中考数学压轴题:最值路径问题分析

合集下载

2023年中考数学压轴题专题11 二次函数与单线段最值问题【含答案】

2023年中考数学压轴题专题11 二次函数与单线段最值问题【含答案】

专题11二次函数与单线段最值问题【例1】(2022•襄阳)在平面直角坐标系中,直线y=mx﹣2m与x轴,y轴分别交于A,B两点,顶点为D 的抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C.(1)如图,当m=2时,点P是抛物线CD段上的一个动点.①求A,B,C,D四点的坐标;②当△PAB面积最大时,求点P的坐标;(2)在y轴上有一点M(0,m),当点C在线段MB上时,①求m的取值范围;②求线段BC长度的最大值.【例2】(2022•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.(1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P 在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.【例3】(2021•青海)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A,B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A,B,C.(1)求抛物线的解析式;(2)根据图象写出不等式ax2+(b﹣1)x+c>2的解集;(3)点P是抛物线上的一动点,过点P作直线AB的垂线段,垂足为Q点.当PQ=时,求P点的坐标.【例4】(2022•雅安)已知二次函数y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),且与y轴交于点C (0,﹣3).(1)求此二次函数的表达式及图象顶点D的坐标;(2)在此抛物线的对称轴上是否存在点E,使△ACE为Rt△,若存在,试求点E的坐标,若不存在,请说明理由;(3)在平面直角坐标系中,存在点P,满足PA⊥PD,求线段PB的最小值.1.(2020•河北模拟)已知抛物线C:y=ax2+bx+c(a>0,c<0)的对称轴为x=4,C为顶点,且A(2,0),C(4,﹣2)【问题背景】求出抛物线C的解析式.【尝试探索】如图2,作点C关于x轴的对称点C′,连接BC′,作直线x=k交BC′于点M,交抛物线C于点N.①连接ND,若四边形MNDC′是平行四边形,求出k的值.②当线段MN在抛物线C与直线BC′围成的封闭图形内部或边界上时,请直接写出线段MN的长度的最大值.【拓展延伸】如图4,作矩形HGOE,且E(﹣3,0),H(﹣3,4),现将其沿x轴以1个单位每秒的速度向右平移,设运动时间为t,得到矩形H′G′O′E′,连接AC′,若矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,请求出t的取值范围.2.(2018秋•宁城县期末)已知,如图,抛物线与x轴交点坐标为A(1,0),C(﹣3,0),(1)如图1,已知顶点坐标D为(﹣1,4)或B点(0,3),选择适当方法求抛物线的解析式;(2)如图2,在抛物线的对称轴DH上求作一点M,使△ABM的周长最小,并求出点M的坐标;(3)如图3,将图2中的对称轴向左移动,交x轴于点P(m,0)(﹣3<m<﹣1),与抛物线,线段BC的交点分别为点E、F,用含m的代数式表示线段EF的长度,并求出当m为何值时,线段EF最长.3.(2021•桥西区模拟)如图1,抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,且CO=BO,连接BC.(1)求抛物线的解析式;(2)如图2,抛物线的顶点为D,其对称轴与线段BC交于点E,求线段DE的长度;(3)如图3,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,连接CP,CD,抛物线上是否存在点P,使△CDE∽△PCF,如果存在,求出点P的坐标,如果不存在,请说明理由.4.(2022•和平区二模)如图,在平面直角坐标系中,已知抛物线顶点A的坐标为(﹣2,4),且经过坐标原点,与x轴负半轴交于点B.(1)求抛物线的函数表达式并直接写出点B的坐标;(2)过点A作AC⊥x轴于点C,若点D是y轴左侧的抛物线上一个动点(点D与点A不重合),过点D 作DE⊥x轴于点E,连接AO,DO,当以A,O,C为顶点的三角形与以D,O,E为顶点的三角形相似时,求点D的坐标;(3)在(2)的条件下,当点D在第二象限时,在平面内存在一条直线,这条直线与抛物线在第二象限交于点F,在第三象限交于点G,且点A,点B,点D,到直线FG的距离都相等,请直接写出线段FG的长.5.(2022•鹿城区校级二模)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(5,0),与y轴交于点C.(1)求抛物线的解析式和顶点D的坐标.(2)连结AD,点E是对称轴与x轴的交点,过E作EF∥AD交抛物线于点F(F在E的右侧),过点F作FG∥x轴交ED于点H,交AD于点G,求HF的长.6.(2021•南岗区模拟)如图,抛物线y=ax2+bx﹣4交x轴于点A(﹣3,0),B(4,0),交y轴于点C.(1)求抛物线的解析式;(2)点P为第一象限抛物线上一点,过点P作x轴的平行线,与抛物线的另一个交点为点G,连接CG交x轴于点N,设点P的横坐标为t,ON的长为d,求d与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PB,将线段PB绕着点P顺时针旋转90°得到线段PD,点D恰好落在y轴上,点E在线段OB上,连接PE,点Q在EB的延长线上,且EQ=PE,连接DQ交PE于点F,若PE=3PF,求QN的长.7.(2021•凉山州模拟)如图1,在平面直角坐标系中,已知B点坐标为(1,0),且OA=OC=3OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点,其中D点是该抛物线的顶点.(1)求抛物线的解析式;(2)判断△ADC的形状并且求△ADC的面积;(3)如图2,点P是该抛物线第三象限部分上的一个动点,过P点作PE⊥AC于E点,当PE的值最大时,求此时P点的坐标及PE的最大值.8.(2022•无锡二模)已知抛物线y=mx2﹣2mx+3(m<0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=3OA.(1)求抛物线的函数表达式;(2)若M、N是第一象限的抛物线上不同的两点,且△BCN的面积总小于△BCM的面积,求点M的坐标;(3)若D为抛物线的顶点,P为第二象限的抛物线上的一点,连接BP、DP,分别交y轴于点E、F,若EF=OC,求点P的坐标.9.(2021•乳源县三模)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C(0,).(1)求抛物线的解析式;(2)若点M是抛物线的顶点,连接AM,CM,求△AMC的面积;(3)若点P是抛物线上的一个动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.10.(2021•河池)在平面直角坐标系中,抛物线y=﹣(x﹣1)2+4与x轴交于A,B两点(A在B的右侧),与y轴交于点C.(1)求直线CA的解析式;(2)如图,直线x=m与抛物线在第一象限交于点D,交CA于点E,交x轴于点F,DG⊥CA于点G,若E为GA的中点,求m的值.(3)直线y=nx+n与抛物线交于M(x1,y1),N(x2,y2)两点,其中x1<x2.若x2﹣x1>3且y2﹣y1>0,结合函数图象,探究n的取值范围.11.(2021•桂林)如图,已知抛物线y=a(x﹣3)(x+6)过点A(﹣1,5)和点B(﹣5,m),与x轴的正半轴交于点C.(1)求a,m的值和点C的坐标;(2)若点P是x轴上的点,连接PB,PA,当=时,求点P的坐标;(3)在抛物线上是否存在点M,使A,B两点到直线MC的距离相等?若存在,求出满足条件的点M的横坐标;若不存在,请说明理由.12.(2021•吉林)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,﹣),点B(1,).(1)求此二次函数的解析式;(2)当﹣2≤x≤2时,求二次函数y=x2+bx+c的最大值和最小值;(3)点P为此函数图象上任意一点,其横坐标为m,过点P作PQ∥x轴,点Q的横坐标为﹣2m+1.已知点P与点Q不重合,且线段PQ的长度随m的增大而减小.①求m的取值范围;②当PQ≤7时,直接写出线段PQ与二次函数y=x2+bx+c(﹣2≤x<)的图象交点个数及对应的m的取值范围.13.(2020•武汉模拟)已知:在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a交x轴于A、B两点(点A在点B的左边),交y轴负半轴于点C.(1)则点A的坐标为,点B的坐标为.(2)如图1,过点A的直线y=ax+a交y轴正半轴于点F,交抛物线于点D,过点B作BE∥y轴交AD于E,求证:AF=DE.(3)如图2,直线DE:y=kx+b与抛物线只有一个交点D,与对称轴交于点E,对称轴上存在点F,满足DF=FE.若a=1,求点F坐标.14.(2020•哈尔滨模拟)如图,抛物线y=ax2+bx+5经过坐标轴上A、B和C三点,连接AC,tan C=,5OA=3OB.(1)求抛物线的解析式;(2)点Q在第四象限的抛物线上且横坐标为t,连接BQ交y轴于点E,连接CQ、CB,△BCQ的面积为S,求S与t的函数解析式;(3)已知点D是抛物线的顶点,连接CQ,DH所在直线是抛物线的对称轴,连接QH,若∠BQC=45°,HR∥x轴交抛物线于点R,HQ=HR,求点R的坐标.15.(2019•衡阳)如图,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点N,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接CP,过点P作CP的垂线与y 轴交于点E.(1)求该抛物线的函数关系表达式;(2)当点P在线段OB(点P不与O、B重合)上运动至何处时,线段OE的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点M,连接MN、MB.请问:△MBN的面积是否存在最大值?若存在,求出此时点M的坐标;若不存在,请说明理由.16.(2020•天津)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l平行于x轴,E是直线l上的动点,F是y轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是?17.(2020•凉山州)如图,二次函数y=ax2+bx+c的图象过O(0,0)、A(1,0)、B(,)三点.(1)求二次函数的解析式;(2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;(3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQ⊥x轴,交直线CD于Q,当线段PQ 的长最大时,求点P的坐标.18.(2020•滨州)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l 的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.19.(2016•巴彦淖尔)如图所示,抛物线y=ax2﹣x+c经过原点O与点A(6,0)两点,过点A作AC⊥x 轴,交直线y=2x﹣2于点C,且直线y=2x﹣2与x轴交于点D.(1)求抛物线的解析式,并求出点C和点D的坐标;(2)求点A关于直线y=2x﹣2的对称点A′的坐标,并判断点A′是否在抛物线上,并说明理由;(3)点P(x,y)是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点Q,设线段PQ的长为l,求l与x的函数关系式及l的最大值.20.(2018•葫芦岛)如图,抛物线y=ax2+4x+c(a≠0)经过点A(﹣1,0),点E(4,5),与y轴交于点B,连接AB.(1)求该抛物线的解析式;(2)将△ABO绕点O旋转,点B的对应点为点F.①当点F落在直线AE上时,求点F的坐标和△ABF的面积;②当点F到直线AE的距离为时,过点F作直线AE的平行线与抛物线相交,请直接写出交点的坐标.【例1】(2022•襄阳)在平面直角坐标系中,直线y=mx﹣2m与x轴,y轴分别交于A,B两点,顶点为D 的抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C.(1)如图,当m=2时,点P是抛物线CD段上的一个动点.①求A,B,C,D四点的坐标;②当△PAB面积最大时,求点P的坐标;(2)在y轴上有一点M(0,m),当点C在线段MB上时,①求m的取值范围;②求线段BC长度的最大值.【分析】(1)根据函数上点的坐标特点可分别得出A,B,C,D的坐标;①当m=2时,代入上述坐标即可得出结论;②过点P作PE∥y轴交直线AB于点E,设点P的横坐标为t,所以P(t,﹣t2+4t﹣2),E(t,2t﹣4).根据三角形的面积公式可得△PAB的面积,再利用二次函数的性质可得出结论;(2)由(1)可知,B(0,﹣2m),C(0,﹣m2+2),①y轴上有一点M(0,m),点C在线段MB上,需要分两种情况:当点M的坐标大于点B的坐标时;当点M的坐标小于点B的坐标时,分别得出m的取值范围即可;②根据①中的条件可知,分两种情况,分别得出BC的长度,利用二次函数的性质可得出结论.【解答】解:(1)∵直线y=mx﹣2m与x轴,y轴分别交于A,B两点,∴A(2,0),B(0,﹣2m);∵y=﹣(x﹣m)2+2,∴抛物线的顶点为D(m,2),令x=0,则y=﹣m2+2,∴C(0,﹣m2+2).①当m=2时,﹣2m=﹣4,﹣m2+2=﹣2,∴B(0,﹣4),C(0,﹣2),D(2,2).②由上可知,直线AB的解析式为:y=2x﹣4,抛物线的解析式为:y=﹣x2+4x﹣2.如图,过点P作PE∥y轴交直线AB于点E,设点P的横坐标为t,∴P(t,﹣t2+4t﹣2),E(t,2t﹣4).∴PE=﹣t2+4t﹣2﹣(2t﹣4)=﹣t2+2t+2,∴△PAB的面积为:×(2﹣0)×(﹣t2+2t+2)=﹣(t﹣1)2+3,∵﹣1<0,∴当t=1时,△PAB的面积的最大值为3.此时P(1,1).(2)由(1)可知,B(0,﹣2m),C(0,﹣m2+2),①∵y轴上有一点M(0,m),点C在线段MB上,∴需要分两种情况:当m≥﹣m2+2≥﹣2m时,可得≤m≤1+,当m≤﹣m2+2≤﹣2m时,可得﹣3≤m≤1﹣,∴m的取值范围为:≤m≤1+或﹣3≤m≤1﹣.②当≤m≤1+时,∵BC=﹣m2+2﹣(﹣2m)=﹣m2+2m+2=﹣(m﹣1)2+3,∴当m=1时,BC的最大值为3;当m≤﹣m2+2≤﹣2m时,即﹣3≤m≤1﹣,∴BC=﹣2m﹣(﹣m2+2)=m2﹣2m﹣2=(m﹣1)2﹣3,当m=﹣3时,点M与点C重合,BC的最大值为13.∴当m=1时,BC的最大值为3;当m=﹣3时,BC的最大值为13.【例2】(2022•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.(1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P 在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.【分析】(1)①根据正方形的性质得出点A,B,C的坐标;②利用待定系数法求函数解析式解答;(2)根据两角相等证明△MCP∽△PBA,列比例式可得n与m的关系式,配方后可得结论.【解答】解:(1)①四边形OABC是边长为3的正方形,∴A(3,0),B(3,3),C(0,3);②把A(3,0),C(0,3)代入抛物线y=﹣x2+bx+c中得:,解得:;(2)∵AP⊥PM,∴∠APM=90°,∴∠APB+∠CPM=90°,∵∠B=∠APB+∠BAP=90°,∴∠BAP=∠CPM,∵∠B=∠PCM=90°,∴△MCP∽△PBA,∴=,即=,∴3n=m(3﹣m),∴n=﹣m2+m=﹣(m﹣)2+(0≤m≤3),∵﹣<0,∴当m=时,n的值最大,最大值是.【例3】(2021•青海)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A,B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A,B,C.(1)求抛物线的解析式;(2)根据图象写出不等式ax2+(b﹣1)x+c>2的解集;(3)点P是抛物线上的一动点,过点P作直线AB的垂线段,垂足为Q点.当PQ=时,求P点的坐标.【分析】(1)根据题意得出A、B点的坐标,然后利用待定系数法求出二次函数的解析式;(2)根据(1)的解析式由图象判断即可;(3)作PE⊥x轴于点E,交AB于点D,根据函数图象点P的位置分三种情况分别计算出P点的坐标即可.【解答】解:(1)当x=0,y=0+2=2,当y=0时,x+2=0,解得x=﹣2,∴A(﹣2,0),B(0,2),把A(﹣2,0),C(1,0),B(0,2)代入抛物线解析式,得,解得,∴该抛物线的解析式为:y=﹣x2﹣x+2;(2)方法一:ax2+(b﹣1)x+c>2,即﹣x2﹣2x+2>2,当函数y=﹣x2﹣2x+2=2时,解得x=0或x=﹣2,由图象知,当﹣2<x<0时函数值大于2,∴不等式ax2+(b﹣1)x+c>2的解集为:﹣2<x<0;方法二:ax2+(b﹣1)x+c>2,即﹣x2﹣x+2>x+2,观察函数图象可知当﹣2<x<0时y=﹣x2﹣x+2的函数值大于y=x+2的函数值,∴不等式ax2+(b﹣1)x+c>2的解集为:﹣2<x<0;(3)作PE⊥x轴于点E,交AB于点D,作PQ⊥AB于Q,①如图1,当P在AB上方时,在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,在Rt△PDQ中,∠DPQ=∠PDQ=45°,∴PQ=DQ=,∴PD==1,设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,即﹣x2﹣2x=1,解得x=﹣1,∴此时P点的坐标为(﹣1,2),②如图2,当P点在A点左侧时,同理①可得PD=1,设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=(x+2)﹣(﹣x2﹣x+2)=x2+2x,即x2+2x=1,解得x=±﹣1,由图象知此时P点在第三象限,∴x=﹣﹣1,∴此时P点的坐标为(﹣﹣1,﹣),③如图3,当P点在B点右侧时,在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠DPQ=45°,在Rt△PDQ中,∠DPQ=∠PDQ=45°,∴PQ=DQ=,∴PD==1,设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=(x+2)﹣(﹣x2﹣x+2)=x2+2x,即x2+2x=1,解得x=±﹣1,由图象知此时P点在第一象限,∴x=﹣1,∴此时P点的坐标为(﹣1,),综上,P点的坐标为(﹣1,2)或(﹣﹣1,﹣)或(﹣1,).【例4】(2022•雅安)已知二次函数y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),且与y轴交于点C (0,﹣3).(1)求此二次函数的表达式及图象顶点D的坐标;(2)在此抛物线的对称轴上是否存在点E,使△ACE为Rt△,若存在,试求点E的坐标,若不存在,请说明理由;(3)在平面直角坐标系中,存在点P,满足PA⊥PD,求线段PB的最小值.【分析】(1)设二次函数的表达式为交点式,将点C坐标代入,进而求得结果;(2)先把AC,CE,AE的平方求出或表示出来,然后分为∠CAE=90°,∠ACE=90°及∠AEC=90°,然后根据勾股定理逆定理列出方程,解方程,进而求得结果;(3)根据∠APD=90°确定点P在以AD的中点为圆心,为半径的圆上,进一步求得结果.【解答】解:(1)由题意设二次函数表达式为:y=a(x+1)•(x﹣3),∴a•(﹣3)=﹣3,∴a=1,∴y=(x+1)•(x﹣3)=x2﹣2x﹣3=(x﹣1)2﹣4,∴D(1,﹣4);(2)存在点E,使△ACE是直角三角形,过程如下:设点E(1,m),∵A(﹣1,0),C(0,﹣3),∴AC2=10,AE2=4+m2,CE2=1+(m+3)2,当∠EAC=90°时,AE2+AC2=CE2,∴14+m2=1+(m+3)2,∴m=,∴E1(1,),当∠ACE=90°时,AC2+CE2=AE2,∴11+(m+3)2=4+m2,∴m=﹣,∴E2(1,﹣),当∠AEC=90°时,AE2+CE2=AC2,∴5+m2+(m+3)2=10,∴m=﹣1或﹣2,∴E3(1,﹣1),E4(1,﹣2),综上所述:点E(1,)或(1,﹣)或(1,﹣1)或(1,﹣2);(3)设AD的中点为I,∵A(﹣1,0),D(1,﹣4),∴AD==2,I(0,﹣2),∴PA⊥PD,∴∠ADP=90°,∴点P在以AD的中点I为圆心,为半径的圆上,∵BI==,=﹣.∴PB最小1.(2020•河北模拟)已知抛物线C:y=ax2+bx+c(a>0,c<0)的对称轴为x=4,C为顶点,且A(2,0),C(4,﹣2)【问题背景】求出抛物线C的解析式.【尝试探索】如图2,作点C关于x轴的对称点C′,连接BC′,作直线x=k交BC′于点M,交抛物线C于点N.①连接ND,若四边形MNDC′是平行四边形,求出k的值.②当线段MN在抛物线C与直线BC′围成的封闭图形内部或边界上时,请直接写出线段MN的长度的最大值.【拓展延伸】如图4,作矩形HGOE,且E(﹣3,0),H(﹣3,4),现将其沿x轴以1个单位每秒的速度向右平移,设运动时间为t,得到矩形H′G′O′E′,连接AC′,若矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,请求出t的取值范围.【分析】【问题背景】A(2,0),对称轴为x=4,则点B(6,0),则抛物线的表达式为:y=a(x﹣2)(x ﹣6),将点C的坐标代入上式即可求解;【尝试探索】①四边形MNDC′是平行四边形,则MN=DC′=2,即|k2﹣4k+6﹣(﹣k+6)|=2,解得:k=3或3,②MN=(﹣k+6)﹣(k2﹣4k+6)=﹣k2+3k,即可求解;【拓展延伸】(Ⅰ)当t=2时,矩形过点A,此时矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分;(Ⅱ)当H′E′与对称轴右侧抛物线有交点时,此时y=H′E′=4,即x2﹣4x+6=4,解得:x=4(舍去4﹣2),即可求解.【解答】解:【问题背景】A(2,0),对称轴为x=4,则点B(6,0),则抛物线的表达式为:y=a(x﹣2)(x﹣6),将点C的坐标代入上式得:﹣2=a(4﹣2)•(4﹣6),解得:a=,故抛物线的表达式为:…①;【尝试探索】①点C′(4,2),由点B、C′的坐标可得,直线BC′的表达式为:y=﹣x+6…②,四边形MNDC′是平行四边形,则MN=DC′=2,设点N的坐标为:(x,k2﹣4k+6),则点M(k,﹣k+6),即|k2﹣4k+6﹣(﹣k+6)|=2,解得:k=3或3,故k的值为:;②联立①②并解得:x=0或6,故抛物线C与直线BC′围成的封闭图形对应的k值取值范围为:0≤k≤6,MN=(﹣k+6)﹣(k2﹣4k+6)=﹣k2+3k,∵0,故MN有最大值,最大值为;【拓展延伸】由点A、C′的坐标得,直线AC′表达式为:y=x﹣2…③,联立①③并解得:x=2或8,即封闭区间对应的x取值范围为:2≤x≤8,(Ⅰ)当t=2时,矩形过点A,此时矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,(Ⅱ)当H′E′与对称轴右侧抛物线有交点时,此时y=H′E′=4,即x2﹣4x+6=4,解得:x=4(舍去4﹣2),即x=4+2,则t=3+4+2=7+2,故t的取值范围为:2≤t≤.2.(2018秋•宁城县期末)已知,如图,抛物线与x轴交点坐标为A(1,0),C(﹣3,0),(1)如图1,已知顶点坐标D为(﹣1,4)或B点(0,3),选择适当方法求抛物线的解析式;(2)如图2,在抛物线的对称轴DH上求作一点M,使△ABM的周长最小,并求出点M的坐标;(3)如图3,将图2中的对称轴向左移动,交x轴于点P(m,0)(﹣3<m<﹣1),与抛物线,线段BC的交点分别为点E、F,用含m的代数式表示线段EF的长度,并求出当m为何值时,线段EF最长.【分析】(1)根据顶点D坐标设其顶点式,再将点C(2)连接BC,交DH于点M,使△ABM周长最小,即AM+BM最小,先求出BC直线解析式,再令x=﹣1,求得M(﹣1,2);(3)由题意得出E(m,﹣m2﹣2m+3),F(m,m+3),据此可知EF=EP﹣FP=﹣m2﹣2m+3﹣(m+3),再根据二次函数的性质可得答案.【解答】解:(1)由抛物线的顶点D的坐标(﹣1,4)可设其解析式为y=a(x+1)2+4,将点C(﹣3,0)代入,得:4a+4=0,解得a=﹣1,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)连接BC,交DH于点M,此时△ABM的周长最小,当y=0时,﹣(x+1)2+4=0,解得x=﹣3或x=1,则A(1,0),C(﹣3,0),当x=0时,y=3,则B(0,3),设直线BC的解析式为y=kx+b,将B(0,3),C(﹣3,0)代入得,解得:,∴直线BC解析式为y=x+3,当x=﹣1时,y=﹣1+3=2,所以点M坐标为(﹣1,2);(3)由题意知E(m,﹣m2﹣2m+3),F(m,m+3),则EF=EP﹣FP=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+,∴当m=﹣时,线段EF最长.3.(2021•桥西区模拟)如图1,抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,且CO=BO,连接BC.(1)求抛物线的解析式;(2)如图2,抛物线的顶点为D,其对称轴与线段BC交于点E,求线段DE的长度;(3)如图3,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,连接CP,CD,抛物线上是否存在点P,使△CDE∽△PCF,如果存在,求出点P的坐标,如果不存在,请说明理由.【分析】(1)根据题意可求得点C,B的坐标,将A,B坐标代入抛物线解析式求出a,b的值,即可得到抛物线解析式;(2)设直线BC的解析式为y=kx+b,将点C,B的坐标代入求得k,b的值,即可求得直线BC的解析式,再求DE即可;(3)根据△CDE∽△PCF,DE∥PF,可得:=,设点P坐标为(t,﹣t2+2t+3),点F坐标为(t,﹣t+3),建立关于t的方程求解即可.【解答】解:(1)在抛物线y=ax2+bx+3中,令x=0,得y=3,∴C(0,3),∴CO=3,∵CO=BO,∴BO=3,∴B(3,0),∵A(﹣1,0),∴,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)设直线BC的解析式为y=kx+b,∵B(3,0),C(0,3),∴,解得:,∴直线BC的解析式为y=﹣x+3,∵抛物线y=﹣x2+2x+3的顶点D坐标为(1,4),∴当x=1时,y=﹣1+3=2,∴E(1,2),∴DE=2;(3)∵PF∥DE,∴∠CED=∠CFP,当=时,△PCF∽△CDE,由D(1,4),C(0,3),E(1,2),利用勾股定理,可得CE==,DE=4﹣2=2,设点P坐标为(t,﹣t2+2t+3),点F坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,CF==t,∴=,∵t≠0,∴t=2,当t=2时,﹣t2+2t+3=﹣22+2×2+3=3,∴点P坐标为(2,3).4.(2022•和平区二模)如图,在平面直角坐标系中,已知抛物线顶点A的坐标为(﹣2,4),且经过坐标原点,与x轴负半轴交于点B.(1)求抛物线的函数表达式并直接写出点B的坐标;(2)过点A作AC⊥x轴于点C,若点D是y轴左侧的抛物线上一个动点(点D与点A不重合),过点D 作DE⊥x轴于点E,连接AO,DO,当以A,O,C为顶点的三角形与以D,O,E为顶点的三角形相似时,求点D的坐标;(3)在(2)的条件下,当点D在第二象限时,在平面内存在一条直线,这条直线与抛物线在第二象限交于点F,在第三象限交于点G,且点A,点B,点D,到直线FG的距离都相等,请直接写出线段FG的长.【分析】(1)设该抛物线解析式为y=a(x+2)2+4(a≠0),把点(0,0)代入,即可求解;(2)根据题意得OC=2,AC=4,设点D(x,﹣x2﹣4x),则DE=|﹣x2﹣4x|,OE=﹣x,根据∠ACO=∠DEO=90°,可得当以A,O,C为顶点的三角形与以D,O,E为顶点的三角形相似时,∠AOC=∠ODE 或∠AOC=∠DOE,分两种讨论,即可求解;(3)求出直线BD的解析式y=x+14,直线BD与y轴交于(0,14),可得过点A平行于BD的直线AM的解析式为y=x+11,交y轴于(0,11),可得直线FG的的解析式为y=x+,联立方程组,得到点F.G的坐标,即可求解.【解答】解:(1)∵抛物线顶点的坐标为(﹣2,4),∴设抛物线解析式为y=a(x+2)2+4(a≠0),把点(0,0)代入得:0=a(x+2)2+4.解得:a=﹣1,∴抛物线解析式为y=﹣(x+2)2+4=﹣x2﹣4x.令y﹣0,则﹣x2﹣4x=0,解得:x1=﹣4,x2=0,∴点B(﹣4,0),∴抛物线解析式为y=﹣x2﹣4x.点B(﹣4,0);(2)∵AC⊥x轴,点A(﹣2,4),∴点C(﹣2,0),∴OC=2,AC=4,∵∠ACO=∠DEO=90°,∴当以A,O,C为顶点的三角形与以D,O,E为顶点的三角形相似时,∠AOC=∠ODE或∠AOC=∠DOE,设D(x,﹣x2﹣4x),①当∠AOC=∠ODE时,△AOC∽△ODE,如图:∵∠AOC=∠ODE,∴tan∠AOC=tan∠ODE,∴==2,∴=2,∴﹣x=2(x2+4x)或﹣x=﹣2(x2+4x),∴x1=0(舍去),x2=﹣或x3=0(舍去),x4=﹣,∴点D的坐标为(﹣,﹣)或(﹣,);②当∠AOC=∠DOE时,△AOC∽△DOE,如图:∵∠AOC=∠DOE,∴tan∠AOC=tan∠DOE,∴==2,∴=2,∴﹣2x=x2+4x或2x=x2+4x,∴x1=0(舍去),x2=﹣6或x3=0(舍去),x4=﹣2(舍去),∴点D的坐标为(﹣6,﹣12);点D(﹣6,﹣12);综上所述,当以A,O,C为顶点的三角形与以D,O,E为顶点的三角形相似时,点D的坐标为(﹣6,﹣12)或(﹣,﹣)或(﹣,);(3)∵在(2)的条件下,点D在第二象限,∴点D的坐标为(﹣,),直线BD的解析式y=kx+m,∴,解得,∴直线BD的解析式y=x+14,直线BD与y轴交于(0,14),∴过点A平行于BD的直线AM的解析式为y=x+11,交y轴于(0,11),∵点A,点B,点D,到直线FG的距离都相等,∴直线FG的的解析式为y=x+,联立得,解得,,∴F(﹣,),G(﹣5,﹣5),∴FG==.5.(2022•鹿城区校级二模)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(5,0),与y轴交于点C.(1)求抛物线的解析式和顶点D的坐标.(2)连结AD,点E是对称轴与x轴的交点,过E作EF∥AD交抛物线于点F(F在E的右侧),过点F作FG∥x轴交ED于点H,交AD于点G,求HF的长.【分析】(1)把点A(﹣1,0),B(5,0)代入抛物线解析式即可求解;(2)延长FG交y轴于点I,根据A,E,D坐标求出AE=3,DE=9,在Rt△EAD中,tan∠EAD=3,再根据四边形AGFE是平行四边形,得出tan∠EFH=tan∠EAD=3,设HF=m,EH=3m,易证四边形OIHE是矩形,把点F(m+2,﹣3m)代入y=x2﹣4x﹣5,求出m即可.【解答】解:(1)把点A(﹣1,0),B(5,0)代入抛物线解析式,得:,解得:,∴y=x2﹣4x﹣5=(x﹣2)2﹣9,∴抛物线解析式为y=x2﹣4x﹣5,顶点D坐标为(2,﹣9);(2)延长FG交y轴于点I,∵A(﹣1,0),E(2,0),D(2,﹣9),∴AE=3,DE=9,∴在Rt△EAD中,,∵EF∥AD,FG∥x轴,∴四边形AGFE是平行四边形,∴tan∠EFH=tan∠EAD=3,∴在Rt△EHF中,EH=3HF,设HF=m,EH=3m,易证四边形OIHE是矩形,把点F(m+2,﹣3m)代入y=x2﹣4x﹣5,得,﹣3m=(m+2)2﹣4(m+2)﹣5,解得:或m=(舍去),∴.6.(2021•南岗区模拟)如图,抛物线y=ax2+bx﹣4交x轴于点A(﹣3,0),B(4,0),交y轴于点C.(1)求抛物线的解析式;(2)点P为第一象限抛物线上一点,过点P作x轴的平行线,与抛物线的另一个交点为点G,连接CG交x轴于点N,设点P的横坐标为t,ON的长为d,求d与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PB,将线段PB绕着点P顺时针旋转90°得到线段PD,点D恰好落在y轴上,点E在线段OB上,连接PE,点Q在EB的延长线上,且EQ=PE,连接DQ交PE于点F,若PE=3PF,求QN的长.【分析】(1)运用待定系数法即可得出答案;(2)设P(t,t2﹣t﹣4),则G(1﹣t,t2﹣t﹣4),利用tan∠GCH==,求出CN,即可得出答案;(3)过点P作PT⊥x轴于点T,可证得△PDH≌△PBT(AAS),过点F作x轴的垂线,垂足为K,过点D 作KF的垂线,垂足为R,KR与PH交于点M,再证得△DRF≌△QKF(ASA),过点Q作QW∥PD,可证得△DPF≌△QWF(AAS),过点Q作QZ⊥PE于点Z,再证明△EQZ≌△EPT(AAS),再利用HL证明Rt △QWZ≌Rt△PBT,设EB=m,运用勾股定理建立方程求解即可.【解答】解:(1)∵抛物线y=ax2+bx﹣4交x轴于点A(﹣3,0),B(4,0),∴,解得:,∴抛物线的解析式为;(2)如图1,设P(t,t2﹣t﹣4),∵抛物线的对称轴为直线,PG∥x轴,∴点G与点P是抛物线上的一对对称点,∴G(1﹣t,t2﹣t﹣4),设PG与y轴交于点H,则H(0,t2﹣t﹣4),在抛物线中,令x=0,得y=﹣4,∴C(0,﹣4),∴OC=4,又CH=t2﹣t﹣4﹣(﹣4)=t2﹣t,GH=t﹣1,∵tan∠GCH==,∴,解得:,∴d与t之间的函数解析式为d=;(3)如图2,过点P作PT⊥x轴于点T,∵∠DPB=∠PHO=∠HOB=∠PTO=∠PHD=90°,∴四边形PHOT为矩形,∴∠HPT=90°,∴∠DPH=∠BPT,∵PD=PB,∴△PDH≌△PBT(AAS),∴DH=BT,PH=PT,∴,解得:t1=6,t2=﹣2(舍),∴P(6,6),∴T(6,0),∴DH=BT=2,ON=d=2,过点F作x轴的垂线,垂足为K,过点D作KF的垂线,垂足为R,KR与PH交于点M,∵PE=3PF,∴EF=2PF,∵cos∠PFM=cos∠EFK,∴,∴FK=2FM,∵∠MPT=∠PTK=∠TKM=90°,∴四边形PMKT为矩形,∴MK=PT=6,∴FM=2,FK=4,同理四边形DHMR为矩形,∴DH=RM=2,RF=FK=4,∠R=∠FKQ=90°,∵∠DFR=∠KFQ,∴△DRF≌△QKF(ASA),∴DF=QF,过点Q作QW∥PD,∴∠DPF=∠QWF∵∠DFP=∠WFQ,DF=FQ,∴△DPF≌△QWF(AAS),∴DP=QW=PB,PF=WF,∴,过点Q作QZ⊥PE于点Z,∴∠EZQ=∠PTE=90°,∵∠PET=∠QEZ,EP=EQ,∴△EQZ≌△EPT(AAS),∴PT=QZ,EZ=ET,∵QW=PB,∴Rt△QWZ≌Rt△PBT(HL),∴WZ=BT,∴EW=EB.设EB=m,则EW=WF=FP=m,∴EP=3m,∵BT=2,∴ET=m+2,PT=6,在Rt△EPT中,∵PE2=ET2+PT2,∴(3m)2=(m+2)2+62,解得:,m2=﹣2(舍),∴,∴BQ=2BE=5,∵OB=4,∴OQ=9,∵ON=2,∴QN=OQ+ON=11.7.(2021•凉山州模拟)如图1,在平面直角坐标系中,已知B点坐标为(1,0),且OA=OC=3OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点,其中D点是该抛物线的顶点.(1)求抛物线的解析式;(2)判断△ADC的形状并且求△ADC的面积;(3)如图2,点P是该抛物线第三象限部分上的一个动点,过P点作PE⊥AC于E点,当PE的值最大时,求此时P点的坐标及PE的最大值.【分析】(1)根据B点坐标为(1,0),且OA=OC=3OB,得出B,C点的坐标,用待定系数法求解析式即可;(2)根据坐标求出三角形各边的长,利用勾股定理判断其为直角三角形,再用三角形面积公式求面积即可;(3)求出直线AC的解析式,过点P作PH∥y轴交AC于H,设出P点和H点坐标,用含x的代数式求出PE的值,根据二次函数性质求最值即可.【解答】解:(1)∵B点坐标为(1,0),∴OB=1,又∵OA=OC=3OB,∴OA=OC=3,∴A(﹣3,0),C(0,﹣3),将A,B,C三点代入解析式得,,解得,∴抛物线的解析式为:y=x2+2x﹣3;(2)由(1)知抛物线的解析式为y=x2+2x﹣3,∴对称轴为直线x=﹣=﹣1,当x=﹣1时,y=(﹣1)2+2×(﹣1)﹣3=﹣4,∴D点的坐标为(﹣1,﹣4),∴|AD|==2,|AC|==3,|CD|==,∵|AD|2=|AC|2+|CD|2,∴△ACD是直角三角形,S△ABC=|AC|•|CD|=×=3;(3)设直线AC的解析式为y=sx+t,代入A,C点坐标,得,解得,∴直线AC的解析式为y=﹣x﹣3,如右图,过点P作y轴的平行线交AC于点H,∵OA=OC,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHE=∠OCA=45°,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),∴PH=﹣x﹣3﹣(x2+2x﹣3)=﹣x2﹣3x,∴PE=PH•sin∠PHE=(﹣x2﹣3x)×=﹣(x+)2+,∴当x=﹣时,PE有最大值为,此时P点的坐标为(﹣,﹣).8.(2022•无锡二模)已知抛物线y=mx2﹣2mx+3(m<0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=3OA.(1)求抛物线的函数表达式;(2)若M、N是第一象限的抛物线上不同的两点,且△BCN的面积总小于△BCM的面积,求点M的坐标;(3)若D为抛物线的顶点,P为第二象限的抛物线上的一点,连接BP、DP,分别交y轴于点E、F,若EF=OC,求点P的坐标.【分析】(1)设A(x1,0),B(x2,0),因为OB=3OA,所以x2=﹣3x1,又由于x1,x2是方程mx2﹣2mx+3=0的两根,所以x1+x2=2,从而求出x1的值,得到A点坐标,代入到解析式中,求出m,即可解决问题;(2)由题意可得,只要求得第一象限内M点,使△BCM面积最大,过M作y轴平行线交BC于G点,设M(a,﹣a2+2a+3),先求出直线BC的解析式,可以得到G(a,﹣a+3),从而得的MG=﹣a2+3a,利用S=S△MGC+S△MGB,得到S△MBC=,当a=时,△MBC面积最大,从而求得M点坐△MBC标;。

中考数学教学指导:求解线段最值问题的常用方法

中考数学教学指导:求解线段最值问题的常用方法

求解线段最值问题的常用方法求线段的最值问题经常出现在各地中考试卷中.解决这类问题的关键是要结合题意,借助相关的概念、图形的性质,将最值问题转化为相应的数学模型.如,函数增减性、线段公理、垂线段定理、三角形三边关系等进行分析与突破.现对这类问题作一个归类整理.一、利用“将军饮马”数学模型,求线段和的最小值或差的最大值“将军饮马”模型为:在一条定直线上求一点,使得该点到这条直线同侧的两个定点的距离之和最小.其实质是根据“两点之间线段最短”求最短距离的一个数学模型.“将军饮马”问题可变化为以下几种情形:情形一如图1,A、B为直线MN同侧的两点,在直线MN上求作一点P,使P A+PB-最大(图1 (2)).最小(图1 (1)),或使PA PB情形二如图2,A、B为直线MN异侧的两点,在直线MN上求作一点P,使P A+PB-最大(图2 (2)).最小(图2 (1)),或使PA PB情形三如图3,点P是∠MON内一点,分别在边OM、ON上求点A、B,使P AB的周长最小.情形四如图4,点P、Q是∠MON内两点,分别在边OM、ON上求点A、B,使四边形P ABQ的周长最小;上述几种情形都利用了轴对称的性质,不妨把情形一、二简称为“两点一线”,情形三为“一点两线”,情形四为“两点两线”.例1如图5,在平面直角坐标系中,Rt△OAB的顶点A在x轴正半轴上.顶点B的坐标为(3,3),点C的坐标为(12,0.),点P为斜边OB上的一个动点,则P A+PC的最小值为.例2如图6,已知A (12,y1),B (2,y2) 为反比例函数y=1x图像上的两点,动点P在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是.例3如图7,在平面直角坐标系中,已知点A (-1,0),B (4,0),C (2,-3),P (3,-2),当P、C同时向左平移t个单位时得到的对应点分别为P1,C1,则当四边形AB P1C1的周长最小时t的值为.简析例1是“两点一线”(定点A、C和直线OB) 模型,P A+PC的最小值为312.例2延长线段AB交x轴可得P (2.5,0).例3实际为“两点(点A、B) 一线(过点P平行x轴的直线l ) 一平移(平移距离和方向均为PC)”模型.如图7,过点A作AA1∥PC,AA1=PC,作点A1关于直线l的对称点A2,连结A2B,交直线l于点P1,作P1C1∥PC,P1C1=PC,四边形ABP1C1的周长即为最小,求得t =PP1=0.6.或过点B用类似作法一样可求,此时“一线”应是过点C平行x轴的直线.二、构造三角形求不定线段的最大值若P A、PB是两条定长线段,AB是一条不定的线段,由三角形三边关系PA PB≤AB ≤P A+PB (等号当且仅当P、A、B三点一直线时成立),求得不定线段AB的最大值或最小值.例4如图8,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB 边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连结A'C.则A'C长度的最小值是简析因为A'M=AM,所以A'M、MC为定长线段,当A'、M、C三点共线时,最小值A'C72.例5如图9,△ABC中,∠C=90°,AC=6,BC=3,点A、C分别在x轴、y轴正半轴上.当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,求点B到原点的最大和最小距离.简析取AC中点D,连结BD、OD,则BD、OD为定长线段.当点B在第一象限,且B、O、D三点共线时,最大值BO=3柜+3;当点j5}在第三象限,j!}、D、D三点共线时,最小值BO = 32-3.例6如图10,在△ABC中,AB=3,BC=4,∠ACB=30°,将△ABC绕点B按逆时针方向旋转得到△A1BC1.如图,点E为线段AB中点,点P是线段AC上的动点,在△ABC 绕点B按逆时针方向旋转的过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.简析EB为定长线段,当点P1在A1C1上运动时,BP1的最长距离为BC1= 4,最短距离为垂线段长2.当按E、B、C1顺序并且三点共线时,最长EP1=4 + 1.5 = 5.5;类似地,最短EP1=2-1.5 = 0.5.在上述三个问题中,找到定长的两条线段很重要,需要根据题意,结合图形特征,熟悉图形性质.例如,定圆的半径为定值,斜边一定的直角三角形斜边中线为定值,两平行线间的距离为定值等.要仔细分析,有时需要添加适当的辅助线.三、利用“垂线段最短”求线段的最值“两点之间线段最短”,最短距离为“点点距”,指的是点到点的距离;“垂线段最短”,最短距离为“点线距“,指的是直线外一点到直线的距离.利用“垂线段最短“求线段最值,需要运用动态的观点,结合图形性质,多数情况下要构造直角三角形,利用直角三角形性质 解决问题.例7 如图11,在Rt △AOB 中,OA=OB=32,⊙O 的半径为1,点P 是AB 边上的动点.过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .简析 由切线性质得PQ =22OP OQ ,OQ 为定值.当OP 最小,即OP 为AB 边上的垂线段时,PQ 最小,最小值PQ =22.例8 如图12,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P ,Q ,则线段PQ 长度的最小值是 .简析 ∠C 是直角,则PQ 为直径.连结CD ,当C D ⊥AB 且CD 成为直径时,最小值PQ=CD =4.8.四、建立函数模型求线段最值一些动态问题的两个变量之间存在着某种函数关系,建立函数关系式,在自变量取值范围内利用函数性质求线段最值.数形结合,把几何问题代数化,以达到快捷解决最值问题的目的.例9 如图13,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cos α=45,求CE的最大值.简析先求得BC=16,由△ABD~△DCE,得CEBD=DCAB.设BD=x,CE=(16)10x x,当x=8时,最大值CE=6.4.综上,线段的最值问题需要在动态情形中对图形特殊位置作出深入的探索,既要寻找合适的模型,又要具体问题具体分析,这样才能达到顺利解决问题之目的.。

最全二次函数区间的最值问题(中考数学必考题型)

最全二次函数区间的最值问题(中考数学必考题型)

二次函数的最值问题二次函数的最值问题,是每年中考的必考题,也是考试难点,经常出现在压轴题的位置,解决二次函数的最值问题,特别是含参数的二次函数,一定要考虑二次函数的三个要素:开口方向,对称轴,自变量的取值范围,对于二次函数能够分析出三要素,二次函数的问题就迎刃而解了。

例1.对于二次函数342+-=x x y(1)求它的最小值和最大值.(2)当1≤x ≤4时,求它的最小值和最大值.(3)当-2≤x ≤1时,求它的最小值和最大值.(4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出现在哪些位置?练习1.二次函数y =x 2+2x ﹣5有( )A .最大值﹣5B .最小值﹣5C .最大值﹣6D .最小值﹣6练习2.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是( )A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0练习3若抛物线y =﹣x 2+4x +k 的最大值为3,则k = .练习4(多元消参,利用平方的性质确定自变量的取值范围)若实数a 、b 满足a +b 2=2,则a 2+5b 2的最小值为 .练习5如图,P 是抛物线y =x 2﹣2x ﹣3在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,求四边形OAPB 周长的最大值及点P 的横坐标练习6.(回归教材)如图,一张正方形纸板的边长为8cm ,将它割去一个正方形,留下四个全等的直角三角形(图中阴影部分).设AE =BF =CG =DH =x (cm ),阴影部分的面积为y (cm 2).(1)求y 关于x 的函数解析式并写出x 的取值范围;(2)当x 取何值时,阴影部分的面积最大,最大面积是多少.一、对开口方向(二次项前面系数)进行讨论例2.当 41≤≤x 时,二次函数a ax ax y 342+-= 的最大值等于6.求二次项系数a 的值练习1已知二次函数y =mx 2+2mx ﹣1(m >0)的最小值为﹣5,则m 的值为( )A .﹣4B .﹣2C .2D .4练习2已知二次函数y =mx 2+(m 2﹣3)x +1,当x =﹣1时,y 取得最大值,则m = . 练习3已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,求m 的值二、对二次函数的对称轴的位置进行讨论例3.当 12≤≤x -时,二次函数a ax x y 342+-= 的最小值等于-1.求a 的值.变式1当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,求实数m 的值.变式2当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.三、对二次函数的x 取值范围进行讨论例4.当 2+≤≤a x a 时,二次函数a x x y 342+-= 的最大值等于-6.求a 的值.练习1.当a ﹣1≤x ≤a 时,函数y =x 2﹣2x +1的最小值为1,求a 的值.练习2.若t ≤x ≤t +2时,二次函数y =2x 2+4x +1的最大值为31,求t 的值练习3.已知二次函数y =﹣x 2+6x ﹣5.当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.练习4.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于任何一个二次函数,它在给定的闭区间上都有最小值.求函数y =x 2﹣4x ﹣4在区间[t ﹣2,t ﹣1](t 为任意实数)上的最小值y min 的解析式.练习5.若关于x 的函数y ,当t ﹣≤x ≤t +时,函数y 的最大值为M ,最小值为N ,令函数h =,我们不妨把函数h 称之为函数y 的“共同体函数”.若函数y =﹣x 2+4x +k ,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数“h 的最小值.若存在,求出k 的值;若不存在,请说明理由.拓展:C 2的解析式为:y =a (x +2)2﹣3(a >0),当a ﹣4≤x ≤a ﹣2时,C 2的最大值与最小值的差为2a ,求a 的值.作业:1.矩形的周长等于40,则此矩形面积的最大值是2.若实数x ,y 满足x +y 2=3,设s =x 2+8y 2,则s 的取值范围是 .3.已知二次函数y =ax 2+4x +a ﹣1的最小值为2,则a 的值为 .4.已知实数满足x 2+3x ﹣y ﹣3=0,则x +y 的最小值是 .5.若二次函数y =﹣x 2+mx 在﹣2≤x ≤1时的最大值为5,则m 的值为6.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为7.已知二次函数y =122+-ax ax ,当30≤≤x 时,y 的最大值为2,则a 的值为8.如图,在Rt △ABC 中,∠B =90°,AB =6cm ,BC =8cm ,点P 从A 点开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm /s 的速度移动,则P 、Q 分别从A 、B 同时出发,经过多少秒钟,使△PBQ 的面积最大.9.设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.若二次函数y=x2﹣x﹣是闭区间[a,b]上的“闭函数”,求实数a,b的值.10.抛物线y=x2+bx+3的对称轴为直线x=1.(1)b=;(2)若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.11.已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.12.已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围.(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好,求m,n的值.。

中考数学最值问题解题技巧

中考数学最值问题解题技巧

中考数学最值问题解题技巧
在中考数学中,最值问题是一个常见的难点,通常涉及到几何、代数等多个知识点。

以下是一些常见的解题技巧:
1.特殊位置与极端位置法:考虑特殊位置或极端位置,确定相应
位置时的数值,再进行一般情形下的推证。

2.几何定理法:应用几何中的不等量性质、定理,比如“三边关
系”或“将军饮马”问题。

3.数形结合法:揭示问题中变动元素的代数关系,建立方程或函
数来进行处理。

4.轨迹法:探寻动点轨迹而求最值,往往又会涉及到几何定理法
和数形结合法的运用。

5.找临界的特殊情况:确定最大值和最小值。

6.利用轴对称转化为两点之间的直线段。

7.利用三角形两边之和大于第三边,两边之差小于第三边。

8.利用一点到直线的距离:垂线段最短——将点到直线的折线段
转化为点到直线的垂线段。

9.利用特殊角度(30°,45°,60°)将成倍数的线段转化为首
尾相连的折线段,在转化为两点之间的直线段最短。

中考专题第九讲几何最值及路径长

中考专题第九讲几何最值及路径长

中考专题第九讲几何最值及路径长第九讲几何最值及路径长预览1.如图,a,b为定点,p为直线l上一点,若点p恰好使ap+bp最短,请画出点p的位置.提示:a① 分析固定点(a,b),移动点(P在直线L上移动)和不变特征lp②以l为对称轴利用轴对称进行转化③ 位置由“两点之间的最短线段”确定2.如图,a,b为定点,mn为直线l上一可以移动的线段,且mn长度固定,若点m恰好使am+mn+bn最短的,请画出M点的位置。

提示:①分析定点(a,b),动点(m,n在l上动,且mn长度固定),不变特征②先平移bn,使平移后的点n与m重合,将其转化为问题1③ 以l为对称轴,用轴对称变换④ 通过“两点之间,最短线段”确定位置3.如图,∠aob=60°,点p在∠aob的平分线上,op=10cm,点e,f分别是∠aob两边oa,ob当△ PEF最小,从点P到EF的距离为① 分析固定点(P)、移动点(e在OA上移动,f在OB上移动)和不变特征② 分别以OA和ob为对称轴,对称通过p得到P1和P2③连接p1p2,由“两点之间,线段最短”确定位置,进而求解p到ef的距离.aPeofbamnlb知识点1.几何极大值问题的处理思路①分析定点、动点,寻找不变特征;② 如果是常见的模型或结构,调用该模型或结构来解决问题;若不属于常见模型,要结合所求目标,根据不变特征转化为基本定理或表达为函数解决问题.转化原则:尽量减少变量,接近固定点、固定线段和固定图形,或者使用相同的变量来表达所需的目标。

基本定理:两点之间,线段最短(已知两个定点)垂线段最短(已知一个定点、一条定直线)三角形三边关系(已知两边的长度是固定的,或和与差是固定的)过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦常用模型、结构示例:①轴对称最值模型一bapb'lab'pbl求pa+pb的最小值,使点在线异侧b'b求| PA Pb |的最大值,使点位于直线的同一侧a固定长度段Mn在直线L上滑动,以找到am+Mn+BN的最小值。

中考函数压轴--最值问题(19年真题干货)

中考函数压轴--最值问题(19年真题干货)

函数压轴题之最值问题【2019 深圳】如图抛物线经y=ax2+bx+c过点A(-1,0),点C(0,3),且OB=OC .(1)求抛物线的解析式及其对称轴;(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值;(3)点P为抛物线上一点,连接CP,直线CP把四边形APBC面积分为3∶5两部分,求点P的坐标.【2019 陇南】如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?【2019 庆阳】如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?【2019 甘肃】如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.【2019 广州】已知抛物线G :32y 2--=mx mx 有最低点。

中考数学动点最值问题归纳及解法

中考数学动点最值问题归纳及解法

中考数学动点最值问题归纳及解法最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。

利用一次函数和二次函数的性质求最值。

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

“坐标几何题”(动点问题)分析动点个数两个一个两个问题背景特殊菱形两边上移动特殊直角梯形三边上移动抛物线中特殊直角梯形底边上移动考查难点探究相似三角形探究三角形面积函数关系式探究等腰三角形考点①菱形性质②特殊角三角函数③求直线、抛物线解析式④相似三角形⑤不等式①求直线解析式②四边形面积的表示③动三角形面积函数④矩形性质①求抛物线顶点坐标②探究平行四边形③探究动三角形面积是定值④探究等腰三角形存在性特点①菱形是含60°的特殊菱形;△AOB是底角为30°的等腰三角形。

②一个动点速度是参数字母。

③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。

④通过相似三角形过度,转化相似比得出方程。

⑤利用a、t范围,运用不等式求出a、t的值。

①观察图形构造特征适当割补表示面积②动点按到拐点时间分段分类③画出矩形必备条件的图形探究其存在性①直角梯形是特殊的(一底角是45°)②点动带动线动③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)④通过相似三角形过度,转化相似比得出方程。

⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)近几年共同点:①特殊四边形为背景;②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式);④求直线、抛物线解析式;⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。

备战2020年中考数学一轮专项复习——动点、最值问题(压轴题)(含详细解答)

备战2020年中考数学一轮专项复习——动点、最值问题(压轴题)(含详细解答)

备战2020年中考数学一轮专项复习——动点、最值问题(压轴题)1.(2019眉山中考 第26题 11分)如图1,在平面直角坐标系中,抛物线y =﹣94x 2+bx+c 经过点A (﹣5,0)和点B (1,0).(1)求抛物线的解析式及顶点D 的坐标;(2)点P 是抛物线上A 、D 之间的一点,过点P 作PE ⊥x 轴于点E ,PG ⊥y 轴,交抛物线于点G.过点G 作GF ⊥x 轴于点F.当矩形PEFG 的周长最大时,求点P 的横坐标;(3)如图2,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作∠DMN =∠DBA , MN 交线段AD 于点N ,是否存在这样点M ,使得△DMN 为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由.x2.(2019绵阳中考第24题)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA的最小值.3.(2019攀枝花中考第24题)在平面直角坐标系xOy中,已知A(0,2),动点P在y=x的图象上运动(不与O重合),连接AP.过点P作PQ⊥AP,交x轴于点Q,连接AQ.(1)求线段AP长度的取值范围;(2)试问:点P运动的过程中,∠QAP是否为定值?如果是,求出该值;如果不是,请说明理由.(3)当△OPQ为等腰三角形时,求点Q的坐标.4.已知抛物线y=-x2+bx+c的对称轴为直线x=1,其图象与x轴相交于A,B两点,与y轴相交于点C(0,3).(1)求b,c的值;(2)直线1与x轴相交于点P.①如图1,若l∥y轴,且与线段AC及抛物线分别相交于点E,F,点C关于直线x=1的对称点为点D,求四边形CEDF面积的最大值;②如图2,若直线1与线段BC相交于点Q,当△PCQ∽△CAP时,求直线1的表达式.5.(2019绵阳中考25题)如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.6.(2019资阳中考第24题)如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A(0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,求点P的坐标,并求△PAB面积的最大值.7.在矩形ABCD中,连结AC,点E从点B出发,以每秒1个单位的速度沿着B→A→C的路径运动,运动时间为t(秒).过点E作EF⊥BC于点F,在矩形ABCD的内部作正方形EFGH.(1)如图,当AB=BC=8时,①若点H在△ABC的内部,连结AH、CH,求证:AH=CH;②当0<t≤8时,设正方形EFGH与△ABC的重叠部分面积为S,求S与t的函数关系式;(2)当AB=6,BC=8时,若直线AH将矩形ABCD的面积分成1:3两部分,求t的值.8.(2019金华中考 第24题 )如图,在等腰Rt △ABC 中,∠ACB =90°,AB =142点D ,E 分别在边AB ,BC 上,将线段ED 绕点E 按逆时针方向旋转90°得到EF .(1)如图1,若AD=BD ,点E 与点C 重合,AF 与DC 相交于点O ,求证:BD=2DO .(2)已知点G 为AF 的中点.①如图2,若AD=BD ,CE =2,求DG 的长.②若AD =6BD ,是否存在点E ,使得△DEG 是直角三角形?若存在,求CE 的长;若不存在,试说明理由.图1 图2 图3DA(E )BC FFGDAE BCFG DAEBCO9.(2019资阳中考第24题13分)如图,抛物线y=﹣x2+bx+c过点A(3,2),且与直线y=﹣x+交于B、C两点,点B的坐标为(4,m).(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值;(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.参考答案1.(2019眉山中考 第26题 11分)如图1,在平面直角坐标系中,抛物线y =﹣94x 2+bx+c 经过点A (﹣5,0)和点B (1,0).(1)求抛物线的解析式及顶点D 的坐标;(2)点P 是抛物线上A 、D 之间的一点,过点P 作PE ⊥x 轴于点E ,PG ⊥y 轴,交抛物线于点G.过点G 作GF ⊥x 轴于点F.当矩形PEFG 的周长最大时,求点P 的横坐标;(3)如图2,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作∠DMN =∠DBA , MN 交线段AD 于点N ,是否存在这样点M ,使得△DMN 为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由.【解析】(1)抛物线的解析式为:y =﹣94(x +5)(x ﹣1) =﹣94x 2﹣916x+920 ………………2分 配方得:y =﹣94(x+2)2+4 ,∴顶点D 的坐标为(﹣2,4). ………………………………3分 (2)设点P 的坐标为(a ,﹣94a 2﹣916a+920), 则PE =﹣94a 2﹣916a+920,PG =2(﹣2﹣a )=﹣4﹣2a. ………………………………4分 ∴矩形PEFG 的周长=2(PE+PG)=2(﹣94a 2﹣916a+920﹣4﹣2a)=﹣98a 2﹣968a ﹣932 =﹣98(a +417)2+18225 ……………………………6分 ∵﹣98<0, ∴当a =﹣417时,矩形PEFG 的周长最大, 此时,点P 的横坐标为﹣417.…………………… ………7分 (3)存在.∵AD =BD , ∴∠DAB =∠DBA.∵∠AMN+∠DMN =∠MDB+∠DBA,又∵∠DMN =∠DBA, ∴∠AMN =∠MDB,∴△AMN ∽△BDM,∴MB AN =DBAM ………………………………………………………8分 易求得:AB =6,AD =DB =5. △DMN 为等腰三角形有三种可能:①当MN =DM 时,则△AMN ≌△BDM,∴AM =BD =5, ∴AN =MB =1; ………………………………………………………9分②当DN =MN 时,则∠ADM =∠DMN =∠DBA,又∵∠DAM =∠BAD, ∴△DAM ∽△BAD,∴AD 2=AM •BA.∴AM =625, BM =6﹣625=611, ∵MB AN =DBAM , ∴ 611AN =5625, ∴AN =3655. ………………………………………………………………10分 ③DN =DM 不成立.∵∠DNM >∠DAB, 而∠DAB =∠DMN ,∴∠DNM >∠DMN ,∴DN ≠DM.综上所述,存在点M 满足要求,此时AN 的长为1或3655.………………………………………11分2.(2019绵阳中考 第24题)在平面直角坐标系中,将二次函数y =ax 2(a >0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),OA =1,经过点A 的一次函数y =kx +b (k ≠0)的图象与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,△ABD 的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求△ACE 面积的最大值,并求出此时点E 的坐标; (3)若点P 为x 轴上任意一点,在(2)的结论下,求PE +PA 的最小值.【解析】(1)将二次函数y =ax 2(a >0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y =a (x -1)2-2,∵OA =1,∴点A 的坐标为(-1,0),代入抛物线的解析式得,4a -2=0,∴,∴抛物线的解析式为y =,即y =.令y =0,解得x 1=-1,x 2=3,∴B (3,0),∴AB =OA +OB =4,∵△ABD 的面积为5,∴=5,∴y D=,代入抛物线解析式得,,解得x1=-2,x2=4,∴D(4,),设直线AD的解析式为y=kx+b,∴,解得:,∴直线AD的解析式为y=.(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),∴=,∴S△ACE=S△AME-S△CME===,=,∴当a=时,△ACE的面积有最大值,最大值是,此时E点坐标为().(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F作FH⊥AE于点H,交轴于点P,∵E(),OA=1,∴AG=1+=,EG=,∴,∵∠AGE=∠AHP=90°∴sin,∴,∵E、F关于x轴对称,∴PE=PF,∴PE+AP=FP+HP=FH,此时FH最小,∵EF=,∠AEG=∠HEF,∴=,∴.∴PE+PA的最小值是3.3.(2019攀枝花中考第24题)在平面直角坐标系xOy中,已知A(0,2),动点P在y=x的图象上运动(不与O重合),连接AP.过点P作PQ⊥AP,交x轴于点Q,连接AQ.(1)求线段AP长度的取值范围;(2)试问:点P运动的过程中,∠QAP是否为定值?如果是,求出该值;如果不是,请说明理由.(3)当△OPQ为等腰三角形时,求点Q的坐标.【解析】(1)由y=x知:∠POQ=30°,当AP⊥OP时,AP取得最小值=OA•sin∠AOP=2sin60°=;(2)过点P作PH⊥x轴于点H、交过点A平行于x轴的直线与点G,∴∠APQ=90°,∴∠AGP+∠APG=90°,∠APG+∠QPH=90°,∴∠QPH=∠PAG,∴△PAG∽△QPH,∴tan∠PAQ====,则∠QAP=30°;(3)设:OQ=m,则AQ2=m2+4=4PQ2,①当OQ=PQ时,即PQ=OQ=m,则m2+4=4m2,解得:m=;②当PO=OQ时,同理可得:m=±(4+4);③当PQ=OP时,同理可得:m=;故点Q的坐标为(,0)或(-,0)或(4+4,0)或(-4-4,0)或(2,0)或(-2,0).6.已知抛物线y=-x2+bx+c的对称轴为直线x=1,其图象与x轴相交于A,B两点,与y轴相交于点C(0,3).(1)求b,c的值;(2)直线1与x轴相交于点P.①如图1,若l∥y轴,且与线段AC及抛物线分别相交于点E,F,点C关于直线x=1的对称点为点D,求四边形CEDF面积的最大值;②如图2,若直线1与线段BC相交于点Q,当△PCQ∽△CAP时,求直线1的表达式.【解析】(1)由题意得:,∴b=2,c=3,(2)①如图1,∵点C关于直线x=1的对称点为点D,∴CD∥OA,∴3=-x2+2x+3,解得:x1=0,x2=2,∴D(2,3),∵抛物线的解析式为y=-x2+2x+3,∴令y=0,解得x1=-1,x2=3,∴B(-1,0),A(3,0),设直线AC的解析式为y=kx+b,∴,解得:,∴直线AC的解析式为y=-x+3,设F(a,-a2+2a+3),E(a,-a+3),∴EF=-a2+2a+3+a-3=-a2+3a,四边形CEDF的面积=S△EFC+S△EFD===-a2+3a=,∴当a=时,四边形CEDF的面积有最大值,最大值为.②当△PCQ∽△CAP时,∴∠PCA=∠CPQ,∠PAC=∠PCQ,∴PQ∥AC,∵C(0,3),A(3,0),∴OA=OC,∴∠OCA=∠OAC=∠PCQ=45°,∴∠BCO=∠PCA,如图2,过点P作PM⊥AC交AC于点M,∴,设PM=b,则CM=3b,AM=b,∵,∴,∴,∴,∴,∴,设直线l的解析式为y=-x+n,∴,∴.∴直线l的解析式为y=-x+.5.(2019绵阳中考25题)如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.【解析】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴∠DEF=90°,∴△DEF是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DFA,∴△DOE∽△DAF,∴,∴t,又∵∠AEF=∠ADG,∠EAF=∠DAG,∴△AEF∽△ADG,∴,∴,又∵AE=OA+OE=2+t,∴,∴EG=AE-AG=,当点H恰好落在线段BC上∠DFH=∠DFE+∠HFE=45°+45°=90°,∴△ADF∽△BFH,∴,∵AF∥CD,∴,∴,∴,解得:t1=,t2=(舍去),∴EG=EH=;(3)过点F作FK⊥AC于点K,由(2)得EG=,∵DE=EF,∠DEF=90°,∴∠DEO=∠EFK,∴△DOE≌△EKF(AAS),∴FK=OE=t,∴S=.6.(2019资阳中考第24题)如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b 都经过A(0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,求点P的坐标,并求△PAB面积的最大值.【解析】(1)∵抛物线y=ax2﹣2x+c经过A(0,﹣3)、B(3,0)两点,∴,∴,∴抛物线的解析式为y=x2﹣2x﹣3,∵直线y=kx+b经过A(0,﹣3)、B(3,0)两点,∴,解得:,∴直线AB的解析式为y=x﹣3,(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点C的坐标为(1,﹣4),∵CE∥y轴,∴E(1,﹣2),∴CE=2,①如图,若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,∴﹣a2+3a=2,解得:a=2,a=1(舍去),∴M(2,﹣1),②如图,若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a2﹣2a﹣3﹣(a﹣3)=a2﹣3a,∴a2﹣3a=2,解得:a=,a=(舍去),∴M(,),综合可得M点的坐标为(2,﹣1)或().(3)如图,作PG∥y轴交直线AB于点G,设P(m,m2﹣2m﹣3),则G(m,m﹣3),∴PG=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S△PAB=S△PGA+S△PGB===﹣,∴当m=时,△PAB面积的最大值是,此时P点坐标为().8.在矩形ABCD中,连结AC,点E从点B出发,以每秒1个单位的速度沿着B→A→C的路径运动,运动时间为t(秒).过点E作EF⊥BC于点F,在矩形ABCD的内部作正方形EFGH.(1)如图,当AB=BC=8时,①若点H在△ABC的内部,连结AH、CH,求证:AH=CH;②当0<t≤8时,设正方形EFGH与△ABC的重叠部分面积为S,求S与t的函数关系式;(2)当AB=6,BC=8时,若直线AH将矩形ABCD的面积分成1:3两部分,求t的值.【解答】解:(1)①如图1中,∵四边形EFGH是正方形,AB=BC,∴BE=BG,AE=CG,∠BHE=∠BGH=90°,∴∠AEH=∠CGH=90°,∵EH=HG,∴△AEH≌△CGH(SAS),∴AH=CH.②如图1中,当0<t≤4时,重叠部分是正方形EFGH,S=t2.如图2中,当4<t≤8时,重叠部分是五边形EFGMN,S=S△ABC﹣S△AEN﹣S△CGM=×8×8﹣2×(8﹣t)2=﹣t2+32t﹣32.综上所述,S=.(2)如图3﹣1中,延长AH交BC于M,当BM=CM=4时,直线AH将矩形ABCD的面积分成1:3两部分.∵EH∥BM,∴=,∴=,∴t=.如图3﹣2中,延长AH交CD于M交BC的延长线于K,当CM=DM=3时,直线AH将矩形ABCD的面积分成1:3两部分,易证AD=CK=8,∵EH∥BK,∴=,∴=,∴t=.如图3﹣3中,当点E在线段AC上时,延长AH交CD于M,交BC的延长线于N.当CM=DM时,直线AH 将矩形ABCD的面积分成1:3两部分,易证AD=CN=8.在Rt △ABC 中,AC ==10,∵EF ∥AB ,∴=,∴=,∴EF =(16﹣t ),∵EH ∥CN ,∴=,∴=,解得t =.综上所述,满足条件的t 的值为s 或s 或s .8.(2019金华中考 第24题 )如图,在等腰Rt △ABC 中,∠ACB =90°,AB =142点D ,E 分别在边AB ,BC 上,将线段ED 绕点E 按逆时针方向旋转90°得到EF .(1)如图1,若AD=BD ,点E 与点C 重合,AF 与DC 相交于点O ,求证:BD=2DO .(2)已知点G 为AF 的中点.①如图2,若AD=BD ,CE =2,求DG 的长.②若AD =6BD ,是否存在点E ,使得△DEG 是直角三角形?若存在,求CE 的长;若不存在,试说明理由.图1 图2 图3DA(E )BC FFGDA E BCFG DAEBC(第24题)O【解析】(1)由旋转性质得:CD =CF ,∠DCF =90°.∵△ABC 是等腰直角三角形,AD =BD . ∴∠ADO =90°,CD =BD =AD , ∴∠DCF =∠ADC . 在△ADO 和△FCO 中,ADO FCO AOD FOC AD FC =⎧⎪=⎨⎪=⎩∠∠,∠∠,, ∴△ADO ≌△FCO . ∴DO =CO . ∴BD =CD =2OD .(2)①如图1,分别过点D ,F 作DN ⊥BC 于点N ,FM ⊥BC 于点M ,连结BF .∴∠DNE =∠EMF =90°. 又∵∠NDE =∠MEF ,DE =EF ,∴△DNE ≌△EMF , ∴DN =EM . 又∵BD=∠ABC =45°,∴DN =EM =7, ∴BM=BC -ME -EC=5,∴MF=NE= NC -EC=5. ∴BF= ∵点D ,G 分别是AB,AF 的中点, ∴DG =12BF②过点D 作DH ⊥BC 于点H .∵AD =6BD ,AB=BD=ⅰ)当∠DEG =90°时,有如图2,3两种情况,设CE=t .∵∠DEF=90°,∠DEG=90°,G FDCABE N M 图1∴点E 在线段AF 上.∴BH=DH =2,BE =14-t ,HE=BE -BH=12-t.∵△DHE ∽△ECA ,∴=DH HE EC CA ,即212=14tt -,解得6t =±∴6CE =+6CE =-ⅱ) 当DG ∥BC 时,如图4.过点F 作FK ⊥BC 于点K ,延长DG 交AC 于点N ,延长AC 并截取MN=NA .连结 FM .则NC=DH =2,MC =10. 设GN=t,则FM =2t,BK=14-2t.∵△DHE ≌△EKF , ∴KE=DH =2,KF=HE =14-2t, ∵MC=FK , ∴14-2t=10, 得t =2. ∵GN=EC =2, GN ∥EC , ∴四边形GECN 是平行四边形. 而∠ACB =90°,∴四边形GECN 是矩形,∴∠EGN =90°.∴当EC =2时,有∠DGE =90°.图2 图3 图4FGD AEB CHFG D AE B CHFGD AE B CHN MKⅲ)当∠EDG =90°时,如图5.过点G ,F 分别作AC 的垂线,交射线AC 于点N , M ,过点E 作EK ⊥FM 于点K ,过点D 作GN 的垂线,交NG 的延长线于点P .则PN =HC =BC -HB =12, 设GN =t ,则FM =2t ,∴PG =PN -GN =12-t . 由△DHE ≌△EKF 可得:FK =2, ∴CE =KM =2t -2,∴HE =HC -CE =12-(2t -2)=14-2t , ∴EK =HE =14-2t ,AM =AC +CM =AC +EK =14+14-2t =28-2t ,∴MN =12AM =14-t ,NC =MN -CM =t , ∴PD =t -2,由△GPD ∽△DHE 可得:=PG PD HD HE ,即122=2142t t t---, 解得11014t =-,21014t =+(舍去).∴CE=2t-2=18214-. 所以,CE 的长为:622-,622+,2或18214-.9.(2019资阳中考 第24题13分)如图,抛物线y =﹣x 2+bx +c 过点A (3,2),且与直线y =﹣x +交于B 、C 两点,点B 的坐标为(4,m ).F GD AE B CH NMKP图5(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值;(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.【解答】解:(1)将点B的坐标为(4,m)代入y=﹣x+,m=﹣4+=﹣,∴B的坐标为(4,﹣),将A(3,2),B(4,﹣)代入y=﹣x2+bx+c,解得b=1,c=,∴抛物线的解析式y=;(2)设D(m,),则E(m,﹣m+),DE=()﹣(﹣m+)==﹣(m﹣2)2+2,∴当m=2时,DE有最大值为2,此时D(2,),作点A关于对称轴的对称点A',连接A'D,与对称轴交于点P.PD+PA=PD+PA'=A'D,此时PD+PA最小,∵A(3,2),∴A'(﹣1,2),A'D==,即PD+PA的最小值为;(3)作AH⊥y轴于点H,连接AM、AQ、MQ、HA、HQ,∵抛物线的解析式y=,∴M(1,4),∵A(3,2),∴AH=MH=2,H(1,2)∵∠AQM=45°,∠AHM=90°,∴∠AQM=∠AHM,可知△AQM外接圆的圆心为H,∴QH=HA=HM=2设Q(0,t),则=2,t=2+或2﹣∴符合题意的点Q的坐标:Q1(0,2﹣)、Q2(0,2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档