数轴上的动点问题

合集下载

数轴的动点问题公式

数轴的动点问题公式

数轴的动点问题公式
数轴的动点问题是指一个点在数轴上按一定规律运动的问题。

为了描述这个运动过程,我们可以使用公式来表示动点的位置。

假设数轴上的起点为0,动点在某个时刻的位置为x。

动点按照某个速度v向左或向右运动,那么在经过t单位时间后,动
点的位置可以用下面的公式表示:
x=x0+vt
其中,x0表示初始位置,v表示速度,t表示时间。

如果速
度为正,表示向右移动;如果速度为负,表示向左移动。

如果动点在数轴上做匀速直线运动,那么速度v是常数,这
时可以将公式简化为:
x=x0+vt
如果动点在数轴上做加速或减速运动,速度v是变化的,那
么我们需要根据具体的问题来确定速度v的表达式。

常见的加
速或减速运动可以用以下几种公式表示:
匀加速运动:v=v0+at,其中v0表示初始速度,a表示加
速度。

匀减速运动:v=v0at,其中v0表示初始速度,a表示减速度。

自由落体运动:h=h0+v0t+(1/2)gt^2,其中h0表示初始高度,v0表示初始速度,g表示重力加速度。

希望上述内容能够对您有所帮助!如有任何疑问,请随时向我提问。

初中数轴上的动点问题

初中数轴上的动点问题

初中数轴上的动点问题1. 什么是数轴上的动点问题数轴嘛,大家都知道,就像一条有方向的线,上面有好多数。

动点问题呢,就是有个点在这个数轴上动来动去的。

比如说,这个点可能从一个数开始,然后按照一定的速度或者规则在数轴上移动。

这就像一个小蚂蚁在一根标了数字的绳子上爬,它一会儿在这个数字这儿,一会儿又跑到另一个数字那儿了。

动点问题可有趣啦,它就像是数轴这个舞台上的小演员,不停地变换位置,而我们呢,就要根据它的表演规则来搞清楚一些事情,比如它什么时候会到达某个特定的数,或者它在移动过程中和其他固定的点或者其他动点之间的距离关系。

2. 常见的动点问题类型求动点与定点的距离。

比如说,有一个点A在数轴上表示3,有个动点P从0开始,以每秒2个单位的速度向右移动,那我们就要算出经过几秒钟,点P和点A的距离是多少。

这就像是在玩一个追逐游戏,一个是站着不动的目标,一个是跑来跑去的追逐者,我们要算出他们之间的距离变化。

动点相遇问题。

就像有两个动点,一个从数轴左边出发,一个从右边出发,它们朝着对方移动,速度也不一样。

我们就得算出它们什么时候会在数轴上的某个地方相遇,就好像两个人在一条路上相对走来,什么时候会碰面一样。

还有动点的中点问题。

假如有两个动点,那它们之间的中点位置会随着它们的移动而改变,我们要找出这个中点在不同时刻所表示的数。

这就像是两个人拉着一根绳子的两端,绳子的中间点会随着他们的走动而移动,我们要知道这个中间点在任何时候的位置。

3. 解决数轴上动点问题的小技巧一定要先确定动点的起始位置和运动方向。

这就好比你要知道小蚂蚁从哪里出发,是向左还是向右爬。

如果题目说一个动点从 - 5开始,以每秒1个单位的速度向左移动,那这个信息就是解题的关键开头。

用代数式表示动点在不同时刻的位置。

比如说那个从0开始,以每秒2个单位速度向右移动的动点P,经过t秒后,它的位置就可以表示为2t。

这就像给小蚂蚁的位置做个标记,让我们能随时知道它在哪里。

数轴上的动点问题

数轴上的动点问题

数轴上的动点问题❖ 数轴上的动点问题,是很重要的一部分,但往往使学生感到很棘手.实际上,如果将动点问题“代数化”,“三招”就可轻松解决常见的问题.第一招:平移公式(平移规律)若数轴上点A 表示的数是a ,则当点A 向左平移t 个单位长度时表示的数为a t -;当点A 向右平移t 个单位长度时表示的数为a t +.简记为:左减右加.第二招:距离公式若数轴上,A B 两点表示的数分别是,a b ,则,A B 两点的距离AB a b =-.如果已知,A B 两点的位置关系,比如点A 在点B 的左边,则AB b a =-.第三招:中点公式若数轴上,A B 两点表示的数分别是,a b ,则线段AB 的中点表示的数是2a b + ❖ 常见题型:一、突破基础关—平移与距离数轴上点的平移和两点间的距离是数轴所有难点问题的突破口.点的平移是今后进一步研究动点问题的基础,两点间的距离则可以让学生感知数轴与线段之间的关系. 例1 请利用数轴回答下列问题:①如果点A 表示数3-,将点A 向右移动7个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;②如果点A 表示数3,将A 点先向左移动4个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;③如果点A 表示数3,将A 点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;④一般地,如果A 点表示的数为a ,将A 点向右移动m 个单位长度,再向左移动n 个单位长度,请你猜想终点B 表示的数是 ,A 、B 两点间的距离是 .二、突破应用关—平移、距离、对称、旋转(滚动)1.平移平移是所有动点问题的灵魂所在,也是数轴问题研究的基石,所以我们在突破数轴难点时,有必要进行深层次的探究.例2如果将A点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B表示的数是2,则起点A表示的数为 ,A、B两点间的距离是 .-.例3若AB为数轴上一线段,其中点A表示3,点B表示1①将线段沿着数轴左右平移,若平移后点A对应的数为5,则点B所对应的数是 ;-,则点A对应的数是 , AB的中点C对应的数②若平移后点B对应的数是4是 ;-,则A对应的数是 ,B对应的数③若平移后AB的中点C对应的数是1是 .2.距离距离是今后解决坐标系中数形结合问题的关键所在.在坐标系中,大多数问题归根结底是研究线段与线段之间的数量关系,也就是两点之间的距离.因此在初学数轴时,把水平距离问题理解透彻,对今后坐标系里几何问题的学习大有帮助.例4 数轴上有A、B两点,且A、B两点间的距离是3.①若A为原点,则点B表示的数是 ;②若点A表示的数是1,则点B表示的数是 ;③若点A表示的数是a,则点B表示的数是 ;例5数轴上有三点A、B、C,且A、B两点间的距离是3,B、C两点的距离是2,-,则点C表示的数是 .若A点表示的数为1-,C为例6 数轴上有三个点A、B、C,其中A点表示的数为1,B点表示的数为5数轴上的动点,若C到A的距离是C到B的距离的2倍,求此时C所表示的数是 .3.对称数轴上对称问题的关键是线段的中点.最简单的对称是相反数,它们关于原点对称,由此可把此类问题推广至一般,即关于数轴上任意点的对称.例7数轴上A、B两点表示的数为相反数,且AB的距离为5,点A在点B的右边,则A表示的数是 ,B表示的数是 .例8 将数轴沿着某一点A对折,使得1与6重合.①则A表示的数是 ;-重合的数是 ;②与10重合的数是 ;与3③若MN重合,且MN相距2015个单位长度(M在N的右边),则M表示的数是,N表示的数是 ;例9 数轴上有三个点A、B、C,其中A点表示的数为1,B点表示的数为一3,C为数轴上的动点,当A、B、C三个点中有一个点是另两个点的中点时,求此时C所表示的数.4.旋转(滚动)多边形的旋转问题或圆的滚动问题也是中考热点,实际在这类问题中也可以结合数轴来解答.例10 正方形ABCD在数轴上的位置如图5,点A、D对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B对应的数为1,则连续翻转2015次后,图5①数轴上数2015对应的点是 ;②连续翻转2015次后,数轴上数2014对应的点是 .例11 (1)如图6,数轴上有一半径为1的圆,起始点A与原点重合.若将圆沿着数轴-重合的,顺时针无滑动地滚动一周,点A所对应的数是 ;若起点A开始时是与2则圆在数轴上无滑动地滚动2周后点A表示的数是 .图6A B C D,(2)如图6所示,圆的周长为4个单位长度,在圆的4等分点处标上字母,,,-所对应的点重合,再让圆沿着数轴按逆先让圆周上字母A所对应的点与数轴上的数2-将与圆周上的字母重合.时针方向作无滑动滚动,那么数轴上的数2015三 、突破动点大题—试卷中经常出现的动点应用题解决此类问题的关键是确定动点表示的数,以及动点的运动方向.以下分为三类问题进行解析:1.方向不变例1 如图1,数轴上点B 表示的数是30,,P Q 两点分别从,O B 两点同时出发,分别以3单位/秒和2单位/秒的速度向右运动,运动时间为t 秒, M 为线段BP 上一点,且13PM PB =,N 为QM 的中点. (1)若12PB BQ =,求t 的值; (2)当t 的值变化时, NQ 的值是否发生变化?为什么?练习1:已知数轴上两点,A B 对应的数为-1 ,3,点P 为数轴上一动点,其对应的数为x .(1)数轴上是否存在点P ,使5PA PB +=?若存在,请求出x 的值;若不存在,请说明理由.(2)当点P 以每分钟1个单位长度的速度从O 点向右运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向右运动.在运动的过程中,,M N 分别是,AP OB 的中点,AB OP MN-的值是否改变,为什么?,B点对应的数为练习2:如图,已知A、B分别为数轴上两点,A点对应的数为20100.(1)AB中点M对应的数;(2)现有一只电子蚂蚁甲从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;(3)若当电子蚂蚁甲从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数.练习3:已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。

数形结合之数轴上的动点问题

数形结合之数轴上的动点问题

数形结合之数轴上的动点问题数形结合是数学中一种重要的解题思想,它通过将抽象的数学语言与直观的图形相结合,使复杂的问题变得简单易懂。

数轴上的动点问题是一个典型的数形结合问题,通过将数轴上的点与代数式相结合,可以解决一系列与距离、速度、加速度等有关的实际问题。

数轴上的动点问题通常涉及以下几个步骤:1. 建立数轴:根据题意,在数轴上标出已知的点,并确定动点的初始位置。

2. 确定动点运动规律:根据题意,确定动点的运动方式(如匀速、匀加速等)和运动规律(如时间、速度、加速度等)。

3. 计算动点位置:根据动点的运动规律,计算出动点在任意时刻的位置。

4. 求解问题:根据题目要求的问题,利用数轴上的距离、速度、加速度等概念进行求解。

下面是一个具体的数轴上的动点问题的例子:题目:在数轴上,一动点A从原点出发,沿数轴向右以每秒3个单位长度的速度移动,同时动点B也从原点出发,沿数轴向左以每秒2个单位长度的速度移动。

设动点A、B的运动时间为t秒。

(1)求出点A、B运动的路程;(2)求出点A、B运动的速度;(3)当A、B两点相距的路程不超过3个单位长度时,求t的取值范围。

解:(1)由题意可知,点A、B运动的路程分别为3t和2t。

(2)由题意可知,点A、B运动的速度分别为每秒3个单位长度和每秒2个单位长度。

(3)当A、B两点相距的路程不超过3个单位长度时,有两种情况:一是A、B两点相遇前相距的路程不超过3个单位长度;二是A、B两点相遇后继续运动一段时间,相距的路程不超过3个单位长度。

①当A、B两点相遇前相距的路程不超过3个单位长度时,有(3t - 2t) ≤ 3,解得t ≤ 3;②当A、B两点相遇后继续运动一段时间,相距的路程不超过3个单位长度时,有(3t + 2t) - 3 ≤ 3,解得t ≤ 2。

综上所述,当A、B两点相距的路程不超过3个单位长度时,t的取值范围为t ≤ 3或t ≤ 2。

(完整版)数轴上的动点问题

(完整版)数轴上的动点问题

数轴上的线段与动点问题一、与数轴上的动点问题相关的基本概念主要涉及以下几个概数轴上的动点问题离不开数轴上两点之间的距离.念:,=|a-b|1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d右边点表示的数=也即用右边的数减去左边的数的差.即数轴上两点间的距离.—左边点表示的数÷2.中点坐标=(a+b)2.两点中点公式:线段AB因此向右运动的速点在数轴上运动时,由于数轴向右的方向为正方向,3.这样在起点的基础上加上点的度看作正速度,而向左运动的速度看作负速度.b,向左运动运动路程就可以直接得到运动后点的坐标.即一个点表示的数为a.a+bb;向右运动b个单位后所表示的数为个单位后表示的数为a—点分析数轴上点的运动要结合图形进行分析,4.数轴是数形结合的产物,. 在数轴上运动形成的路径可看作数轴上线段的和差关系数轴上的动点问题基本解题思路和方法:二、t.、表示出题目中动点运动后的坐标(一般用含有时间的式子表示)1t的式子表示). 根据两点间的距离公式表示出题目中相关线段长度 2、(一般用含有时间 3、根据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程.4、解绝对值方程并根据实际问题验算结果.注:数轴上线段的动点问题方法类似AB两点对应数为-2、4,P为数轴上一动点,对应的数为x、已知数轴上1. 、 A B-2 -1 0 1 2 3 4(1) 若P为AB线段的三等分点,求P对应的数;(2)数轴上是否存在P,使P到A点、B点距离和为10,若存在,求出x;若不存在,说明理由.(3)若点A,点B和点P(点P在原点)同时向左运动,它们的速度分别为1,2,1个长度单位/分,则第几分钟时,P为AB的中点?2 ++|abb、|=0c满足(c2、已知:-5b)是最小的正整数,且,请回答问题a、=________ b=________,c,1)请直接写出a、b、c的值.a=________(、、、、,xPc所对应的点分别为AB为一动点,其对应的数为C)(2a,点b+5|. -1|+2|xx ≤2时),请化简式子:|x+1|-|x0≤点P在0到2之间运动时(即请问个单位长度的速度向左运动,点C分别以每秒1个单位和2(3)若点A、CA,之间的距离为1个单位长度?几秒时,、、个单位长度的速度向左1A(4)点A以每秒BC开始在数轴上运动,若点个单位长度的速度向右个单位长度和5和点运动,同时,点BC分别以每秒2之A 之间的距离表示为BC,点与点BCt运动,假设秒钟过后,若点B与点的变化而改变?若变化,tAB的值是否随着时间BC间的距离表示为AB.请问:-请说明理由;若不变,请求其值.2b满足,且a,A在数轴上对应的数为a,点B在数轴上对应的数为b2.如图,若点2 B0. 1)= A -+|a2|+(b的长;(1)求线段AB1的根,在数轴上是否存在2x+-x1=C(2)点在数轴上对应的数为x,且x是方程2 2. P 对应的数;若不存在,说明理由PB+=PC,若存在,求出点点P,使PA点左侧运动时,点在ANPB的中点为,当PM左侧的一点,)若(3P是APA的中点为,的值不变,其中只有一个结论正确,PM的值不变;②PN-+有两个结论:①PMPN.请判断正确结论,并求出其值3,=10cm(如图所示)=60cm,BCCB、,满足OA=20cm,AB如图,3、在射线OM上有三点A、CO 从点C出发在线段出发,沿OOM方向以1cm/s的速度匀速运动,点Q点P从点. 匀速运动,两点同时出发上向点OQ运动的速度;Q运动到的位置恰好是线段AB的三等分点,求点=2(1)当PAPB时,点、两点相距70cm3cm/s,Q运动的速度为经过多长时间P;Q2()若点AP?OB、.的值,求EABOPABP3()当点运动到线段上时,取和的中点F EF4。

数轴中的动点问题洋葱数学

数轴中的动点问题洋葱数学

数轴中的动点问题洋葱数学【最新版】目录1.数轴上的动点问题概述2.动点问题的应用3.动点问题的解决方法4.结论正文一、数轴上的动点问题概述在数学中,我们经常遇到一些问题涉及到数轴上的点,如点间距离、中点公式等。

然而,当这些点开始在数轴上运动时,就产生了所谓的动点问题。

动点问题是指在数轴上,已知一个或多个动点,要求解与这些动点相关的一些数学问题。

这类问题不仅在数学领域具有重要意义,而且在实际生活和科学研究中也有着广泛的应用。

二、动点问题的应用动点问题在实际生活中的应用非常广泛,例如在物理学、工程学、计算机科学等领域。

以下举几个具体的应用实例:1.物体在数轴上的运动:在物理学中,研究物体在数轴上的运动,可以更好地理解物体的速度、加速度等物理量。

2.数据压缩:在计算机科学中,数据压缩技术可以有效地减少数据存储空间。

通过对数据进行编码,可以将数据压缩成更小的空间,从而提高存储效率。

3.算法设计:在计算机科学中,算法设计是非常重要的。

动点问题可以为算法设计提供一些思路,如求解最短路径问题、最小生成树问题等。

三、动点问题的解决方法解决动点问题的方法有很多,主要包括以下几种:1.几何法:通过几何图形的性质和公式,可以求解一些简单的动点问题。

例如,求解两个动点之间的最短距离问题。

2.代数法:代数法是解决动点问题的主要方法。

通过设方程、解方程,可以求解复杂的动点问题。

例如,求解动点在数轴上的运动轨迹问题。

3.数形结合法:数形结合法是将几何方法和代数方法结合起来,综合运用求解动点问题。

例如,求解两个动点之间的最小生成树问题。

四、结论总之,动点问题是数学中的一个重要问题,涉及到多个领域的应用。

解决动点问题的方法有很多,需要根据具体问题选择合适的方法。

数轴上含速度的动点问题

数轴上含速度的动点问题

数轴上含速度的动点问题一、基本概念1. 动点- 想象数轴就像一条长长的马路,动点呢,就像是马路上一辆跑来跑去的小汽车。

这个点不是固定在一个位置的,它会按照一定的速度移动。

- 比如说,有个点A在数轴上,它以每秒2个单位长度的速度向右移动。

这就好比汽车以每小时60千米的速度沿着马路向前开一样。

2. 起始位置- 动点开始的地方很重要哦。

就像汽车出发的时候是从停车场出发的,动点也有它的起始点。

比如点B在数轴上的位置是 - 3,这就是它的起始位置。

3. 方向- 动点在数轴上移动是有方向的,要么向左,要么向右。

向左就像汽车倒车一样,在数轴上表示数值越来越小;向右就像汽车正常向前开,数值越来越大。

如果一个动点以速度v向左移动,那它的位置变化就是不断地减去vt(t是时间);如果向右移动,就是不断地加上vt。

二、常见问题类型及解法1. 相遇问题- 就好比两辆车在马路上开,最后碰到一起了。

假设有两个动点A和B,A从数轴上的1这个位置出发,速度是每秒3个单位长度向右移动;B从5这个位置出发,速度是每秒2个单位长度向左移动。

- 那我们怎么知道它们什么时候相遇呢?我们可以设经过t秒相遇。

A移动后的位置是1 + 3t,B移动后的位置是5 - 2t。

当它们相遇的时候,这两个位置是相等的,也就是1+3t = 5 - 2t。

- 然后我们就像解普通方程一样,把t求出来。

首先把含有t的项移到一边,得到3t+2t = 5 - 1,也就是5t = 4,解得t = 0.8秒。

2. 追及问题- 这就像一辆车去追另一辆车。

比如说有动点C在数轴上2的位置,速度是每秒1个单位长度向右移动;动点D在5的位置,速度是每秒3个单位长度向右移动。

- 我们想知道D什么时候能追上C。

设经过t秒D追上C。

C移动后的位置是2+t,D移动后的位置是5 + 3t。

当D追上C的时候,它们的位置相同,也就是2+t = 5+3t。

- 移项得到3t - t=2 - 5,2t=-3,解得t=-1.5秒。

数轴动点问题公式

数轴动点问题公式

数轴动点问题公式数轴上的动点问题是数学中常见的一个问题类型。

在这类问题中,通常给出一个点在数轴上随时间变化的位置,然后要求求解该点的位置函数或速度函数等相关函数。

下面将分别介绍数轴动点问题的一般公式及求解方法。

一、数轴动点问题的一般公式假设点P在数轴上以时间t为自变量随时间变化,点P在数轴上的位置用变量x表示,即x=x(t)。

点P在时间t0时刻的位置为x0,则在t时刻的位置可以表示为x=x(t)=f(t)+x0,其中f(t)是关于t的函数,表示点P的位移。

二、数轴动点问题的求解方法1.求解位置函数:当给出点P在不同时刻的位置时,可以通过对位置函数的求解来求得该点在任意时刻的位置。

(1)如果已知点P在时间t1时刻的位置为x1,时间t2时刻的位置为x2,可以通过构建方程的方法求解位置函数。

设点P在时间t时刻的位置为x,则有x=f(t)+x1,x=f(t2)+x2、将这两个方程联立,消去f(t),得到x=(x2-x1)/(t2-t1)*(t-t1)+x1、这样就得到了点P在时间t时刻的位置函数x=f(t)。

(2)如果已知点P在时间t1时刻的位置为x1,速度为v1,点P在时间t2时刻的位置为x2,速度为v2,还可以通过使用速度函数的方法求解位置函数。

设点P在时间t时刻的速度为v,则有v = g(t),其中g(t)是点P的速度函数。

由于速度可以理解为位移对时间的导数,即v = dx / dt。

由此,可以得到dx = g(t) * dt,对上式两边同时积分,即得到x = ∫g(t) * dt + C,其中C是常数。

由于点P在时间t1时刻的位置为x1,可以得到∫ g(t) * dt + C = x1,再由点P在时间t2时刻的位置为x2,得到∫ g(t) * dt + C = x2、通过这两个方程可以解出C,从而得到函数x = f(t)。

2.求解速度函数:当给出点P在不同时刻的位置时,可以通过求解速度函数来确定点P在任意时刻的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数轴上的动点问题
动点问题处理策略
1、数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。

即数轴上两点间的距离=右边点表示的数-左边点表示的数。

2、如何表示运动过程中的数:点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a,向左运动b个单位后表示的数为a-b;向右运动b个单位后所表示的数为a+b。

(简单说成左减右加)
3、分类讨论的思想:数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,注意多种情况种的分类讨论
4、绝对值策略:对于两个动点P,Q,若点P,Q的左右位置关系不明确或有多种情况,可用p,q 两数差的绝对值表示P,Q两点距离,从而避免分复杂分类讨论
(2)若PA=2PB,求P点表示的数
B的距离之和为13,求点P所表示的数。

(3)若点P到点A和点
类型二、绝对值的处理策略
例2、已知数轴上A,B两点表示的数分别为-8和20,点P,Q分别从A,B两点同时出发,P点运动速度为每秒3个单位,Q点运动速度为每秒1个单位,设运动时间为t秒
(1)点P向右运动,Q点向左运动,当t为何值时,P,Q两点之间距离为8?
(3)在(2)的条件下,另一动点M同时从O点出发,以每秒2个单位的速度向右运动,多少秒后,点M到点P和点Q的距离相等?
练、已知在数轴上有A,B两点,点A表示的数为-8,点B表示的数为4.动点P从数轴上点A出发,以每秒2个单位长度的速度运动,同时动点Q从点B出发,以每秒1个单位长度的速度,设运动时间为t秒。

(1)若点P向右运动,点Q向左运动,问多少秒后点P与Q相距2个单位长度?
(2)若动点P、Q都向右运动,当点P与点Q重合时,P、Q两点停止运动.
当t为何值时,2OP-OQ=4?
类型三、小狗来回跑的问题
例、数轴上,点A表示-3,点B表示12,A,B两点同时向负方向运动,速度分别为1个单位和4个单位每秒,同时另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C 立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.
练习、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?
类型四、运动中的变与不变
例3、数轴上A,B,C三点分别表示-1,1,5,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.
(1)请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
(2)是否存在一个常数m使得m•BC-2AB不随运动时间t的改变而改变.若存在,请求出m和这个不变化的值;若不存在,请说明理由.
练习、如图①,M、N、P是数轴上顺次三点,M、N之间的距离记为MN,M,P之间的距离记为MP.
(1)若MP=3MN,求x的值;
(2)在(1)的条件下,如图②,点M、N、P开始在数轴上运动,点M以每秒2个单位长度的速度向左运动,同时,点N和点P分别以每秒1个单位长度和4个单位长度的速度向右运动.设运动时间为t(t>0)秒,PN-MN的值是否随时间t的变化而改变?若改变,说明理由;若不变,求其值.
为定值?若存在求出k值,并求出这个定值。

若不(3)是否存在常数k,使k MN PN
存在,请说明理由。

类型五、中点问题
例、如图,数轴上的两个点A、B所对应的数分别为-8、7,点M、N对应的数分别是m、m+3.
(1)若AM=BN,请直接写出点M、N所对应的数;
(2)若AN=2BM,求m的值;
(3)设点P为AN的中点,点Q为BM的中点,问当线段MN在数轴上运动时,PQ的值是否发生改变?如果不变,求出PQ的值;如果改变,请说明理由.
练习1、如图,已知数轴上有三点A、B、C,它们对应的数分别为-40,-10,20,O为原点,动点P、Q分别从A、C同时出发,P向左运动,Q向右运动,P点的运动速度为8个单位长度/秒,Q点的运动速度为4个单位长度/秒,N为OP的中点,M为BQ的中点,在P、Q运动的过程中,PQ-2MN的值是否发生变化?若不变,求其值;若变化,请说明理由.
2、已知在数轴上有A,B两点,点A表示的数为8,点B在A点的左边,且AB=12.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.若M 为AQ的中点,N为BP的中点.当点P在线段AB上运动过程中,探索线段MN与线段PQ 的数量关系.
类型六、多状态分析
例、已知数轴上A,B两点对应的数分别为-20,13,点C对应的数为16,点D对应的数为-13.点A,B沿数轴同时出发相向匀速运动,点A的速度为6个单位/秒,点B的速度为2个单位/秒,点A,B从起始位置同时出发.当A点运动到点C时,迅速以原来的速度返回,到达出发点后,又折返向点C运动.B点运动至D点后停止运动,当B停止运动时点A也停止运动.求在此过程中,A,B两点同时到达的点在数轴上对应的数.
练、点A、B、C、D在数轴上的位置如图1所示,已知AB=3,BC=2,CD=4.
(1)若点C为原点,则点A表示的数是______
(2)若点A、B、C、D分别表示有理数a,b,c,d,则|a-c|+|d-b|-|a-d|=____________(3)如图2,点P、Q分别从A、D两点同时出发,点P沿线段AB以每秒1个单位长度的速度向右运动,到达B点后立即按原速折返;点Q沿线段CD以每秒2个单位长度的速度向左运动,到达C点后立即按原速折返.当P、Q中的某点回到出发点时,两点同时停止运动.
①当点停止运动时,求点P、Q之间的距离;
②设运动时间为t(单位:秒),则t为何值时,PQ=5?
类型七、辅助参数
例、数轴上两个点A,B所对应的数为-8,4,A、B两点各自以一定的速度同时运动,且A 点的运动速度为2个单位/秒.B点运动速度为1个单位每秒若A,B同时向数轴负方向运动,与此同时,C点从原点出发也向数轴负方向运动,且C点总在A、B两点之间,并在运动过程中始终有BC:CA=1:2
(BC表示C点到B点的距离),设运动t秒钟后,点A、B、C分别运动到A1、B1、C1,试
练习1、一次数学课上,小明同学给小刚同学出了一道数形结合的综合题,他是这样出的:如图,数轴上两个动点M,N开始时所表示的数分别为-10,5,M,N两点各自以一定的速度在数轴上运动,且M点的运动速度为2个单位长度/s.
(1)M,N两点同时出发相向而行,在原点处相遇,求N点的运动速度.
(2)M,N两点按上面的各自速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?
(3)M,N两点按上面的各自速度同时出发,向数轴负方向运动,与此同时,C点从原点出发沿同方向运动,且在运动过程中,始终有CN:CM=1:2.若干秒后,C点在-12处,求此时N点在数轴上的位置.
练习2、A点坐标为-20,C点坐标为40,一只电子蚂蚁甲从C点出发向左移动,速度为2个单位长度/秒.B为数轴上(线段AC之间)一动点,D为BC的中点.
(1)这只电子蚂蚁甲由D点走到AB的中点E处,需要几秒钟?
(2)在(1)的条件下,当电子蚂蚁甲从E点返回时,另一只蚂蚁乙同时从C点出发向左移动,速度为3个单位长度/秒,如果两只蚂蚁相遇于H点离B点5个单位长度,求B点对应的数.
综合练习、
1.如图,在数轴上每相邻两点间的距离为一个单位长度,点A、B、C、D对应的数分别是a、b、c、d,且d-2a=14
(1)那么a=______,b=______
(2)点A以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B以4个单位/秒的速度也沿着数轴的正方向运动.当点A到达D点处立刻返回,与点B在数轴的某点处相遇,求这个点对应的数;
(3)如果A、B两点以(2)中的速度同时向数轴的负方向运动,点C从图上的位置出发
也向数轴的负方向运动,且始终保持AB=2
3
AC.当点C运动到-6时,点A对应的数是多
少?。

相关文档
最新文档