《公因数和最大公因数》教学反思(精选9篇)

合集下载

《最大公因数》教学反思15篇

《最大公因数》教学反思15篇

《最大公因数》教学反思《最大公因数》教学反思15篇作为一位刚到岗的人民教师,课堂教学是重要的任务之一,通过教学反思可以有效提升自己的课堂经验,那么写教学反思需要注意哪些问题呢?下面是小编收集整理的《最大公因数》教学反思,仅供参考,大家一起来看看吧。

《最大公因数》教学反思1本节课的教学内容是求两个数的公因数和两个数的最大公因数的第二课时。

教学目标是进一步理解两个数的公因数和最大公因数的意义,比较熟练地求出两个数的最大公因数,包括两种特殊情况。

这节课上的非常顺利,课堂气氛活跃,师生互动和谐,取得了较好的课堂教学效果。

上课的第一环节,是复习两个数的公因数和最大公因数的意义。

在复习的过程中,我不是单纯地让学生复述两个数的公因数和最大公因数的意义,而是让学生举例说明。

学生说出了许多组数,找出了它们的公因数和最大公因数。

在学生举例的过程中,对它们的意义有了更深的理解。

我择其四组板书在黑板上:4和5,5和6,5和7,7和9。

让学生观察,这四组数有什么特点。

我的本意是让学生发现两个数的最大公因数的一种特殊情况,即两个数的公因数只有1,那么它们的最大公因数就是1。

“我发现两个数中只要有一个质数,它们的最大公因数就是1。

”这是一个大胆的猜测,虽说是出乎意料,但更使课堂充满了生机。

我让学生判断他的观点是否正确。

在小组讨论的过程中,有学生提出了质疑,“这个观点不对,比如2和4,2是质数,但它俩的最大公因数不是1。

”又有学生提出3和6,5和10等。

我接着又让学生观察,这几组数又有什么特点。

通过通论观察,完成了本节课的另一个教学任务,发现了两个数的最大公因数的另一种特殊情况,即两个数是倍数关系,那么它们的最大公因数就是较小的数,学生发现了两个数的最大公因数的几种情况,当两个数都是质数时,它们的最大公因数是1;当两个数是连续的自然数时,它们的最大公因数是1;两个数的最大公因数是1,这两个数可以是质数,也可以是合数,还可以一个是质数,一个是合数,等等。

五年级数学《最大公因数》教学反思(通用15篇)

五年级数学《最大公因数》教学反思(通用15篇)

五年级数学《最大公因数》教学反思(通用15篇)五年级数学《最大公因数》教学反思(通用15篇)在发展不断提速的社会中,教学是重要的工作之一,所谓反思就是能够迅速从一个场景和事态中抽身出来,看自己在前一个场景和事态中自己的表现。

那么应当如何写反思呢?以下是小编为大家收集的五年级数学《最大公因数》教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

五年级数学《最大公因数》教学反思篇1教学例3时先用边长6厘米和4厘米的正方形纸片,分别铺长18厘米、宽12厘米的长方形,教师选择正方形纸片铺长方形的活动教学公因数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。

学生用同两张正方形纸片分别铺一个不同的长方形,面对出现的两种结果,会发现“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。

他们沿着长方形的边铺正方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究长方形边长和正方形边长关系的愿望。

分析长方形的长、宽和正方形边长之间的关系,按学生的认知规律,设计成两个层次:第一个层次联系铺的过程与结果,从长方形的长、宽除以正方形的边长没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。

第二个层次根据边长6厘米的正方形正好铺满长18厘米、宽12厘米的长方形、而边长4厘米的正方形不能正好铺满长18厘米、宽12厘米的长方形的经验,联想边长几厘米的正方形还能正好铺满长18厘米、宽12厘米的长方形。

先找到这些正方形,把它们边长从小到大排列,知道这样的正方形的个数是有限的。

再用“既是12的因数,又是18的因数”概括地描述这些正方形边长的特征。

显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认识有重要的支持作用。

反思:突出概念的内涵、外延,让学生准确理解概念。

我用“既是……又是……”的描述,让学生理解“公有”的意思。

例3先联系用边长1、2、3、6厘米的正方形正好能铺满长18厘米、宽12厘米的长方形纸片的现象,从长方形的长、宽分别除以正方形边长都没有余数,得出正方形的边长“既是12的因数,又是18的因数”,一方面概括了这些正方形边长的特点,另一方面让学生体会“既是……又是……”的意思。

《公因数和最大公因数》教学反思(精选10篇)

《公因数和最大公因数》教学反思(精选10篇)

《公因数和最大公因数》教学反思《公因数和最大公因数》教学反思(精选10篇)作为一名人民老师,我们需要很强的教学能力,写教学反思可以快速提升我们的教学能力,怎样写教学反思才更能起到其作用呢?下面是小编为大家收集的《公因数和最大公因数》教学反思,欢迎阅读与收藏。

《公因数和最大公因数》教学反思篇1这部分内容的结构与“公倍数和最小公倍数”基本相同,结合具体的情境,引导学生通过观察、操作、分析、比较、抽象和概括等活动,探索并理解公因数、最大公因数的含义,掌握求两个数的最大公因数的方法。

1、我让学生依托动手操作,加强对比观察,沟通新旧知识的联系,优化概念引进的过程。

在教学例3时,我分四步组织学生的活动。

第一步,让学生“分别用边长6厘米和4厘米的正方形纸片铺长18厘米、宽12厘米的长方形”,铺前先思考:边长是多少的正方形可以铺满这个长方形?通过操作,学生都知道边长6厘米的正方形可以铺满长18厘米、宽12厘米的长方形。

引导学生具体感知公因数的含义。

第二步,组织讨论“还有哪些边长是整厘米数的正方形纸片也能正好铺满这个长方形”,通过思考,学生明白:“只要边长的厘米数既是12的因数,又是18的因数,就能正好铺满”这个长方形。

第三步,可以先让学生说一说1、2、3和6的共同特征,再告诉学生1、2、3和6的共同特征,再告诉学生“1、2、3和6既是12的因数,又是18的因数,它们是12和18的公因数。

第四步,让学生说一说4为什么不是12和18的公因数,使学生加深对公因数含义的理解,知道4是12的因数,但不是18的因数,所以4就不是12和18的公因数。

通过正、反两方面的比较,优化概念的形成。

2、着眼于问题的解决,鼓励学生自主探索,逐步形成概念结构。

教学例4是,我让学生先独立思考,用自己的方法找出8和12的公因数和最大的公因数。

再通过交流,使学生在相互启发的过程中进一步打开思路,明确方法。

由于学生已经积累了较为丰富的求两个数的最小公倍数的方法,因而这里的重点是让学生在自主探索的基础上合乎逻辑地表达自己的思考过程,并体会不同方法的内在一致性。

《公因数与最大公因数》评课优缺点及建议

《公因数与最大公因数》评课优缺点及建议

《公因数与最大公因数》评课优缺点及建议一、引言本文将对《公因数与最大公因数》这一课程进行评价,并提出优缺点及相关改进建议。

该课程是中学数学教学中的重要内容,旨在帮助学生掌握公因数与最大公因数的概念和运算方法。

二、课程内容概述1.公因数的概念与性质公因数是指能同时整除一组数的数,课程应引导学生理解公因数的概念及其性质,并通过具体例题让学生熟练掌握公因数的求解方法。

2.最大公因数的概念与计算最大公因数是指一组数中最大的公因数,课程应重点教学最大公因数的求解方法,包括辗转相除法以及质因数分解法。

3.应用题解析课程应通过一些实际问题的讲解,让学生了解如何运用公因数与最大公因数的知识解决实际问题,培养学生的应用能力。

三、优点与建议1.优点(1)清晰的教学目标该课程明确学习公因数与最大公因数的基本知识和运算方法,学生容易理解教学目标,有助于提高学习效果。

(2)生动的教学方法通过举例、练习等方式,引导学生主动探索和思考,激发学生的学习兴趣,提高教学效果。

2.缺点(1)相关实例不足在课程中,示例题目和练习题目的数量相对较少,有时无法覆盖各种类型的应用情况,影响学生对知识的全面理解。

(2)缺乏实际应用的训练课程虽然提到了一些应用题,但针对实际问题的解析和训练相对较少,建议增加相关应用题以提高学生应用知识解决问题的能力。

3.改进建议(1)增加实例和练习应增加更多类型的实例和练习题,涵盖各种应用情况,以便学生更好地理解和掌握公因数与最大公因数的概念和运算方法。

(2)加强实际应用训练在课程中增加更多真实生活中的应用题目,鼓励学生主动思考并运用所学知识解决实际问题,培养学生的应用能力。

(3)增加交互性和互动性引入更多互动教学方法,如小组讨论、角色扮演等,提高学生参与度和合作能力,激发学生的学习兴趣。

四、结论《公因数与最大公因数》课程在教学目标明确、教学方法生动等方面表现出一定的优点。

然而,课程中存在相关实例不足和缺乏实际应用的训练等缺点。

《公因数和最大公因数》教学反思

《公因数和最大公因数》教学反思

《公因数和最大公因数》教学反思1、《公因数和最大公因数》教学反思公因数和最大公因数这一课应注重引导学生体验“概念形成”的过程,让学生“研究学习”、“自主探索”,学生不应是被动接受知识的容器,而应是在学习过程中主动积极的参与者,是认知过程的探索者,是学习活动的主体。

我是这样组织教学的:在教学过程中,我们不仅要求学生掌握抽象的数学结论,更应注重学生概念形成的`过程。

应引导学生参与探讨知识的形成过程,尽可能挖掘学生潜能,能让学生通过努力,自己解决问题,形成概念。

通过创设生活情境,帮助王叔叔铺地装,将学生自然地带入求知的情境中去,在学生已有知识经验的基础上放手让学生去交流、探索。

“哪一个正方形纸片能正好铺满长16厘米宽12厘米的长方形,为什么?”这样更利于培养学生自主探索、提出问题和解决问题的能力。

接着进一步引导学生思考“还有哪些正方形纸片也能正好铺满长16厘米宽12厘米的长方形?”“为什么边长是1厘米、2厘米、4厘米的地砖可以正好铺满?而边长是3厘米的正方形地砖不能正好铺满?”让学生在反复地思考和交流中加深对公因数这一概念的理解。

教师抛出问题后,让学生独立探究。

为了解决问题,学生充分调动了已有知识经验、方法、技能,找出“16和12的公因数和最大公因数”。

在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识。

思考:1.增强师生和生生之间的互动在教学过程中各个环节的衔接不够紧凑,本课时的教学内容比较枯燥,在课堂上如何调动学生的积极性,活跃课堂气氛,使学生学的轻松、扎实。

今后的教学中,在这一点上要都多下功夫。

本课时的教学中,在组织学生交流找“16和12的公因数”的方法时,指名回答的形式过于单调,有的同学没有选着摆一摆的方法,而是直接用边长去除以小正方形边长来判断,我没有很好利用学生生成的资源,帮助学生理解,局限学生的思维发展。

2.方法多样化和方法优化在组织学生进行交流时,应该注重引导学生有层次地介绍各种不同的方法。

公因数和最大公因数反思

公因数和最大公因数反思

优化算法提升能力
——《公因数和最大公因数》教学反思
在实际生活中,当我们遇到一个新问题需要解决时,需要我们调动自身的经验或选择合适的途径(如:找人请教,尝试摸索等)去探究,因此,从寻找贴近学生的“最近发展区”考虑,我设计了这一环节:在回忆学过的有关因数、倍数知识的基础上,先让学生通过讨论交流,运用多种方法去找两个数的最大公因数,学生想到了列举法、画集合图、短除法等多种方法,然后引导学生通过对比,发现用短除法既简便有快捷。

多样化的算法可以拓宽学生思维,独特的思路可以张扬学生个性,但我们还应明确肯定思维优化的必要性,不能只停留在对不同方法数量的追求上,尽可能地通过不同方法的比较,帮助学生根据不同的背景选择不同的方法,做到算法的优化。

胡集小学董保华。

《公因数和最大公因数》教案及反思

《公因数和最大公因数》教案及反思

《公因数和最大公因数》教案及反思(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、演讲致辞、策划方案、合同协议、规章制度、条据文书、诗词鉴赏、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, speeches, planning plans, contract agreements, rules and regulations, doctrinal documents, poetry appreciation, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please stay tuned!《公因数和最大公因数》教案及反思《公因数和最大公因数》教案及反思(精选2篇)《公因数和最大公因数》教案及反思篇1一、教学目标:1、结合具体的生活情景理解公因数和最大公因数的含义,并能正确地求出两个数的公因数和最大公因数。

《公因数和最大公因数》教学反思

《公因数和最大公因数》教学反思

《公因数和最大公因数》教学反思(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、演讲致辞、策划方案、合同协议、规章制度、条据文书、诗词鉴赏、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, speeches, planning plans, contract agreements, rules and regulations, doctrinal documents, poetry appreciation, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please stay tuned!《公因数和最大公因数》教学反思《公因数和最大公因数》教学反思(通用3篇)《公因数和最大公因数》教学反思篇1分析基础知识:本单元是在学生已经理解和掌握倍数、因数的含义,初步学会找一个数的倍数和因数,知道一个数的倍数和因数的特点的基础上进行教学的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《公因数和最大公因数》教学反思《公因数和最大公因数》教学反思(精选9篇)在发展不断提速的社会中,教学是我们的工作之一,反思是思考过去的事情,从中总结经验教训。

那么反思应该怎么写才合适呢?下面是小编整理的《公因数和最大公因数》教学反思,欢迎阅读,希望大家能够喜欢。

《公因数和最大公因数》教学反思篇1多问几个为什么1、出差两天,今日回来,与孩子们继续畅游《公倍数和公因数》单元。

思维一旦被激发,就有点一发不可收拾。

从第一课时开始,孩子们与我是完全浸润在了公倍数与公因数的欢乐中。

我的态度也从一开始对教材安排的质疑,到现在极力拥护教材的安排。

只有放手给孩子们一个构建的机会,孩子们才能在构建过程中频频发起智慧的邀请。

在学习公倍数的时候,课上巧遇“思维定势”,孩子们以为两个数的公倍数就是它们的乘积;但是在解决书本上的6和9的公倍数是多少时,猛然发现,这个方法不能次次实施。

孩子们提出了一系列猜想。

其中小彧发现,如果将错就错,把6和9相乘,也可以,但是要除以它们的最大公因数。

并且,小彧通过举例,把这个发现从特殊上升到了一般。

因为当时还未学习公因数,我就躲避了问题的内里。

小何在备学中说,我最大的问题是,我知道小彧的说法是对的,但是为何6和9两个数相乘,再除以最大公因数,得到的就是最小公倍数,其中的道理是什么?呵呵,好家伙,知道了是什么,自觉追问了为什么?明天我们要对本章节的内容做个整体梳理,我准备结合短除法,让孩子们意识到小何追问思想的可贵,以及这个方法可行之处究竟是什么。

2、孩子们很爱思考,从第一课时的下课时间开始,就发现两个数若有倍数关系,它们的最小公倍数很奇妙,就是较大的数。

第二课时,我们通过教材上的习题,一起说了这个规律,即诉说了看到的表面现象。

孩子们还不甘心,提出了问题,为什么两个数是倍数关系,最小公倍数就是大的那个数呢?一时安静后,好几个孩子举高手,并说清了原因:大数本身是小数的倍数,大数又是自己最小的倍数,理所应当是两数的最小公倍数。

3、公倍数的种种猜想,在学习公因数的时候,思想方法得到了迁移。

第一课时,孩子们提出各种猜想,求最大公因数,会不会也像公倍数中两个数有特殊关系,就能轻松的求出结果?孩子们+数学=好玩。

要做找公倍数的上本子作业了,我板书给孩子们看书写格式,他们拉着脸。

我说,我小时候,就是写这么多字的。

不过,我可以介绍你们写一种简单的,用“()”包住两个数,中间用逗号隔开,这样就能代替写这么多字。

孩子们一看,多方便呀!居然都“啪啪啪”鼓起掌来,哈!我满怀惬意的说,你们的掌声与微笑中包含着对数学简洁美的追求啊!孩子们爽歪歪了。

不过事后,一个资深老师告诉我,这个环节,如果让孩子们创造一下,如何追求简洁。

也许,这样对于孩子们的思维发展更有效。

一想,我也同意这般。

一节课,只要知识目标达成,那么,过程方法与情意目标是不可分割的。

学生在达成过程方法目标的旅程中,岂有不快乐,不感受到丰富体验的?《公因数和最大公因数》教学反思篇2分析基础知识:本单元是在学生已经理解和掌握倍数、因数的含义,初步学会找一个数的倍数和因数,知道一个数的倍数和因数的特点的基础上进行教学的。

这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和通分以及分数四则计算的基础。

教材分两段安排教学内容:第一段,认识公倍数、最小公倍数,探索找两个数的最小公倍数的方法;第二段,认识公因数、最大公因数,探索找两个数的最大公因数的方法。

此外,在本单元的最后还安排了实践与综合应用《数字与信息》。

一、借助操作活动,经历概念的形成过程。

以往教学公因数的概念,通常是直接找出两个自然数的因数,然后让学生发现有的因数是两个数公有的,从而揭示公因数和最大公因数的概念。

本单元教材注意以直观的操作活动,让学生经历公因数和最大公因数概念的形成过程。

这样安排有两点好处:一是学生通过操作活动,能体会公倍数和公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。

在这节课上,让学生按要求自主操作,发现用边长6厘米的正方形正好铺满长18厘米,宽12厘米的长方形。

在发现结果的同时,还引导学生联系除法算式进行思考,对直观操作活动的初步抽象。

再把初步发现的结论进行类推,发现用边长1厘米、2厘米、3厘米6厘米的正方形都正好铺满长18厘米,宽12厘米的长方形。

在此基础上,引导学生思考1、2、3、6这些数和18、12有什么关系。

这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。

并在此基础上,借助直观的集合图显示公因数的意义。

实实在在让学生经历了概念的形成过程,效果较好。

二、预设探究过程,增强学生主体意识。

例3中,教师宣布游戏规则后,放手让学生动手操作,直观感知——思考原因——想象延伸——讨论思辨——明确意义。

例4更是学生探究广阔的平台,教师抛出问题后,让学生独立探究。

为了解决问题,学生充分调动了已有知识经验、方法、技能,八仙过海各显神通,找出了各种求“12和18的公因数和最大公因数”的方法。

在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。

三、重视方法和策略的渗透,提高学生学习能力。

课程标准只要求在1~100的自然数中,能找出10以内两个自然数的公倍数和最小公倍数,二是只要求在1~100的自然数中,能找出两个自然数的公因数和最大公因数,而不是用分解质因数的方法求出公倍数或公因数。

不教学用分解质因数的方法求最小公倍数和最大公因数还有两个原因:一是通过列举出两个数的倍数或因数的方法,找出公倍数或公因数。

突出对公倍数和公因数意义的理解;二是学生对用短除的形式求最大公因数和最小公倍数的算理理解有困难,减轻学生的学习负担。

所以在教学找公倍数或公因数时,应提倡思考方法多样化。

例4教学中,学生得出了三种方法来寻找12和18的公因数和最大公因数。

(当然到底是三种还是两种有待商榷,不过在这里,为了便于比较我们姑且称之为三种吧)这就存在了一个方法优化的过程,哪一种方法会更简单?通过对比,大多数学生赞同方法二。

通过讨论,引导学生以后解决此类问题时可以多运用较好的方法二。

在这中间教师注意到了引导、小结、鼓励,师生共同得出结论。

复习题中回顾了四年级知识基础、列举法和标记法,在例3中,学生思考“还有哪些边长整厘米的正方形纸片也能正好铺满这个长方形?”时就有了基础。

例4中,学生也知道用列举法和标记法来解决问题。

特别是用集合图来表示因数和公因数的教学值得一提。

有趣的游戏,预料中的争执,恰到好处的体现了图的妙用,图的填法比一步步教学生如何填更有效,也更不易遗忘。

练习五,第一题在填完集合图后对公有因数和独有因数意义的的提升,为下面的学习作了伏笔。

体会初步的集合思想。

练一练,并没有局限于画画△、○,找找公因数和最大公因数,而是进一步指导学生观察,发现公因数都比小的数小(18和30中,18是小的数),在18的因数中找公因数的确更快、更好些。

所以请老师们在平时的教学中也去分析、思考,把握例题和练习中每个需要提升之处,在课堂中时时注意方法和策略的渗透,较好地用实这套教材。

《公因数和最大公因数》教学反思篇3公因数与最大公因数这一课教材设计了一个用边长6厘米和4厘米正方形铺长18厘米,宽12厘米长方形的问题,让学生在解决实际问题中探索公因数的认识。

因此,在教学中要重视通过尝试解决问题让学生联系已有的知识来引入公因数的认识。

使学生初步体会学习公因数在解决实际问题中有着重要作用。

这节课的上课情况感觉较好,课堂比较流畅,重难点也都注意到了,但是通过学生作业反馈情况来看,部分学生在寻找公因数和最大公因数时,容易出现漏掉因数的情况,如9的因数容易漏掉因数3等。

在写公因数的示意图时,部分学生出现中间写了公因数后,两边还是将所有因数都写了进去,这一情况在预设时我虽然想到了学生会错,也在课堂上进行了说明,但是少数学生还是出现了错误。

用例举的策略找出所有公因数的教学中,教材上有种层次不同学生可以掌握的方法参考,在这里的教学中我只是参照教材注重了这两种方法的讲解,这里教材的应是要求学生有序地列举就行了,不同水平的学生采用的方法可以不一样,因此,在这部分内容的教学时,有些学生运用了一些比较独特的方法寻找公因数,教师应该给予肯定,说明只要有序地列举出因数来寻找公因数就可以了。

但是,对于学生出现的各种方法可以让学生进行对比,体会哪种方法更好,更适合自己,进而对自己的算法进行优化。

《公因数和最大公因数》教学反思篇4公因数和最大公因数这一课应注重引导学生体验“概念形成”的过程,让学生“研究学习”、“自主探索”,学生不应是被动接受知识的容器,而应是在学习过程中主动积极的参与者,是认知过程的探索者,是学习活动的主体。

我是这样组织教学的:在教学过程中,我们不仅要求学生掌握抽象的数学结论,更应注重学生概念形成的过程。

应引导学生参与探讨知识的形成过程,尽可能挖掘学生潜能,能让学生通过努力,自己解决问题,形成概念。

通过创设生活情境,帮助王叔叔铺地装,将学生自然地带入求知的情境中去,在学生已有知识经验的基础上放手让学生去交流、探索。

“哪一个正方形纸片能正好铺满长16厘米宽12厘米的长方形,为什么?”这样更利于培养学生自主探索、提出问题和解决问题的能力。

接着进一步引导学生思考“还有哪些正方形纸片也能正好铺满长16厘米宽12厘米的长方形?”“为什么边长是1厘米、2厘米、4厘米的地砖可以正好铺满?而边长是3厘米的正方形地砖不能正好铺满?”让学生在反复地思考和交流中加深对公因数这一概念的理解。

教师抛出问题后,让学生独立探究。

为了解决问题,学生充分调动了已有知识经验、方法、技能,找出“16和12的公因数和最大公因数”。

在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识。

思考:1.增强师生和生生之间的互动在教学过程中各个环节的衔接不够紧凑,本课时的教学内容比较枯燥,在课堂上如何调动学生的积极性,活跃课堂气氛,使学生学的轻松、扎实。

今后的教学中,在这一点上要都多下功夫。

本课时的教学中,在组织学生交流找“16和12的公因数”的方法时,指名回答的形式过于单调,有的同学没有选着摆一摆的方法,而是直接用边长去除以小正方形边长来判断,我没有很好利用学生生成的资源,帮助学生理解,局限学生的思维发展。

2.方法多样化和方法优化在组织学生进行交流时,应该注重引导学生有层次地介绍各种不同的方法。

同时还要引导学生进行方法的比较和优化。

《公因数和最大公因数》教学反思篇5这部分内容的结构与“公倍数和最小公倍数”基本相同,结合具体的情境,引导学生通过观察、操作、分析、比较、抽象和概括等活动,探索并理解公因数、最大公因数的含义,掌握求两个数的最大公因数的方法。

相关文档
最新文档