初一数学上册第二单元测试题及答案(湘教版)-精选学习文档
湘教版七年级上册数学第2章 代数式 含答案

湘教版七年级上册数学第2章代数式含答案一、单选题(共15题,共计45分)1、如图,用火柴棍分别拼成一排三角形组成的图形和一排正方形组成的图形,如果搭建三角形和正方形一共用了2020根火柴,且三角形的个数比正方形的个数多4个,则搭建三角形的个数是()A.402B.406C.410D.4202、若一个正方形的边长是,则这个正方形的周长是()A. B. C. D.3、为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a、b、c对应的密文a+1,2b+4,3c+9,例如明文1,2,3,对应的密文为2,8,18,如果接收方收到密文7,18,15,则解密得到的明文为()A.6,5,2B.6,5,7C.6,7,2D.6,7,64、若与是同类项,则的值为()A.3B.4C.5D.65、以下说法正确的是()A. 是6次单项式B. 是多项式C.多项式是四次二项式D. 的系数是06、一辆汽车从山南泽当饭店出发开往拉萨布达拉宫.如果汽车每小时行使千米,则小时可以到达,如果汽车每小时行使千米,那么可以提前到达布达拉宫的时间是()小时.A. B. C. D.7、已知代数式x-2y的值是3,则代数式的值是()A.-2B.2C.4D.-48、某商品原价每件x元,后来店主将每件增加10元,再降价25%,则现在的单价(元)是()A.25%x+10B.(1﹣25%)x+10C.25%(x+10)D.(1﹣25%)(x+10)9、在式子:,,,,,中,单项式的个数为().A. 个B. 个C. 个D. 个10、某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为()A.0.7a元B.0.3a元C. 元D. 元11、一种商品每件进价为a元,按进价增加25%定出售价后因库存积压降价,按售价的九折出售,每件还盈利 ( )A.0.125aB.0.15aC.0.25aD.1.25a12、用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cmB.8cmC.(a+4)cmD.(a+8)cm13、某种商品进价为a元,商店将价格提高30%作零售价销售.在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动.这时一件该商品的售价为()A.a元B.0.8a元C.1.04a元D.0.92a元14、一个两位数的个位数字是,十位数字比个位数字的2倍少1.用含的代数式表示这个两位数正确的是()A. B. C. D.15、如图,已知Rt△ABC中,AC=b,BC=a,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D 3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D 5,…,Dn,分别记△BD1E1,△BD2E2,△BD3E3,…,△BDnEn的面积为S1, S2, S3,…Sn.则Sn为()A. B. C. D.二、填空题(共10题,共计30分)16、若3x2+x﹣6=0,那么10﹣x﹣3x2=________ .17、如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2015次跳后它停的点所对应的数为________.18、若 a、b互为相反数,c 、d互为倒数,则 (a+b)10-(cd) 10=________.19、若a+b=2,则代数式3﹣2a﹣2b=________.20、把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为厘米,宽为厘米))的盒了底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和是________厘米21、观察数表:根据数表排列的规律,第10行从左向右数第8个数是________.22、按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是________.23、如图是一个数值转换机的示意图,若输入x的值为3,y的值为-2时,则输出的结果为________.24、如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1, M2,M 3,…Mn分别为边B1B2, B2B3, B3B4,…,BnBn+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△Bn∁nMn的面积为Sn,则Sn=________.(用含n的式子表示)25、若,则________.三、解答题(共5题,共计25分)26、先化简,再求值:,其中x=2,y= .27、某工厂第一季度的电费为元,水费比电费的2倍多40元。
2019年秋湘教版七年级上册数学第2章测试题含答案

2019年秋湘教版七年级上册数学第2章测试题一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列代数式中符合书写要求的是()A.ab4 B.4m C.x÷y D.﹣ a2.(3分)下列各式:﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有()A.3个B.4个C.6个D.7个3.(3分)用代数式表示“比m的平方的3倍大1的数“是()A.m2+1 B.3m2+1 C.3(m+1)2D.(3m+1)24.(3分)下列各组单项式中,不是同类项的是()A.12a3y与B.6a2mb与﹣a2bmC.23与32D.x3y与﹣xy35.(3分)下列所列代数式正确的是()A.a与b的积的立方是ab3B.x与y的平方差是(x﹣y)2C.x与y的倒数的差是x﹣D.x与5的差的7倍是7x﹣56.(3分)多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3 B.2,﹣3 C.5,﹣3 D.2,37.(3分)代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是()A.20 B.18 C.16 D.158.(3分)一根铁丝正好围成一个长是2a+3b,宽是a+b的长方形框,把它剪下围成一个长是a,宽是b 的长方形(均不计接缝)的一段铁丝,剩下部分铁丝的长是()A.a+2b B.b+2a C.4a+6b D.6a+4b9.(3分)有理数a,b,c在数轴上对应的点如图所示,化简|b+a|+|a+c|+|c﹣b|的结果是()A.2b﹣2c B.2c﹣2b C.2b D.﹣2c10.(3分)一列数a1,a2,a3,…,其中a1=,a n=(n为不小于2的整数),则a4的值为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)单项式﹣的系数是,次数是.12.(3分)把多项式x2y﹣2x3y2﹣3+4xy3按字母x的指数由小到大排列是.13.(3分)请你结合生活实际,设计具体情境,解释下列代数式的意义:.14.(3分)规定一种新的运算:a△b=ab﹣a﹣b+1,比如3△4=3×4﹣3﹣4+1,请比较大小:(﹣3)△4 4△(﹣3)(填“>”、“=”或“<”).15.(3分)某商品先按批发价a元提高10%零售,后又按零售价90%出售,则它最后的单价是元.16.(3分)有一组多项式:a+b2,a2﹣b4,a3+b6,a4﹣b8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为.三、解答题(共52分)17.(16分)计算:(1)3a3﹣(7﹣a3)﹣4﹣6a3;(2)(5x﹣2y)+(2x+y)﹣(4x﹣2y);(3)2(x2﹣y)﹣3(y+2x2);(4)3x2﹣[x2+(2x2﹣x)﹣2(x2﹣2x)].18.(6分)若a,b满足(a﹣3)2+|b+|=0,则求代数式3a2b﹣[2ab2﹣2(ab﹣a2b)+ab]+3ab2的值.19.(8分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地,若长方形的长为a 米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.20.(10分)小红做一道数学题“两个多项式A,B,B为4x2﹣5x﹣6,试求A+2B的值”.小红误将A+2B 看成A﹣2B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+2B的正确结果;(2)求出当x=﹣3时,A+2B的值.21.(12分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?参考答案:一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列代数式中符合书写要求的是()A.ab4 B.4m C.x÷y D.﹣ a【考点】代数式.【分析】依照代数式书写的要求可得知A、B、C均不合格,从而得出结论.【解答】解:按照代数式书写的要求可知:A、4ab;B、m;C、,故选D.【点评】本题考查了代数式的书写规则,解题的关键是牢记代数式书写的规则.2.(3分)下列各式:﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有()A.3个B.4个C.6个D.7个【考点】整式.【分析】根据整式的定义,结合题意即可得出答案.【解答】解:在﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有﹣mn,m,8,x2+2x+6,,,一共6个.故选:C.【点评】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数.3.(3分)用代数式表示“比m的平方的3倍大1的数“是()A.m2+1 B.3m2+1 C.3(m+1)2D.(3m+1)2【考点】列代数式.【专题】应用题.【分析】比m的平方的3倍大1的数即m2×3+1,由此可求出答案.【解答】解:3m2+1.故选B.【点评】本题只需仔细分析题意,即可解决问题.列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.4.(3分)下列各组单项式中,不是同类项的是()A.12a3y与B.6a2mb与﹣a2bmC.23与32D.x3y与﹣xy3【考点】同类项.【分析】根据同类项的定义,含有相同的字母,相同字母的指数相同,可得答案.【解答】解:A、含有相同的字母,相同字母的指数相同,故A不符合题意;B、含有相同的字母,相同字母的指数相同,故B不符合题意;C、常数也是同类项,故C不符合题意;D、相同字母的指数不同不是同类项,故D符合题意;故选:D.【点评】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同,注意①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.5.(3分)下列所列代数式正确的是()A.a与b的积的立方是ab3B.x与y的平方差是(x﹣y)2C.x与y的倒数的差是x﹣D.x与5的差的7倍是7x﹣5【考点】列代数式.【分析】根据题意列式即可.【解答】解:(A)a与b的积的立方是(ab)3,故A错误;(B)x与y的平方差是x2﹣y2,故B错误;(D)x与5的差的7倍是7(x﹣5),故D错误,故选(C)【点评】本题考查列代数式,注意根据题意列出式子,属于基础题型.6.(3分)多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3 B.2,﹣3 C.5,﹣3 D.2,3【考点】多项式.【分析】根据多项式中次数最高的项的次数叫做多项式的次数可得此多项式为3次,最高次项是﹣3xy2,系数是数字因数,故为﹣3.【解答】解:多项式1+2xy﹣3xy2的次数是3,最高次项是﹣3xy2,系数是﹣3;故选:A.【点评】此题主要考查了多项式,关键是掌握多项式次数的计算方法与单项式的区别.7.(3分)代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是()A.20 B.18 C.16 D.15【考点】代数式求值.【专题】计算题.【分析】根据题意2a2+3a+1的值是6,从而求出2a2+3a=5,再把该式左右两边乘以3即可得到6a2+9a的值,再把该值代入代数式6a2+9a+5即可.【解答】解:∵2a2+3a+1=6,∴2a2+3a=5,∴6a2+9a=15,∴6a2+9a+5=15+5=20.故选A.【点评】本题考查了代数式求值,解题的关键是利用已知代数式求出6a2+9a的值,再代入即可.8.(3分)一根铁丝正好围成一个长是2a+3b,宽是a+b的长方形框,把它剪下围成一个长是a,宽是b 的长方形(均不计接缝)的一段铁丝,剩下部分铁丝的长是()A.a+2b B.b+2a C.4a+6b D.6a+4b【考点】列代数式.【分析】此题可根据等式“长方形框的周长=长方形的周长+剩下部分铁丝的长”列出剩下铁丝长的代数式.【解答】解:根据题意可得:剩下铁丝的长=2(2a+3b+a+b)﹣2(a+b)=4a+6b.故选C.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.9.(3分)有理数a,b,c在数轴上对应的点如图所示,化简|b+a|+|a+c|+|c﹣b|的结果是()A.2b﹣2c B.2c﹣2b C.2b D.﹣2c【考点】绝对值;数轴.【分析】先根据各点在数轴上的位置判断出a、b、c、d的符号,再根据绝对值的性质去掉绝对值符号即可.【解答】解:由图可知:c<b<0<a,﹣c>a,﹣b<a,∴a+b>0,a+c<0,c﹣b<0∴|b+a|+|a+c|+|c﹣b|=a+b﹣a﹣c+b﹣c=2b﹣2c.故选A.【点评】本题考查的是数轴与绝对值相结合的问题,解答此类问题的关键是数值数轴的特点及绝对值的性质.10.(3分)一列数a 1,a2,a3,…,其中a1=,a n=(n为不小于2的整数),则a4的值为()A.B.C.D.【考点】规律型:数字的变化类.【专题】探究型.【分析】将a1=代入a n=得到a2的值,将a2的值代入,a n=得到a3的值,将a3的值代入,a n=得到a4的值.【解答】解:将a1=代入a n=得到a2==,将a2=代入a n=得到a3==,将a3=代入a n=得到a4==.故选A.【点评】本题考查了数列的变化规律,重点强调了后项与前项的关系,能理解通项公式并根据通项公式算出具体数.二、填空题(共6小题,每小题3分,满分18分)11.(3分)单项式﹣的系数是﹣,次数是 6 .【考点】单项式.【分析】根据单项式系数及次数的定义进行解答即可.【解答】解:单项式﹣的系数是﹣,次数是2+3+1=6.故答案为:﹣,6.【点评】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.12.(3分)把多项式x2y﹣2x3y2﹣3+4xy3按字母x的指数由小到大排列是﹣3+4xy 3+x2y﹣2x3y2.【考点】多项式.【分析】先分别列出多项式中各项的次数,再按要求排列即可.【解答】解:多项式x2y﹣2x3y2﹣3+4xy3中,x的次数依次2,3,0,1,按x的降幂排列是﹣3+4xy 3+x2y﹣2x3y2.故答案为:﹣3+4xy 3+x2y﹣2x3y2.【点评】此题考查了多项式的知识,把一个多项式按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,常数项应放在最前面.如果是降幂排列应按此字母的指数从大到小依次排列.13.(3分)请你结合生活实际,设计具体情境,解释下列代数式的意义:汽车每小时行驶a千米,行驶30千米所用时间为小时.【考点】代数式.【专题】开放型.【分析】此式为分式,根据分式的特点与实际生活相联系.【解答】解:汽车每小时行驶a千米,行驶30千米所用时间为小时.故答案为:小时.【点评】此题考查了代数式的实际意义,同学们应当在日常学习中加以积累,观察生活.14.(3分)规定一种新的运算:a△b=ab﹣a﹣b+1,比如3△4=3×4﹣3﹣4+1,请比较大小:(﹣3)△4 = 4△(﹣3)(填“>”、“=”或“<”).【考点】代数式求值.【专题】新定义.【分析】根据运算顺序算出两个代数式的值再大小比较得出结果.【解答】解:(﹣3)△4=﹣3×4﹣(﹣3)﹣4+1=﹣12;4△(﹣3)=4×(﹣3)﹣4﹣(﹣3)+1=﹣12.∴两式相等.【点评】此题的关键是根据新定义找出运算规律,再根据规律求值.15.(3分)某商品先按批发价a元提高10%零售,后又按零售价90%出售,则它最后的单价是 0.99a 元.【考点】列代数式.【分析】直接表示出提价后的价格为a(1+10%),进而利用又按零售价90%出售,得出答案即可.【解答】解:由题意可得:a(1+10%)×90%=0.99a.故答案为:0.99a.【点评】此题主要考查了列代数式,正确表示出升降价后的价格是解题关键.16.(3分)有一组多项式:a+b2,a2﹣b4,a3+b6,a4﹣b8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为 a10﹣b20.【考点】多项式.【专题】规律型.【分析】首先观察归纳,可得规律:第n个多项式为:a n+(﹣1)n+1b2n,然后将n=10代入,即可求得答案.【解答】解:∵第1个多项式为:a1+b2×1,第2个多项式为:a2﹣b2×2,第3个多项式为:a3+b2×3,第4个多项式为:a4﹣b2×4,…∴第n个多项式为:a n+(﹣1)n+1b2n,∴第10个多项式为:a10﹣b20.故答案为:a10﹣b20.【点评】此题属于规律性题目.此题难度不大,注意找到规律第n个多项式为:a n+(﹣1)n+1b2n是解此题的关键.三、解答题(共52分)17.(16分)计算:(1)3a3﹣(7﹣a3)﹣4﹣6a3;(2)(5x﹣2y)+(2x+y)﹣(4x﹣2y);(3)2(x2﹣y)﹣3(y+2x2);(4)3x2﹣[x2+(2x2﹣x)﹣2(x2﹣2x)].【考点】整式的加减.【分析】利用整式加减运算法则即可求出答案.【解答】解:(1)原式=3a3﹣7+a3﹣4﹣6a3=(3a3+a3﹣6a3)+(﹣7﹣4)=﹣a3﹣11.(2)原式=5x﹣2y+2x+y﹣4x+2y=3x+y.(3)原式=2x2﹣2y﹣3y﹣6x2=﹣4x2﹣5y.(4)原式=3x2﹣(x2+2x2﹣x﹣2x2+4x)=2x2﹣3x.【点评】本题考查整式加减运算,涉及去括号法则,属于基础题型.18.(6分)若a,b满足(a﹣3)2+|b+|=0,则求代数式3a2b﹣[2ab2﹣2(ab﹣a2b)+ab]+3ab2的值.【考点】整式的加减;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】先根据非负数的性质,求出a、b,再对代数式化简,最后把a、b的值代入化简后的式子,计算即可.【解答】解:∵(a﹣3)2+|b+|=0,∴a﹣3=0,b+=0,∴a=3,b=﹣,又∵原式=3a2b﹣2ab2+2ab﹣3a2b﹣ab+3ab2=ab2+ab,∴当a=3,b=﹣时,原式=ab2+ab=3×(﹣)2+3×(﹣)=﹣1=﹣.【点评】本题考查了整式的加减、非负数的性质.两个非负数的和等于0,则每一个非负数等于0.19.(8分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地,若长方形的长为a 米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.【考点】列代数式.【分析】根据题意可知,阴影部分面积是长方形面积减去四个正方形的面积.【解答】解:(1)由图可知:ab﹣4x2.(2)阴影部分的面积为:200×150﹣4×102=29 600(m2).【点评】本题考查列代数式,涉及代入求值问题.20.(10分)小红做一道数学题“两个多项式A,B,B为4x2﹣5x﹣6,试求A+2B的值”.小红误将A+2B 看成A﹣2B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+2B的正确结果;(2)求出当x=﹣3时,A+2B的值.【考点】整式的加减.【分析】(1)首先求得整式A,然后计算求得A+2B即可;(2)把x=﹣3代入(1)的式子,求解即可.【解答】解:(1)∵A﹣2B=﹣7x2+10x+12,B=4x2﹣5x﹣6,∴A=﹣7x2+10x+12+2(4x2﹣5x﹣6)=x2,∴A+2B=x2+2(4x2﹣5x﹣6)=9x2﹣10x﹣12.(2)当x=﹣3时,A+2B=9×(﹣3)2﹣10×(﹣3)﹣12=99.【点评】本题考查了整式的加减计算,正确根据加数与和的关系求得A是关键.21.(12分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?【考点】列代数式.【分析】(1)根据后一排比前一排多2个座位,第n排比第一排多2(n﹣1)个座位;(2)①把n=25,m=20代入进行计算即可得解;②利用求和公式列式计算即可得解.【解答】(1)m+2(n﹣1).(2)①当m=20,n=25时,m+2(n﹣1)=20+2×(25﹣1)=68(个);②m+m+2+m+2×2+…+m+2×(25﹣1)=25m+600.当m=20时,25m+600=25×20+600=1 100(人).解:(1)第一排有m个座位,后边的每一排比前一排多两个座位,第n排有m+2(n﹣1)=2n+m﹣2(个);(2)当m=20时,25排:2×25+20﹣2=68(个);(3)25排最多可以容纳:(20+68)×25÷2=88×25÷2=1100(位)答:如果这个剧院共25排,那么最多可以容纳1100位观众.【点评】本题考查了列代数式,代数式求值,理解最后一排比第一排多的座位数是解题的关键.。
2019年秋湘教版七年级上册数学第2章测试题含答案

2019年秋湘教版七年级上册数学第2章测试题一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列代数式中符合书写要求的是()A.ab4B.4m C.x÷y D.﹣a2.(3分)下列各式:﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有()A.3个B.4个C.6个D.7个3.(3分)用代数式表示“比m的平方的3倍大1的数“是()A.m2+1B.3m2+1C.3(m+1)2D.(3m+1)24.(3分)下列各组单项式中,不是同类项的是()A.12a3y与B.6a2mb与﹣a2bmC.23与32D.x3y与﹣xy35.(3分)下列所列代数式正确的是()A.a与b的积的立方是ab3B.x与y的平方差是(x﹣y)2C.x与y的倒数的差是x﹣D.x与5的差的7倍是7x﹣56.(3分)多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3B.2,﹣3C.5,﹣3D.2,37.(3分)代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是()A.20B.18C.16D.158.(3分)一根铁丝正好围成一个长是2a+3b,宽是a+b的长方形框,把它剪下围成一个长是a,宽是b的长方形(均不计接缝)的一段铁丝,剩下部分铁丝的长是()=,=(.B.C.D.二、填空题(共6小题,每小题3分,满分18分)(3分)单项式﹣的系数是,次数是.(3分)把多项式x2y﹣2x3y2﹣3+4xy3按字母x的指数由小到大排列是.(3分)请你结合生活实际,设计具体情境,解释下列代数式的意义:.(3分)规定一种新的运算:a△b=ab﹣a﹣b+1,比如3△4=3×4﹣3﹣4+1,请比较大小:(﹣3)4△(﹣3)(填“>”、“=”或“<”).(3分)某商品先按批发价a元提高10%零售,后又按零售价90%出售,则它最后的单价是元.﹣(7﹣a(3)2(x2﹣y)﹣3(y+2x2);(4)3x2﹣[x2+(2x2﹣x)﹣2(x2﹣2x)].18.(6分)若a,b满足(a﹣3)2+|b+|=0,则求代数式3a2b﹣[2ab2﹣2(ab﹣a2b)+ab]+3ab2的值.19.(8分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地,若长方形的长为a 米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.20.(10分)小红做一道数学题“两个多项式A,B,B为4x2﹣5x﹣6,试求A+2B的值”.小红误将A+2B看成A﹣2B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+2B的正确结果;(2)求出当x=﹣3时,A+2B的值.21.(12分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?参考答案:一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列代数式中符合书写要求的是()A.ab4B.4m C.x÷y D.﹣a【考点】代数式.【分析】依照代数式书写的要求可得知A、B、C均不合格,从而得出结论.【解答】解:按照代数式书写的要求可知:A、4ab;B、m;C、,故选D.【点评】本题考查了代数式的书写规则,解题的关键是牢记代数式书写的规则.2.(3分)下列各式:﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有()A.3个B.4个C.6个D.7个【考点】整式.【分析】根据整式的定义,结合题意即可得出答案.【解答】解:在﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有﹣mn,m,8,x2+2x+6,,,一共6个.故选:C.【点评】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数.3.(3分)用代数式表示“比m的平方的3倍大1的数“是()A.m2+1B.3m2+1C.3(m+1)2D.(3m+1)2【考点】列代数式.【专题】应用题.【分析】比m的平方的3倍大1的数即m2×3+1,由此可求出答案.【解答】解:3m2+1.故选B.【点评】本题只需仔细分析题意,即可解决问题.列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.4.(3分)下列各组单项式中,不是同类项的是()A.12a3y与B.6a2mb与﹣a2bmC.23与32D.x3y与﹣xy3【考点】同类项.【分析】根据同类项的定义,含有相同的字母,相同字母的指数相同,可得答案.【解答】解:A、含有相同的字母,相同字母的指数相同,故A不符合题意;B、含有相同的字母,相同字母的指数相同,故B不符合题意;C、常数也是同类项,故C不符合题意;D、相同字母的指数不同不是同类项,故D符合题意;故选:D.【点评】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同,注意①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.5.(3分)下列所列代数式正确的是()A.a与b的积的立方是ab3B.x与y的平方差是(x﹣y)2C.x与y的倒数的差是x﹣D.x与5的差的7倍是7x﹣5【考点】列代数式.【分析】根据题意列式即可.【解答】解:(A)a与b的积的立方是(ab)3,故A错误;(B)x与y的平方差是x2﹣y2,故B错误;(D)x与5的差的7倍是7(x﹣5),故D错误,故选(C)【点评】本题考查列代数式,注意根据题意列出式子,属于基础题型.6.(3分)多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3B.2,﹣3C.5,﹣3D.2,3【考点】多项式.【分析】根据多项式中次数最高的项的次数叫做多项式的次数可得此多项式为3次,最高次项是﹣3xy2,系数是数字因数,故为﹣3.【解答】解:多项式1+2xy﹣3xy2的次数是3,最高次项是﹣3xy2,系数是﹣3;故选:A.【点评】此题主要考查了多项式,关键是掌握多项式次数的计算方法与单项式的区别.7.(3分)代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是()A.20B.18C.16D.15【考点】代数式求值.【专题】计算题.【分析】根据题意2a2+3a+1的值是6,从而求出2a2+3a=5,再把该式左右两边乘以3即可得到6a2+9a的值,再把该值代入代数式6a2+9a+5即可.【解答】解:∵2a2+3a+1=6,∴2a2+3a=5,∴6a2+9a=15,∴6a2+9a+5=15+5=20.故选A.【点评】本题考查了代数式求值,解题的关键是利用已知代数式求出6a2+9a的值,再代入即可.8.(3分)一根铁丝正好围成一个长是2a+3b,宽是a+b的长方形框,把它剪下围成一个长是a,宽是b的长方形(均不计接缝)的一段铁丝,剩下部分铁丝的长是()A.a+2b B.b+2a C.4a+6b D.6a+4b【考点】列代数式.【分析】此题可根据等式“长方形框的周长=长方形的周长+剩下部分铁丝的长”列出剩下铁丝长的代数式.【解答】解:根据题意可得:剩下铁丝的长=2(2a+3b+a+b)﹣2(a+b)=4a+6b.故选C.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.9.(3分)有理数a,b,c在数轴上对应的点如图所示,化简|b+a|+|a+c|+|c﹣b|的结果是()A.2b﹣2c B.2c﹣2b C.2b D.﹣2c【考点】绝对值;数轴.【分析】先根据各点在数轴上的位置判断出a、b、c、d的符号,再根据绝对值的性质去掉绝对值符号即可.【解答】解:由图可知:c<b<0<a,﹣c>a,﹣b<a,∴a+b>0,a+c<0,c﹣b<0∴|b+a|+|a+c|+|c﹣b|=a+b﹣a﹣c+b﹣c=2b﹣2c.故选A.【点评】本题考查的是数轴与绝对值相结合的问题,解答此类问题的关键是数值数轴的特点及绝对值的性质.10.(3分)一列数a1,a2,a3,…,其中a1=,a n=(n为不小于2的整数),则a4的值为()A.B.C.D.【考点】规律型:数字的变化类.【专题】探究型.【分析】将a1=代入a n=得到a2的值,将a2的值代入,a n=得到a3的值,将a3的值代入,a n=得到a4的值.【解答】解:将a1=代入a n=得到a2==,将a2=代入a n=得到a3==,将a3=代入a n=得到a4==.故选A.【点评】本题考查了数列的变化规律,重点强调了后项与前项的关系,能理解通项公式并根据通项公式算出具体数.分)单项式﹣的系数是﹣【解答】解:单项式﹣的系数是﹣,次数是2+3+1=6.故答案为:﹣,6.【点评】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.(3分)把多项式x2y﹣2x3y2﹣3+4xy3按字母x的指数由小到大排列是﹣3+4xy3+x2y﹣2x3y2.【考点】多项式.【分析】先分别列出多项式中各项的次数,再按要求排列即可.【解答】解:多项式x2y﹣2x3y2﹣3+4xy3中,x的次数依次2,3,0,1,的降幂排列是﹣3+4xy3+x2y﹣2x3y2.故答案为:﹣3+4xy3+x2y﹣2x3y2.分)请你结合生活实际,设计具体情境,解释下列代数式的意义:千米所用时间为小时千米所用时间为小时.故答案为:小时.(3分)规定一种新的运算:a△b=ab﹣a﹣b+1,比如3△4=3×4﹣3﹣4+1,请比较大小:(﹣3) = 4△(﹣3)(填“>”、“=”或“<”).【考点】代数式求值.【专题】新定义.【分析】根据运算顺序算出两个代数式的值再大小比较得出结果.【解答】解:(﹣3)△4=﹣3×4﹣(﹣3)﹣4+1=﹣12;4△(﹣3)=4×(﹣3)﹣4﹣(﹣3)+1=﹣12.∴两式相等.【点评】此题的关键是根据新定义找出运算规律,再根据规律求值.(3分)某商品先按批发价a元提高10%零售,后又按零售价90%出售,则它最后的单价是0.99a个多项式为:a4﹣b2×4,n个多项式为:a n+(﹣1)n+1b2n,10个多项式为:a10﹣b20.故答案为:a10﹣b20.【点评】此题属于规律性题目.此题难度不大,注意找到规律第n个多项式为:a n+(﹣1)n+1b2n是解此题的关键.三、解答题(共52分)(16分)计算:﹣(7﹣a﹣7+a+a(﹣7﹣4)=﹣a(2)原式=5x﹣2y+2x+y﹣4x+2y=3x+y.(3)原式=2x2﹣2y﹣3y﹣6x2=﹣4x2﹣5y.(4)原式=3x2﹣(x2+2x2﹣x﹣2x2+4x)=2x2﹣3x.【点评】本题考查整式加减运算,涉及去括号法则,属于基础题型.18.(6分)若a,b满足(a﹣3)2+|b+|=0,则求代数式3a2b﹣[2ab2﹣2(ab﹣a2b)+ab]+3ab2的值.【考点】整式的加减;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】先根据非负数的性质,求出a、b,再对代数式化简,最后把a、b的值代入化简后的式子,计算即可.【解答】解:∵(a﹣3)2+|b+|=0,∴a﹣3=0,b+=0,∴a=3,b=﹣,又∵原式=3a2b﹣2ab2+2ab﹣3a2b﹣ab+3ab2=ab2+ab,∴当a=3,b=﹣时,原式=ab2+ab=3×(﹣)2+3×(﹣)=﹣1=﹣.【点评】本题考查了整式的加减、非负数的性质.两个非负数的和等于0,则每一个非负数等于0.19.(8分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地,若长方形的长为a 米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.【考点】列代数式.【分析】根据题意可知,阴影部分面积是长方形面积减去四个正方形的面积.【解答】解:(1)由图可知:ab﹣4x2.(2)阴影部分的面积为:200×150﹣4×102=29 600(m2).【点评】本题考查列代数式,涉及代入求值问题.20.(10分)小红做一道数学题“两个多项式A,B,B为4x2﹣5x﹣6,试求A+2B的值”.小红误将A+2B看成A﹣2B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+2B的正确结果;(2)求出当x=﹣3时,A+2B的值.【考点】整式的加减.【分析】(1)首先求得整式A,然后计算求得A+2B即可;(2)把x=﹣3代入(1)的式子,求解即可.【解答】解:(1)∵A﹣2B=﹣7x2+10x+12,B=4x2﹣5x﹣6,∴A=﹣7x2+10x+12+2(4x2﹣5x﹣6)=x2,∴A+2B=x2+2(4x2﹣5x﹣6)=9x2﹣10x﹣12.(2)当x=﹣3时,A+2B=9×(﹣3)2﹣10×(﹣3)﹣12=99.【点评】本题考查了整式的加减计算,正确根据加数与和的关系求得A是关键.21.(12分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?【考点】列代数式.【分析】(1)根据后一排比前一排多2个座位,第n排比第一排多2(n﹣1)个座位;(2)①把n=25,m=20代入进行计算即可得解;②利用求和公式列式计算即可得解.【解答】(1)m+2(n﹣1).(2)①当m=20,n=25时,m+2(n﹣1)=20+2×(25﹣1)=68(个);②m+m+2+m+2×2+…+m+2×(25﹣1)=25m+600.当m=20时,25m+600=25×20+600=1 100(人).解:(1)第一排有m个座位,后边的每一排比前一排多两个座位,第n排有m+2(n﹣1)=2n+m﹣2(个);(2)当m=20时,25排:2×25+20﹣2=68(个);(3)25排最多可以容纳:(20+68)×25÷2=88×25÷2=1100(位)答:如果这个剧院共25排,那么最多可以容纳1100位观众.【点评】本题考查了列代数式,代数式求值,理解最后一排比第一排多的座位数是解题的关键.。
初一数学上册第二单元测试题及答案(湘教版)

初一数学上册第二单元测试题及答案(湘教版)
初中阶段对于学生们来说也是十分重要的一个时期,对每个学生来说尤为重要,下文为大家准备了初一数学上册第二单元测试题及答案,供大家参考。
一、选择题(每小题3分,共30分)
1.计算a+(-a)的结果是( )
A.2a B.0 C.-a2 D.-2a
2.在代数式x2+5 ,-1,x2-3x+2,π,5x,x2+1x+1中,整式有( ) A.3个B.4个C.5个D.6个
3.下列结论正确的是( )
A.x2y28的系数是8
B.-23mnx的次数是1
C.单项式a没有系数,也没有次数
D.-x2y3是三次单项式,系数为-13
4.用式子表示a的3倍与b的差的平方”,正确的是( )
A.(3a-b)2 B.3(a-b)2 C.3a-b2 D.(a-3b)2
5.下列说法正确的是( )
A.23与23xy是同类项B.x2与12x是同类项
C.0.5x2y2与7x2y3是同类项 D.5mn2与-4mn2是同类项
6.计算2a-3(a-b)的结果是( )
A.-a-3b B.a-3b C.a+3b D.-a+3b
7.下面各题去括号错误的是( )
A.x-6y-12=x-6y+12。
湘教版-数学-七年级上册-湘教版七年级上册第二章代数式单元测试题(含解析)

第二章代数式单元测试一、单选题(共10题;共30分)1、一个五位数,前三位为a,后两位为b,如果把后两位数b放在前三位a的前面,组成一个新的五位数,则这个五位数为( )A、b+aB、100a+bC、100b+aD、1000b+a2、当代数式x2+3x+5的值为7时,代数式3x2+9x-2的值是()A、-4B、-2C、0D、43、某件商品原价是a元,连续两次降价15%后是()A、(a-2×15%)元B、(a-2×15%a)元C、2a(1-15%)元D、a(1-15%)元4、随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为()A、(a﹣20%)元B、(a+20%)元C、a元D、a元5、如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2012次输出的结果为()A、3B、6C、32012D、620126、下列结论正确的是()A、0不是单项式B、abc是五次单项式C、﹣x是单项式D、是单项式7、下列各式运算正确的是()A、3x+3y=6xyB、7x﹣5x=2x2C、16y2﹣7y2=9D、19a2b﹣9ba2=10a2b8、下列式子中,代数式书写规范的是()A、a•3B、2ab2cC、 D、a×b÷c9、下列计算正确的是()A、x2+x2=x4B、x2+x3=2x5C、3x﹣2x=1D、x2y﹣2x2y=﹣x2y10、希望工程义演出售两种票,成人票每张10元,儿童票每张6元,共卖出1000张票,如果成人票卖了x张,出售儿童票共收入钱数为()A、(1000﹣x)元B、6(1000﹣x)元C、6x元D、10(1000﹣x)元二、填空题(共8题;共30分)11、若已知x+y=3,xy=﹣4,则(1+3x)﹣(4xy﹣3y)的值为________12、若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为=.现已知x1=﹣, x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2016的值为________ .13、代数式﹣的系数是________.14、观察下列算式:1×5+4=32, 2×6+4=42, 3×7+4=52, 4×8+4=62,请你在观察规律之后并用你得到的规律填空:________×________ +________=502.15、“a的2倍与b的差不小于0”用不等式表示为________.16、如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是________.17、如图是某同学在沙滩上用石子摆成的小房子:观察图形的变化规律,写出第n个小房子用了________块石子.18、,﹣,,﹣,________.三、解答题(共5题;共30分)19、已知a的相反数为﹣2,b的倒数为﹣, c的绝对值为2,求a﹣b﹣c2的值.20、若﹣mx2y|n﹣3|是关于x、y的10次单项式,且系数是8,求m+n的值.21、已知:a、b互为相反数,c、d互为倒数,|x|=2,且x>0,计算:(a+b)x2﹣cdx+x2的值.22、三个队植树,第一个队植树a棵,第二队植的树比第一队的2倍还多8棵,第三队植的树比第二队的一半少6棵,问三队共植树多少棵?并求当a=100棵时,三队共植树的棵数.23、已知m2﹣mn=7,mn﹣n2=﹣2,求m2﹣n2及m2﹣2mn+n2的值.四、综合题(共1题;共10分)24、已知|a|=5,|b|=2.(1)若a<0,b>0,求3a﹣2b的值;(2)若a>0,b<0,|c﹣2|=1,求2ab c+|b﹣c|的值.答案解析部分一、单选题1、【答案】 D【考点】列代数式【解析】【分析】此题考查了数字的表示方法,每位数位上的数字都要乘数位,而后求和,例如百位是x,个位是y,则可表示为100x+y,还要注意用整体思想解答,新数可以看作是b在千位上,a在个位上解答.【解答】新数可以看作是b在千位上,a在个位上,根据数字的表示方法,得此新五位数为1000b+a,故选D.【点评】此题注意整体思想,还要注意数字的表示方法,此题变化很多,要把握好上面方法则能以不变应万变2、【答案】 D【考点】代数式求值【解析】【分析】观察题中的两个代数式x2+3x+5和3x2+9x-2,可以发现,3x2+9x=3(x2+3x),因此可整体求出x2+3x的值,然后整体代入即可求出所求的结果。
湘教版七年级数学上册第2章测试题及答案

湘教版七年级数学上册第2章测试题及答案2.1 用字母表示数一、填空题1.用语言叙述6a2表示的实际意义:________2.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要________元.3.甲、乙二人一起加工零件.甲平均每小时加工a个零件,加工2小时;乙平均每小时加工b个零件,加工3小时.甲、乙二人共加工零件________个.4.代数式a2﹣用文字语言表示为________ .5.一台电视机的原价是2000元,若按原价的八折出售,则购买a台这样的电视机需要________元.6.设甲数为x,乙数比甲数的3倍少6,则乙数表示为________.7.张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入________元.8.某船顺水航行3小时,逆水航行2小时,已知轮船在静水中的速度为a千米/时,水流速度为b千米/时,轮船共航行________千米.二、选择题9.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.aB.a+bC.10a+bD.10b+a10.随着计算机技术的迅速发展,电脑价格不断降低.某品牌电脑按原售价降低m元后,又降价20%,现售价为n元,那么该电脑的原售价为()A.(n+m)元B.(n+m)元C.(5m+n)元D.(5n+m)元11.下列各式:﹣x+1,π+3,9>2,,s=ab,其中代数式的个数是()A.5B.4C.3D.212.下列各式:①1 x;①2•3;①20%x;①a-b÷c;① ;①x-5;其中,不符合代数式书写要求的有()A.5个B.4个C.3个D.2个13.某商场举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确反映该商场的促销方法的是()A.原价打8折后再减10元B.原价减10元后再打8折C.原价减10元后再打2折D.原价打2折后再减10元14.仓库有存煤m吨,原计划每天烧煤a吨,现在每天节约b吨,则可多烧的天数为()A. B. C.- D.-15.下面用数学语言叙述代数式﹣b,其中表达正确的是()A.a与b差的倒数B.b与a的倒数的差C.a的倒数与b的差D.1除以a与b的差16.下列代数式书写规范的是()A.2a÷bB.m×4C.2xD.﹣17.一个长方形的周长是20cm,长是xcm,那么这个长方形的面积是()A. B. C. D.18.有一捆粗细均匀的电线,现要确定它的长度.从中先取出1m长的电线,称出它的质量为a,再称出其余电线的总质量为b,则这捆电线的总长度是()A.(ab+1)mB.(﹣1)mC.(+1)mD.(+1)m三、解答题19.做大小两个纸盒,尺规如下(单位:cm)(1)做这两个纸盒共用料多少平方厘米?(结果用含a、b、c的代数式表示)(2)做成的大纸盒比小纸盒的容积大多少立方厘米?(结果用含a、b、c的代数式表示)一、填空题1.边长为a的正方体的表面积2.4m+7n3.(2a+3b)4. a的平方与b的倒数的差5.1600a6.3x﹣67.(0.3b﹣0.2a)8.(5a+b)二、选择题9.C 10.B 11.C 12.C 13.A 14.C 15.C 16.D 17.A 18.C三、解答题19.解:(1)根据题意,做两个纸盒需用料2ab+2bc+2ac+12ab+8bc+12ac=14ab+10bc+14ac,答:做这两个纸盒共用料(14ab+10bc+14ac)平方厘米.(2)根据表格中数据可知,大纸盒比小纸盒的容积大3a×2b×2c﹣abc=11abc,答:做成的大纸盒比小纸盒的容积大11abc立方厘米.2.2 列代数式一、选择题1.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,第100个三角形数与第98个三角形数的差为( )A. 199B. 197C. 195D. 1932.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A. (4m+7n)元B. 28mn元C. (7m+4n)元D. 11mn元3.下列式子中代数式的个数有()-2a-5,-3,2a+1=4,3x3+2x2y4, -b.A. 2B. 3C. 4D. 54.x表示一个两位数,y表示一个三位数,如果把x放在y的左边组成一个五位数,那么这个五位数就可以表示为()A. xyB. x+yC. 1 000x+yD. 10x+y5.某商店进了一批商品,每件商品的进价为a元,若要获利20%,则每件商品的零售价为()A. 20% aB. (1—20%)aC. aD. (1+20%)a6.仓库有存煤m吨, 原计划每天烧煤a吨, 现在每天节约b吨, 则可多烧的天数为( )A. B. C. D.7.a的2倍与b的的差的平方,用代数式表示应为()A. 2a2﹣b2B. 2a2﹣ bC. (2a﹣b)2D. 2a﹣(b)28.如果两个数的和是10,其中一个数用字母x表示,那么表示这两个数的积的代数式是()A. 10xB. x (10+x)C. x (10-x)D. x (x-10)9.现有一个两位数,个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A. abB. baC. 10a+bD. 10b+a10.一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A. x(30﹣2x)平方厘米B. x(30﹣x)平方厘米C. x(15﹣x)平方厘米D. x(15+x)平方厘米二、填空题11.船在静水中的速度为a千米/时,水流速度为18千米/时,船顺水航行5小时的行程比船逆水航行4小时的行程多________千米.12.甲数比乙数的2倍大3,若乙数为x,则甲数为________13.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点,若青蛙从4这点开始跳,则经2015次跳后它停在数________ 对应的点上.14.某水果批发商购进一批苹果,共a箱,每箱b千克,若将这批苹果的放在大商场销售,则放在大商场销售的苹果有________ 千克(用含a、b的代数式表示).15.观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有________ 个太阳。
2024年湘教版七年级数学上册第2章学情评估测试卷(含答案)
第2章学情评估一、选择题(每小题3分,共30分)1.下列各式中,不是单项式的为()A.3 B.a C.ba D.12x2y2.下列式子中,符合代数式书写规范的是()A.2x-y3B.113x2C.x÷y3D.x×2y3.下列有关整式2ab-ab2+3c-1的说法中,正确的是()A.是单项式B.是三次四项式C.系数是-1 D.没有常数项4.若a m-2b n+7与-3a4b4是同类项,则m-n的值为()A.7 B.8 C.9 D.105.下列计算正确的是()A.4a3b2-2a=2a2b B.2ab+ab=2a2b2C.2ab-ab=ab D.-2ab2-a2b=-3a2b26.与多项式1-m+m2相等的式子是()A.1-(-m+m2) B.1-(m-m2) C.1-(m+m2) D.1-(-m-m2)7.已知x-2y=3,则整式6-2x+4y的值为()A.3 B.0 C. -1 D.-38.某企业今年1月份产值为a万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(a-10%)(a+15%)万元B.a(1-90%)(1+85%)万元C.a(1-10%)(1+15%)万元D.a(1-10%+15%)万元9.用正方形按如图所示的规律拼图案,其中图案①中有5个正方形,图案②中有9个正方形,图案③中有13个正方形,图案④中有17个正方形……则图案⑨中正方形的个数为()(第9题)A.32 B.34 C.37 D.4110.如图①,将一个边长为a的正方形纸片剪去两个同样大小的小长方形,得到一个“S”图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()(第10题)A.2a-2b B.2a-4b C.4a-8b D.4a-9b二、填空题(每小题3分,共24分)11.单项式-5ab的系数是__________.12.把多项式2m2-4m4+2m-1按m的升幂排列为__________________________.13.请你为代数式6x+3y赋予一个实际意义:__________________________________________________.14.根据图中的程序计算y的值,若输入的x值为3,则输出的y值为________.(第14题)15.某校组织学生开展献爱心捐款活动,七年级学生共捐款a元,八年级学生共捐款b元,九年级学生捐款数比七、八年级捐款总数的3倍少40元,则九年级学生捐款数为__________元.16.若多项式3a2-2(5+b-2a2)+ma2的值与字母a无关,则m的值是________.17.已知A=-2x2-3xy-4y2,B=x2-2xy.若x2+y2=2,xy=1,则A-2B的值为________.18.已知x取任意值时,等式(2x+3)4=a0x4+a1x3+a2x2+a3x+a4都成立.(1)a4=__________;(2)a0-a1+a2-a3+a4=__________.三、解答题(共66分)19.(6分)计算:(1)x2+3x2+x2-3x2;(2)3a+2b-(5a+b).20.(6分)若a,b互为相反数,c,d互为倒数,m的绝对值为2,则a+b+m2-cd的值是多少?21.(6分)先化简,再求值:-(3m2-mn)+12(-4m2+2mn),其中m=-1,n=2.22.(8分)已知关于x,y的多项式xy3-3x4+x2y m+2-5mn是五次四项式(m,n为有理数),且单项式5x4-m y n-3的次数与该多项式的次数相同.(1)求m,n的值;(2)将这个多项式按x的降幂排列.23.(8分)老师出了这样一道题:“当a=2 023,b=-2 024时,计算(2a3-3a2b -2ab2)-(a3-2ab2+b3)+(3a2b-a3+b3)的值.”但在计算过程中,有一名同学错把“a=2 023”写成“a=-2 023”,而另一名同学错把“b=-2 024”写成“b =-20.24”,可他们的运算结果都是正确的,请你说明其中的原因.24.(10分)利用去括号和添括号法则,按要求对多项式4m3n-3mn+2mn3-7n2进行变形.(1)将后三项用前面带有“-”号的括号括起来;(2)将前两项用前面带有“-”号的括号括起来,将后两项用前面带有“+”号的括号括起来;(3)将四次项用前面带有“+”号的括号括起来,将二次项用前面带有“-”号的括号括起来.25.(10分)为了节约用水,某市规定每户每月标准用水量为15 m3,超过部分加价收费,不超过部分水费为1.5元/m3,超过部分水费为3元/m3.(1)如果张燕、李军两家本月用水量分别为10 m3和20 m3,那么这两家该月各应缴纳多少水费?(2)当每月用水量为a m3时,请用含a的式子分别表示按标准用水量和超出标准用水量时各应缴纳多少水费.(3)若王强家本月缴纳水费46.5元,则王强家该月用水多少立方米?26.(12分)活动任务一若长方形土地的长与宽之间满足a=32b,小华为学校提供了如图所示的设计方案:小池塘的长m,宽n分别是a、b的12,种植地的直径为n.(1)用含a,b的式子表示下列各区域的面积:①长方形土地的面积:__________;②长方形小池塘的面积:__________;③半圆形蔬菜种植地的面积:__________.驱动问题一(2)请你判断小华的设计方案是否满足学校的要求.活动任务二经过测量,可得a=18 m,b=12 m.假设学校采用了小华的设计方案,为了保证安全,学校决定购入一批围栏,将小池塘围起来,围栏单价为45元/m.驱动问题二(3)围栏连接处的耗材忽略不计,要想将小池塘都围起来,请你计算学校需要花费多少钱?答案一、1.C 2.A 3.B 4.C 5.C 6.B7.B8.C9.C点拨:图案①中有(4+1)个正方形,图案②中有(4×2+1)个正方形,图案③中有(4×3+1)个正方形,图案④中有(4×4+1)个正方形,按此规律,第个图案中有(4n+1)个正方形,所以图案⑨中正方形的个数为4×9+1=37. 10.C二、11.-512.-1+2m+2m2-4m413.一支钢笔x元,一支铅笔y元,小红买了6支钢笔和3支铅笔,共付的钱数.(答案不唯一)14.515.(3a+3b-40)16.-717.-718.(1)81(2)1点拨:(1)当x=0时,(0+3)4=0+0+0+0+a4,即a4=34=81.(2)当x=-1时,[2×(-1)+3]4=1=a0-a1+a2-a3+a4,所以a0-a1+a2-a3+a4=1.三、19.解:(1)原式=2x2.(2)原式=3a+2b-5a-b=-2a+b.20.解:因为a,b互为相反数,所以a+b=0.因为c,d互为倒数,所以cd=1.因为m的绝对值为2,所以m=±2.则原式=0+4-1=3.21.解:原式=-3m2+mn-2m2+mn=2mn-5m2.当m=-1,n=2时,原式=2×(-1)×2-5×(-1)2=-4-5=-9.22.解:(1)因为多项式xy3-3x4+x2y m+2-5mn是五次四项式,单项式5x4-m y n-3的次数与该多项式的次数相同,所以2+m+2=5,4-m+n-3=5,解得m=1,n=5.(2)由(1)可知,这个多项式为xy3-3x4+x2y3-25,将这个多项式按x的降幂排列为-3x4+x2y3+xy3-25.23.解:原式=2a3-3a2b-2ab2-a3+2ab2-b3+3a2b-a3+b3=2a3-a3-a3-3a2b+3a 2b -2ab 2+2ab 2-b 3+b 3=0.因为化简结果等于0,与a ,b 的取值无关, 所以无论a ,b 取什么样的值,结果都为0. 24.解:(1)由题意,得原式=4m 3n -(3mn -2mn 3+7n 2). (2)由题意,得原式=-(-4m 3n +3mn )+(2mn 3-7n 2). (3)由题意,得原式=(4m 3n +2mn 3)-(3mn +7n 2).25.解:(1)张燕家应缴纳的水费为1.5×10=15(元);李军家应缴纳的水费为15×1.5+3×(20-15)=37.5(元).答:张燕家该月应缴纳水费15元,李军家该月应缴纳水费37.5元. (2)当0<a ≤15时,应缴纳的水费是1.5a (元);当a >15时,应缴纳的水费是1.5×15+3(a -15)=(3a -22.5)元. (3)经分析,王强家本月用水量超过15 m 3. 15+(46.5-15×1.5)÷3=23(m 3). 答:王强家该月用水23 m 3.26.解:(1)①ab ②14ab ③132πb 2(2)因为a =32b ,所以长方形土地的面积为ab =32b 2,长方形小池塘的面积为14ab =14×32b 2=38b 2.又由(1)知半圆形蔬菜种植地的面积为132πb 2,所以绿地面积为32b 2-38b 2-132πb 2=⎝ ⎛⎭⎪⎫98-π32b 2.因为⎝ ⎛⎭⎪⎫98-π32b 2-12×32b 2=38b 2-π32b 2=12-π32b 2,且12-π>0,所以12-π32b 2>0,所以⎝ ⎛⎭⎪⎫98-π32b 2>12×32b 2,所以绿地面积占长方形土地面积的一半以上, 所以小华的设计方案满足学校的要求.(3)围栏的长为2(m +n )=2⎝ ⎛⎭⎪⎫12a +12b =a +b =18+12=30 (m),所以学校需要花费45×30=1 350(元).。
七年级数学上册《第二章 代数式的值》练习题-带答案(湘教版)
七年级数学上册《第二章代数式的值》练习题-带答案(湘教版)一、选择题1.当x=1时,代数式2x+5的值为( )A.3B.5C.7D.-22.若a,b互为相反数,c,d互为倒数,则代数式a+b - cd的值等于( )A.1B. - 1C.0D. - 23.圆柱底面半径为3 cm,高为2 cm,则它的体积为( )A.97π cm2B.18π cm2C.3π cm2D.18π2 cm24.当a=﹣2时,代数式1﹣3a2的值是( )A.﹣2B.11C.﹣11D.25.若x=-3,y=1,则代数式2x-3y+1的值为( )A.-10B.-8C.4D.106.已知代数式x+2y的值是3,则代数式2x+4y+1的值是( )A.1B.4C.7D.不能确定7.已知a2+2a=1,则代数式1﹣2a2﹣4a的值为()A.0B.1C.﹣1D.﹣28.已知当x=1时,代数式2ax3+3bx+4值为6,那么当x=﹣1时,代数式2ax3+3bx+4值为( )A.2B.3C.﹣4D.﹣5二、填空题9.已知“a比b大2”,则a﹣b= ,代数式2a﹣2b﹣3的值为.10.如果m-n=50,则n-m=_____,5-m+n=______,70+2m-2n=________.11.已知x2+3x+5=7,那么多项式3x2+9x - 2的值是________.12.如图是一个数值转换器,若输入的a的值为2,则输出的值为________.13.若x=1时,2ax2+bx=3,则当x=2时,ax2+bx=_______.14.如图所示,是一个运算程序示意图,若第一次输入k的值为125,则第2 022次输出的结果是______.三、解答题15.已知a=12,b=-3,求代数式4a2+6ab-b2的值;16.已知当x=-3时,代数式ax5-bx3+cx-6的值等于17,求当x=3时,这个代数式的值.17.已知代数式x+2y的值是3,求代数式2x+4y+1的值;18.为节约能源,某市按如下规定收取电费:如果每月用电不超过140度,按每度0.53元收费;如果超过140度,则超过部分按每度0.67元收费.(1)若某住户4月的用电量为a度,求该住户4月应缴的电费;(2)若该住户5月的用电量是200度,则5月应缴电费多少元?19.如图,在一块长为a,宽为2b的长方形铁皮中,以2b为直径分别剪掉两个半圆.(1)求剩下铁皮的面积(用含a,b的式子表示);(2)当a=4,b=1时,求剩下铁皮的面积是多少?(π取3.14)20.用火柴棒按下列方式搭建三角形:…(1)填表:三角形个数 1 2 3 4 …火柴棒根数…(2)当三角形的个数为n时,火柴棒的根数是多少?(3)求当n=1 000时,火柴棒的根数是多少.参考答案1.C2.B3.B4.C5.B6.C7.C8.A.9.答案为:2,1.10.答案为:-50,-45,17011.答案为:4;12.答案为:0;13.答案为:614.答案为:5.15.解:当a=12,b=-3时,4a2+6ab-b2=4×(12)2+6×12×(-3)-(-3)2=-1716.解:当x=-3时,ax5-bx3+cx=17+6=23∴当x=3时,ax5-bx3+cx=-23∴原式=-23-6=-29.17.解:当x+2y=3时,2x+4y+1=2(x+2y)+1=2×3+1=7.18.解:(1)当a≤140时,则应缴的电费为0.53a元;当a>140时,则应缴的电费为140×0.53+0.67(a-140)=(0.67a-19.6)元.(2)当a=200时,应缴电费0.67×200-19.6=114.4(元).19.解:(1)长方形的面积为:a×2b=2ab两个半圆的面积为:π×b2=πb2∴阴影部分面积为:2ab﹣πb2(2)当a=4,b=1时∴2ab﹣πb2=2×4×1﹣3.14×1=4.8620.解:(1)3 5 7 9;(2)2n+1.(3)2 001.。
湘教版七年级数学上册第二章测试题(含答案)
湘教版七年级数学上册第二章测试题(含答案)(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间:120分钟,赋分:120分)分数:________第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分) 1.在下列各式中,二次单项式是( C ) A .x 2+1 B .13 xy 2C .2xyD .⎝⎛⎭⎫-12 22.代数式a 2-1b 的正确解释是( B )A .a 与b 的倒数的差的平方B .a 的平方与b 的倒数的差C .a 的平方与b 的差的倒数D .a 与b 的差的平方的倒数3.(河武安市期末)若多项式12 x |a|-(a -4)x +6是关于的四次三项式,则a 的值是( A )A .-4B .2C .-4或4D .4 4.已知2a m b +4a 2b n =6a 2b ,则m +n 为( C ) A .1 B .2 C .3 D .4 5.已知三角形的周长为3m -n ,其中两边的和为m +n ,则此三角形第三边的长为( A ) A .2m -2n B .4m -2n C .3m -2n D .2m +2n6.当x =-1时,代数式2ax 2+3bx +8的值是12,则6b -4a +2=( C ) A .-12 B .10 C .-6 D .-22 7.将3p -(m +5n -4)去括号,可得( D ) A .3p -m +5n -4 B .3p +m +5n -4 C .3p -m -5n -4 D .3p -m -5n +4 8.下列运算中,正确的是( D ) A .3a +b =3ab B .-3a 2-2a 2=5a 4 C .-2(x -4)=-2x -4 D .-3a 2b +2a 2b =-a 2b9.如图,两个正方形的面积分别为25,9,两阴影部分的面积分别为a ,b(a >b),则(a -b)等于( C )A .4B .9C .16D .2510.(昌邑市期末)已知一辆汽车在a 秒内行驶了m3 米,则它在4分钟内行驶( B )A .4m3 米B .80m a 米C .40m a米D .480m a米11.如图,A ,B 两地之间有一条东西向的道路.在A 地的东5 km 处设置第一个广告牌,之后每往东12 km 就设置一个广告牌.一汽车在A 地的东3 km 处出发,沿此道路向东行驶.当经过第n 个广告牌时,此车所行驶的路程为( D )A .12n +5B .12n +2C .12n -7D .12n -1012.如图所示的运算程序中,若开始输入的x 值为96.我们发现第一次输出的结果为48.第二次输出的结果为24.则第2 020次输出的结果为( A )A.6 B.3 C.12 D.21 008第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.某超市的苹果价格如图,试说明代数式100-9.8x的实际意义:用100元买该种苹果x斤后剩余的钱数.第13题图第16题图14.若a2m b3和-7a2b3是同类项,则m值为 1 .15.若一个多项式与2m-3n的和等于n,则这个多项式是4n-2m .16.如图是一所住宅的建筑平面图(图中长度单位:m),用式子表示这所住宅的建筑面积为(x2+7x+12) m2.17.当x取19时,多项式x2-3kxy-3y2+13xy-8中不含xy.18.(宜春市期末)如图,图①,图②,图③,……是用围棋棋子摆成的一列具有一定规律的“山”字,则第n个“山”字中的棋子个数是5n+2 .19.(本题满分10分,每小题5分)计算: (1)3a 3-⎝⎛⎭⎫7-12a 3 -4-6a 3; 解:原式=3a 3-7+12 a 3-4-6a 3=⎝⎛⎭⎫3a 3+12a 3-6a 3 +(-7-4) =-52a 3-11.(2)3x 2-[x 2+(2x 2-x)-2(x 2-2x)].解:原式=3x 2-(x 2+2x 2-x -2x 2+4x) =3x 2-x 2-2x 2+x +2x 2-4x =2x 2-3x.20.(本题满分5分)先化简,再求值: -6x +3(3x 2-1)-(9x 2-x +3),其中x =-13 .解:原式=-6x +(9x 2-3)-(9x 2-x +3) =-6x +9x 2-3-9x 2+x -3 =-5x -6, 当x =-13时,原式=-5×⎝⎛⎭⎫-13 -6=-133. 21.(本题满分6分)已知:2A -B =3a 2+2ab ,A =-a 2+2ab -3.(1)求B ;(用含a ,b 的代数式表示) (2)比较A 与B 的大小. 解:(1)B =2A -(3a 2+2ab) =2(-a 2+2ab -3)-3a 2-2ab =-2a 2+4ab -6-3a 2-2ab =-5a 2+2ab -6.(2)A -B =(-a 2+2ab -3)-(-5a 2+2ab -6) =-a 2+2ab -3+5a 2-2ab +6 =4a 2+3>0, ∴A >B22.(本题满分6分)若a ,b 满足(a -3)2+⎪⎪⎪⎪b +13 =0,求代数式3a 2b -⎣⎡⎦⎤2ab 2-2⎝⎛⎭⎫ab -32a 2b +ab +3ab 2的值.解:∵(a -3)2+⎪⎪⎪⎪b +13 =0,∴a =3,b =-13 . 又∵原式=3a 2b -2ab 2+2ab -3a 2b -ab +3ab 2=ab 2+ab.∴当a =3,b =-13时,原式=3×⎝⎛⎭⎫-13 2+3×⎝⎛⎭⎫-13 =-23. 23.(本题满分8分)如图,有理数a ,b ,c 在数轴上的位置大致如下:(1)去绝对值符号:|b -c|= b -c ,|a -b|= b -a ;(2)化简:|b -c|-|a -b|-|a +c|. 解:(1)根据题意得:|b -c|=b -c ;|a -b|=b -a ; 故答案为:b -c ;b -a.(2)∵b -c >0,a -b <0,a +c <0, ∴原式=(b -c)-(b -a)-(-a -c) =b -c -b +a +a +c =2a.24.(本题满分8分)小红做一道数学题“两个多项式A ,B ,B 为4x 2-5x -6,试求A +2B 的值”.小红误将A +2B 看成A -2B ,结果答案为-7x 2+10x +12.(1)试求A +2B 的正确结果;(2)求出当x =-3时,A +2B 的值. 解:(1)∵A -2B =-7x 2+10x +12, B =4x 2-5x -6,∴A =-7x 2+10x +12+2(4x 2-5x -6)=x 2. ∴A +2B =x 2+2(4x 2-5x -6)=9x 2-10x -12.(2)当x =-3时,A +2B =9×(-3)2-10×(-3)-12=99.25.(本题满分11分)观察下面的一列式: 1-12 =12; 12 -13 =36 -26 =16 =12×3 ; 13 -14 =412 -312 =112 =13×4 ; 14 -15 =520 -420 =120 =14×5; ……(1)用只含一个字母n 的等式表示这一列数的特征________;(2)利用(1)题中的规律计算:11×2 +12×3 +13×4 +…+12 019×2 020 的值.(3)计算:11×3 +13×5 +15×7 +…+12 019×2 021的值. 解:(1)1n -1n +1 =1n (n +1).(2)11×2 +12×3 +13×4 +…+12 019×2 020 =1-12 +12 -13 +13 -14 +…+12 019 -12 020=1-12 020=2 0192 020. (3)11×3 +13×5 +15×7 +…+12 019×2 021=12 ×⎝⎛⎭⎫1-13 +12 ×⎝⎛⎭⎫13-15 +12 ×⎝⎛⎭⎫15-17 +…+12 ×⎝⎛⎭⎫12 019-12 021 =12 ×⎝⎛⎭⎫1-13+13-15+15-17+…+12 019-12 021 =12 ×⎝⎛⎭⎫1-12 021 =12 ×2 0202 021 =1 0102 021.26.(本题满分10分)某自主服装品牌设计出了一种西装和领带,西装每套定价200元,领带每条定价40元.在推广服装品牌初期开展促销活动,可以同时向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装品牌购买西装20套,领带x条(x超过20).(1)若该客户按方案一购买,需付款________元(用含x的式子表示);若该客户按方案二购买,需付款________元(用含x的式子表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算出所需的钱数.解:(1)方案一:20×200+40(x-20)=40x+3 200,方案二:(20×200+40x)90%=36x+3 600;故答案为(40x+3 200);(36x+3 600).(2)当x=30时,方案一:40x+3 200=40×30+3 200=4 400元,方案二:36x+3 600=36×30+3 600=4 680元,∵4 400元<4 680元,∴此时按方案一购买合算.(3)先按方案一购买20套西装,送20条领带,差10条领带按方案二购买需360元,∴共需的钱数:20×200+40×10×90%=4 360元.。
湘教版初一上数学第2章单元评估试卷及答案湘教版初中数学目录
湘教版初一上数学第2章单元评估试卷及答案湘教版初中数学目录随着考试的即将来临,你做好应战的准备了吗?这份设计良好的试题卷将会有效的去检测出你的学习情况。
以下是由WTT收集整理的湘教版初一上数学第2章单元评估试卷,希望能够帮助到你!湘教版初一上数学第2章单元评估试卷一、选择题(每小题3分,共30分)1.计算a+(-a)的结果是( )A.2aB.0C.-a2D.-2a2.在代数式x2+5 ,-1,x2-3x+2,π,5x,x2+1x+1中,整式有 ( )A.3个B.4个C.5个D.6个3.下列结论正确的是 ( )A.x2y28的系数是8B.-23mnx的次数是1C.单项式a没有系数,也没有次数D.-x2y3是三次单项式,系数为-134.用式子表示“a的3倍与b的差的平方”,正确的是 ( )A.(3a-b)2B.3(a-b)2C.3a-b2D.(a-3b)25.下列说法正确的是 ( )A.23与23xy是同类项B.x2与12x是同类项C.0.5x2y2与7x2y3是同类项D.5mn2与-4mn2是同类项6.计算2a-3(a-b)的结果是 ( )A.-a-3bB.a-3bC.a+3bD.-a+3b7.下面各题去括号错误的是 ( )A.x-6y-12=x-6y+12B.2m+-n+13a-b=2m-n+13a-bC.-12(4x-6y+3)=-2x+3y+3D.a+12b--13x+27=a+12b+13c-278.一个多项式与x2-2x+1的和是3x-2,则这个多项式为( )A.x2-5x+3B.-x2+x-1C.-x2+5x-3D.x2-5x-139.观察下列:它们是按一定的规律排列的,依照此规律,第20个图形中的“★”有()A.57个B.60个C.63个D.85个10.观察下面的一列单项式:-x,2x2,-4x3,8x4,-16x5,...,根据其中的规律,得出的第10个单项式是 ( )A.-29x10B.29x10C.-29x9D.2 9x9二、填空题(每小题3分,共24分) 11.计算:2x-3x=________.12.多项式-m2n2+m3-2n-3是____次____项式,最高次项的系数为______,常数项是______.13.若单项式5x4y和25xnym是同类项,则m+n的值为________.14.三角形的三边长分别为3a,4a,5a,则这个三角形的周长是________.15.有a名男生和b名女生在社区做义工,他们为建花坛搬砖,男生每人搬了20块,女生每人搬了15块,这a名男生和b 名女生一共搬了________块砖(用含a、b的代数式表示).16.已知2a-3b2=5,则10-2a+3b2的值是________.17.煤气费的收费标准为:每月用气若不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某住户某个月用煤气x立方米(x>60),则该住户应交煤气费____________元.18.下面是按一定规律排列的一列数:23,-45,87,-169,...,那么第n个数是________.三、解答题(共66分)19.(10分)计算:(1)(8xy-3x2)-5xy-2(3xy-2x2);(2)-2x2-12[3y2-2(x2-3y2)+6].20.(12分)先化简,再求值.(1)-(x2+3x)+2(4x+x2),其中x=-2.(2)(3a2-ab+ 7)-(5ab-4a2+7),其中a=2,b=13.21.(8分)某工厂第一车间有x人,第二车间比第一车间人数的45少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有多少人?(2)调动后,第一车间的人数比第二车间多多少人?22.(8分)已知某船顺水航行2小时,逆水航行3小时.(1)已知轮船在静水中前进的速度是x千米/时,水流的速度是y千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是60千米/时,水流的速度是5千米/时,则轮船共航行多少千米?23.(8分)某中学一宿舍楼前一块长为32x,宽为x的空地.学校向全校师生征集这块地的绿化设计方案并要求绿地面积不少于58x2,是学生小明的设计方案,阴影部分是绿地.试问小明的设计方案是否合乎要求?为什么?24.(8分)学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当a=-2,b=2 012时,求(3a2b-2ab2)+4a-2(2a2b-3a)+2ab2+12a2b-1的值”.盈盈做后成对同桌说:“张老师给的条b=2 012是多余的,这道题不给b的值,照样可以求出结果来.”同桌不相信她的话请你计算说明盈盈的说法是否正确.25.(12分)将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一个小正方形剪成四个小正方形,如此循环进行下去.(1)填表:剪的次数12 3 4 5正方形的个数(2)如果剪了100次,共剪出多少个小正方形?(3)如果剪n次,共剪出多少个正方形?(4)观察图形,你还能得出什么规律?湘教版初一上数学第2章单元评估试卷答案1.B【解析】 a+(-a)=a-a=0.故选B.2.B3.D4.A5.D6.D【解析】2a-3(a-b)=2a-3a+3b=-a+3b.故选D.7.C8.C9.B10.B11.-x【解析】原式=(2-3)x=-x.12.四四-1 -313.5【解析】由题意可知,n=4,m=1,所以m+n=4+1=5.14.12a15.(20a+15b)16.517.(1.2x-24)18.(-1)n+12n2n-119.解:(1)原式=8xy-3x2-5xy-(6xy-4x2)=8xy-3x2-5xy-6xy+4x2=-3xy+x2;(2)原式=-2x2-12(3y2-2x2+6y2+6)=-2x2-12(9y2-2x2+6)=-2x2-92y2+x2-3=-x2-92y2-3.20.解:(1)-(x2+3x)+2(4x+x2)=-x2-3x+8x+2x2=x2+5x.当x=-2时,原式=(-2)2+5-(-2)=4-10=-6;(2)(3a2-ab+7)-(5ab-4a2+7)=3a2-ab+7-5ab+4a2-7=7a2-6ab,把a=2,b=13代入7a2-6ab,得7a2- 6ab=7-22-6-2-13=24.21.解:(1)由题意可知,第二车间的人数为45x-30人,所以两个车间共有x+45x-30=x+45x-30=95x-30人;(2)由题意可知,第一车间的的人数为(x+10)人,第二车间的人数为45x-40人,所以第一车间的人数为比第二车间多(x+10)-45x-40=x+10-45x+40=15x+50人.22.解:(1)由题意可得,顺水航行速度为(x+y)千米/时,逆水航行速度为(x-y)千米/时,则轮船共航行2(x+y)+3(x-y) =2x+2y+3x-3y=(5x-y)千米.(2)当x=60,y=5时,原式=5-60-5=300-5=295(千米).即轮船共航行295千米.23.解:绿色面积为:x•32x-12x•34x-12π•14x2=32x2-38x2-132πx2=36-π32x2.因为36-π32x2>58x2,所以小明的设计方案合乎要求.24.解:原式=3a2b-2ab2+4a-4a2b+6a+2ab2+a2b-1=10a-1.当a=-2时,原式=10-(-2)-1=21.因为化简后的结果中不再含有字母b,所以最后的结果与b 的取值无关,因此说b=2 012这个条是多余的.所以盈盈的说法是正确的.25.(1)47 10 13 16(2)剪100次,共剪出3-100+1=301个正方形.(3)剪n次,共剪出(3n+1)个小正方形.(4)略看了“湘教版初一上数学第2章单元评估试卷及答案”的人还看:1.八年级下册数学期末试卷及答案2.初二数学一次函数单元测试题及答案3.初二数学下册期末检测题及答案4.20XX初二数学期中试卷(答案)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学上册第二单元测试题及答案(湘教版)初中阶段对于学生们来说也是十分重要的一个时期,对每个学生来说尤为重要,下文为大家准备了初一数学上册第二单元测试题及答案,供大家参考。
一、选择题(每小题3分,共30分)
1.计算a+(-a)的结果是 ()
A.2a
B.0
C.-a2
D.-2a
2.在代数式x2+5 ,-1,x2-3x+2,π,5x,x2+1x+1中,整式有 ()
A.3个
B.4个
C.5个
D.6个
3.下列结论正确的是 ()
A.x2y28的系数是8
B.-23mnx的次数是1
C.单项式a没有系数,也没有次数
D.-x2y3是三次单项式,系数为-13
4.用式子表示“a的3倍与b的差的平方”,正确的是 ()
A.(3a-b)2
B.3(a-b)2
C.3a-b2
D.(a-3b)2
5.下列说法正确的是 ()
A.23与23xy是同类项
B.x2与12x是同类项
C.0.5x2y2与7x2y3是同类项
D.5mn2与-4mn2是同类项
6.计算2a-3(a-b)的结果是 ()
A.-a-3b
B.a-3b
C.a+3b
D.-a+3b
7.下面各题去括号错误的是 ()
A.x-6y-12=x-6y+12
B.2m+-n+13a-b= 2m-n+13a-b
C.-12(4x-6y+3)=-2x+3y+3
D.a+12b--13x+27=a+12b+13c-27
8.一个多项式与x2-2x+1的和是3x-2,则这个多项式为 ()
A.x2-5x+3
B.-x2+x-1
C.-x2+5x-3
D.x2-5x-13
9.观察下列图形:
图1
它们是按一定的规律排列的,依照此规律,第20个图形中的“★”有()
A.57个
B.60个
C.63个
D.85个
10.观察下面的一列单项式:-x,2x2,-4x3,8x4,-16x5,…,根据其中的规律,得出的第10个单项式是 ()
A.-29x10
B.29x10
C.-29x9
D.2 9x9
二、填空题(每小题3分,共24分)
11.计算:2x-3x=________.
12.多项式-m2n2+m3-2n-3是____次____项式,最高次项的系数为______,常数项是______.
13.若单项式5x4y和25xnym是同类项,则m+n的值为
________.
14.三角形的三边长分别为3a,4a,5a,则这个三角形的周长是________.
15.有a名男生和b名女生在社区做义工,他们为建花坛搬砖,男生每人搬了20块,女生每人搬了15块,这a名男生和b名女生一共搬了________块砖(用含a、b的代数式表示).
16.已知2a-3b2=5,则10-2a+3b2的值是________.
17.煤气费的收费标准为:每月用气若不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某住户某个月用煤气x立方米(x>60),则该住户应交煤气费____________元.
18.下面是按一定规律排列的一列数:23,-45,87,-169,…,那么第n个数是________.
三、解答题(共66分)
19.(10分)计算:
(1)(8xy-3x2)-5xy-2(3xy-2x2);
(2)-2x2-12[3y2-2(x2-3y2)+6].
20.(12分)先化简,再求值.
(1)-(x2+3x)+2(4x+x2),其中x=-2.
(2)(3a2-ab+ 7)-(5ab-4a2+7),其中a=2,b=13.
21.(8分)某工厂第一车间有x人,第二车间比第一车间人数
的45少30人,如果从第二车间调出10人到第一车间,那么:
(1)两个车间共有多少人?
(2)调动后,第一车间的人数比第二车间多多少人?
22.(8分)已知某船顺水航行2小时,逆水航行3小时. (1)已知轮船在静水中前进的速度是x千米/时,水流的速度是y千米/时,则轮船共航行多少千米?
(2)轮船在静水中前进的速度是60千米/时,水流的速度是5千米/时,则轮船共航行多少千米?
23.(8分)某中学一宿舍楼前一块长为32x,宽为x的空地.学校向全校师生征集这块地的绿化设计方案并要求绿地面积不少于58x2,图2是学生小明的设计方案,阴影部分是绿地.试问小明的设计方案是否合乎要求?为什么?
图2
24.(8分)学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当a=-2,b=2 012时,求
(3a2b-2ab2)+4a-2(2a2b-3a)+2ab2+12a2b-1的值”.盈盈做后成对同桌说:“张老师给的条件b=2 012是多余的,这道题不给b的值,照样可以求出结果来.”同桌不相信她的话请你计算说明盈盈的说法是否正确.
25.(12分)如图3,将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一个小正方形剪成四个小正方
形,如此循环进行下去.
图3
(1)填表:
剪的次数 1 2 3 4 5
正方形的个数
(2)如果剪了100次,共剪出多少个小正方形?
(3)如果剪n次,共剪出多少个正方形?
(4)观察图形,你还能得出什么规律?
答案解析
1.B 【解析】 a+(-a)=a-a=0.故选B.
2.B
3.D
4.A
5.D
6.D 【解析】 2a-3(a-b)=2a-3a+3b=-a+3b.故选D.
7.C 8.C 9.B 10.B
11.-x 【解析】原式=(2-3)x=-x.
12.四四 -1 -3
13.5 【解析】由题意可知,n=4,m=1,所以m+n=4+1=5.
14.12a
15.(20a+15b)
16.5
17.(1.2x-24)
18.(-1)n+12n2n-1
19.解:(1)原式=8xy-3x2-5xy-(6xy-4x2)
=8xy-3x2-5xy-6xy+4x2=-3xy+x2;
(2)原式=-2x2-12(3y2-2x2+6y2+6)
=-2x2-12(9y2-2x2+6)
=-2x2-92y2+x2-3
=-x2-92y2-3.
20.解:(1)-(x2+3x)+2(4x+x2)
=-x2-3x+8x+2x2=x2+5x.
当x=-2时,
原式=(-2)2+5×(-2)=4-10= -6;
(2)(3a2-ab+7)-(5ab-4a2+7)=3a2-ab+7-5ab+4a
2-7=7a2-6ab,
把a=2,b=13代入7a2-6ab,得7a2- 6ab=7×22-6×2×13=24.
21.解:(1)由题意可知,第二车间的人数为45x-30人,所以两个车间共有x+45x-30=x+45x-30=95x-30人;
(2)由题意可知,第一车间的的人数为(x+10)人,第二车间的人数为45x-40人,所以第一车间的人数为比第二车间多(x+10)-45x-40=x+10-45x+40=15x+50人.
22.解:(1)由题意可得,顺水航行速度为(x+y)千米/时,逆水航行速度为(x-y)千米/时,则轮船共航行2(x+y)+3(x-y) =2x+2y+3x-3y=(5x-y)千米.
(2)当x=60,y=5时,
原式=5×60-5=300-5=295(千米).
即轮船共航行295千米.
23.解:绿色面积为:x?32x-12x?34x-12π?14x2
=32x2-38x2-132πx2=36-π32x2.
因为36-π32x2>58x2,所以小明的设计方案合乎要求. 24.解:原式=3a2b-2ab2+4a-4a2b+6a+2ab2+a2b-1=10a-1.当a=-2时,原式=10×(-2)-1=21.
因为化简后的结果中不再含有字母b,所以最后的结果与b 的取值无关,因此说b=2 012这个条件是多余的.所以盈盈的说法是正确的.
25.(1)4 7 10 13 16
(2)剪100次,共剪出3×100+1=301个正方形.
(3)剪n次,共剪出(3n+1)个小正方形.
(4)略
欢迎大家阅读初一数学上册第二单元测试题及答案,一定要细细品味哦,一起加油吧。