357=S 则=4a _____▲______.12、已知53sin ),,2(=∈αππα,则=+)4tan(πα________▲________.13、设集合}1212|{},2|||{<+-=<-=x x x B a x x A ,若B A ⊆,则a 的取值范围是___▲____.14、已知数列}{n a 满足*),2(113121,113211N n n a n a a a a a n n ∈≥-++++==-Λ.若2006=n a ,则=n _____▲________.15、若方程0sin cos 2=+-a x x 在20π≤<x 内有解,则a 的取值范围为______▲__________.16、对于函数)1lg()(2--+=a ax x x f 给出下列命题: (1))(x f 有最小值;(2)当0=a 时,)(x f 的值域为R ;(3)当0>a 时,)(x f 在),2[+∞上有反函数;(4)若)(x f 在区间),2[+∞上是增函数,则实数a 的取值范围是),4[+∞-. 上述命题中正确的是_____▲________.(填上所有正确命题的序号)三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17、(本小题满分12分,第一、第二小问满分各6分) 已知函数R x x x x x x f ∈++=,cos 3cos sin 2sin )(22(1)写出函数)(x f 的最小正周期和单调递增区间; (2)若511)2(=x f 且π<<x 0,求x tan 的值. 18、(本小题满分14分,第一小问满分8分,第二小问满分6分)在等比数列}{n a 中,*)(0N n a n ∈>,公比)1,0(∈q ,且252825351=++a a a a a a ,又3a 与5a 的等比中项为2,(1)求数列}{n a 的通项公式;(2)设n n a b 2log =,数列}{n b 的前n 项和为n S ,当nS S S n +++Λ2121最大时,求n 的值.19、(本小题满分14分,第一小问、第二小问各7分)某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为)(x C ,当年产量不足80千件时,x x x C 1031)(2+=(万元);当年产量不小于80千件时,14501000051)(-+=xx x C (万元).通过市场分析,若每件..售价为500元时,该厂年内生产该商品能全部销售完.(1)写出年利润L (万元)关于年产量x (千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?20、(本小题满分14分,第一小问满分5分,第二小问满分4分,第三小问满分5分) 设函数c bx ax x f ++=23)(2,若0=++c b a ,0)1()0(>f f , (1)求证:方程0)(=x f 总有两个不相等的实根; (2)求ab的取值范围; (3)设21,x x 是方程0)(=x f 的两个实根,求||21x x -的取值范围.21、(本小题满分16分,第一小问满分4分,第二小问满分5分,第三小问满分7分) 已知数列}{n a 是由正数组成的等差数列,n S 是其前n 项的和,并且28,5243==S a a . (1)求数列}{n a 的通项公式; (2)求使不等式12)11()11)(11(21+≥+++n a a a a nΛ对一切*N n ∈均成立的最大实数a ; (3)对每一个*N k ∈,在k a 与1+k a 之间插入12-k 个2,得到新数列}{n b ,设n T 是数列}{n b 的前n 项和,试问是否存在正整数m ,使2008=m T ?若存在求出m 的值;若不存在,请说明理由.三校联考数学卷答案一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一11、5; 12、71; 13、10≤≤a ; 14、4012; 15、11≤<-a ; 16、(2)(3) 三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17、(本小题满分12分,第一、第二小问满分各6分) 解:(1)22cos 2sin )2cos 1(232sin 22cos 1)(++=+++-=x x x x x x f 2)42sin(2++=πx ……………………3分∴周期π=T ……………………4分由224222πππππ+≤+≤-k x k 得883ππππ+≤≤-k x k)(x f ∴的单调增区间为.],83,83[Z k k k ∈+-ππππ……………………6分 (2)由511)2(=x f ,得51cos sin =+x x ,平方得2524cos sin 2-=x x ………8分又),,0(π∈x 故0cos ,0sin <>x x ……………………9分5725241cos sin 21sin cos -=+-=--=-∴x x x x 即57sin cos -=-x x ……………………10分 54sin ,53cos =-=∴x x ,.34tan -=∴x……………………12分18、(本小题满分14分,第一小问满分8分,第二小问满分6分)解:(1)252825351=++a a a a a a Θ,252255323=++∴a a a a ,又5,053=+∴>a a a n……………………4分 又3a 与5a 的等比中项为2,453=∴a a ……………………5分 而)1,0(∈q ,1,4,5353==∴>∴a a a a……………………6分 16,211==∴a q ,n n n a --=⨯=∴512)21(16 ……………………8分 (2)n a b n n -==5log 2……………………9分 11-=-∴+n n b b}{n b ∴是以41=b 为首项,1-为公差的等差数列……………………11分 ,2)9(n n S n -=∴29n n S n -=∴……………………12分∴当8≤n 时,0>n S n ;当9=n 时,0=n S n ;当9>n 时,0<nSn ∴当8=n 或9时,n S S SS n ++++Λ321321最大. ……………………14分19、(本小题满分14分,第一小问、第二小问各7分)解:(1)当*,800N x x ∈<<时,……………………3分当80≥x ,*N x ∈时,……6分 *),80(*),800()10000(12002504031)(2N x x N x x x x x x x L ∈≥∈<<⎪⎩⎪⎨⎧+--+-=∴ …………………7分(2)当*,800N x x ∈<<时,950)60(31)(2+--=x x L∴当60=x 时,)(x L 取得最大值950)60(=L …………………10分 当,,80N x x ∈≥ ,100020012001000021200)10000(1200)(=-=⋅-≤+-=xx x x x L Θ ∴当xx 10000=,即100=x 时,)(x L 取得最大值.9501000)100(>=L …13分 综上所述,当100=x 时)(x L 取得最大值1000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大. …………………14分20、(本小题满分14分,第一小问满分5分,第二小问满分4分,第三小问满分5分) 解:(1)若0=a ,则c b -=,0)23()1()0(2≤-=++=c c b a c f f 与已知矛盾,故0≠a……………………2分 方程0232=++c bx ax 的判别式)3(42ac b -=∆……………………3分由条件0=++c b a 消去b ,得0]43)21[(4)(42222>+-=-+=∆c c a ac c a .故方程0)(=x f 总有两个不相等的实根.……………………5分(2)由0)1()0(>f f ,得0)23(>++c b a c , ……………………6分 由条件0=++c b a ,消去c ,得0)2)((<++b a b a ……………………7分 因为02>a ,所以0)2)(1(<++ab a b ,……………………8分故12-<<-ab……………………9分(3)由条件得ab a ac x x a b x x 33,322121+-==-=+……………………10分 所以31)23(944)()(221221221++=-+=-a b x x x x x x……………………12分25040312501031100001000500)(22-+-=---⨯=x x x x x x L )10000(120025014501000051100001000500)(xx x x x x L +-=-+--⨯=因为12-<<-a b ,所以94)(31221<-≤x x ,故32||3321<-≤x x………14分21、(本小题满分16分,第一小问满分4分,第二小问满分5分,第三小问满分7分)解:(1)设}{n a 的公差为d ,由题意0>d ,且⎩⎨⎧=++=+28)2)(3(52111d a d a d a ………2分2,11==∴d a ,数列}{n a 的通项公式为12-=n a n………………………4分(2)由题意)11()11)(11(12121na a a n a ++++≤Λ对*N n ∈均成立 ………5分记)11()11)(11(121)(21n a a a n n F ++++=Λ 则1)1(2)1(21)1(4)1(2)32)(12(22)()1(2=++>-++=+++=+n n n n n n n n F n F)()1(,0)(n F n F n F >+∴>Θ,)(n F ∴随n 增大而增大 ……………8分 )(n F ∴的最小值为332)1(=F332≤∴a ,即a 的最大值为332…………………………9分(3)12-=n a n Θ ∴在数列}{n b 中,m a 及其前面所有项之和为22)222()]12(531[212-+=++++-++++-m m m m ΛΛ ………11分21562211200811222210112102=-+<<=-+Θ,即11102008a a << …12分又10a 在数列}{n b 中的项数为:521221108=++++Λ …………14分 且244388611222008⨯==-所以存在正整数964443521=+=m 使得2008=m S……………16分。

相关文档
最新文档