保定市2015年高三第一次模拟考试理数资料
河北省保定市2015届高三第一次模拟考试数学(文)试题(扫描版)

2015年保定市第一次高考模拟考试文科数学答案一.选择题:A 卷: CDBCA ADABC BD B 卷:DCBCA AADBC BD 二.填空题:14. 64-9; 15. -2∞(,); 16. 4π.三.解答题:17. (本小题满分12分) 解:(1)22111()sin sin cos cos cos 222f x x x x x x x x ⎫=++-=+⎪⎝⎭111112cos2sin 2224264x x x π⎫⎛⎫=++=++⎪ ⎪⎝⎭⎝⎭.……………………………4分 ∴函数)(x f 的最大值为34.……………………………………………6分 (2)由题意111()sin 22642f A A π⎛⎫=++= ⎪⎝⎭,化简得 1sin(2).62A π+=()π,0∈A ,132(,)666A πππ∴+∈, ∴5266A ππ+=,∴.3π=A ……………………………8分1sin 4,521,44,101bc A bc b c b c b c ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯==+=∴===⋯⋯⋯⋯⋯⋯⋯=由又或分在ABC ∆中,根据余弦定理,得2222cos 13a b c bc A =+-=. 所以a =分 18. (本小题满分12分)解: (1)频率分布直方图如图。
……………………4分(2)1(2.547.5612.5617.5322.51)=10.2520⨯+⨯+⨯+⨯+⨯分钟………8分 (3)候车时间不少于15分钟的概率为311205+=………………………12分19. (本小题满分12分)解:(1)矩形ABCD 中,2,1,AB AD M ==为CD中点,AM BM ==,由勾股定理逆定理得BM AM ⊥; ………………2分 折起后,平面ADM ⊥平面ABCM ,且平面ADM平面ABCM AM =,BM ⊂平面ABCM ;得BM ⊥平面ADM , ……………………………………4分 又AD ⊂平面ADM ,所以BM AD ⊥; ……………………………………6分 (2)法一:在BDM 中,作//EF BM 交DM 于F . (1)中已证明BM ⊥平面ADM ,EF ∴⊥平面ADM ,EF 是三棱锥E MAD -的高. ………………………………………………8分11()32M ADE E MAD V V AD DM EF --==⨯⋅=12,2EF ∴=……………………………………………………………10分 DMB中BM =//EF BM ,EF ∴为中位线,E 为BD 的中点 ……………………………………12分法二:由题意知,AD DM ⊥由(1)知BM AD ⊥8,,sin 10111.13321212M ADE A DME DME DM BM M AD BDM AD DME ADM BM DM BD BM MDE BD V V S AD DE DE DE E BD --∆⋂=∴⊥∴⊥⋯⋯⋯⊥∴⊥==∴∠==∴===⨯⨯⨯=∴=⋯⋯⋯⋯⋯⋯⋯⋯又平面平面分由(1)知BM 平面分为的中点。
2015届高三第一次月考数学卷(理)

2015届高三第一次月考数学卷(理)2015届高三第一次月考数学卷(理)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求的.)1.设全集为,集合,则=().A.B.C.D.2.已知函数的定义域为,则函数的定义域为()A.B.C.D.3.已知函数是奇函数,当时,,且,则的值为()A.B.3C.9D.4.已知命题:关于的函数在[1,+)上是增函数,命题:关于的函数在R上为减函数,若且为真命题,则的取值范围是()A.B.C.D.5.若存在正数x使2x(x-m)1成立,则m的取值范围是()A.(-,+)B.(-2,+)C.(0,+)D.(-1,+)6.为了得到函数的图象,可以把函数的图象()A.向左平移3个单位长度B.向右平移3个单位长度C.向左平移1个单位长度D.向右平移1个单位长度7.今有一组实验数据如下表所示::1.993.04.05.16.121.54.047.51632.01则最佳体现这些数据关系的函数模型是()A.B.C.D.8.函数有极值的充要条件是()A.B.C.D.9.当时,函数的图象大致是()10.定义在R上的函数满足,且对任意都有,则不等式的解集为()A.(1,2)B.(0,1)C.D.(-1,1)二、填空题(本大题共5小题,每小题5分,共25分,把答案填在答题卷中相应的横线上.)11.函数的增区间是____________.12.已知命题p:||命题。
若是的必要而不充分条件,则实数的取值范围为________13.函数的零点个数为________14.已知函数若关于的方程有两个不同的实根,则实数的取值范围是________.15.给出下列四个命题①命题的否定是;②函数在上单调递减;③设是上的任意函数,则||是奇函数,+是偶函数;④定义在上的函数对于任意的都有,则为周期函数;⑤命题p:,;命题q:,。
则命题是真命题;其中真命题的序号是(把所有真命题的序号都填上)。
2015年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2015年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2} 2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.23.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.845.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.2【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84【考点】88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.12【考点】3T:函数的值.【专题】11:计算题;51:函数的性质及应用.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==2×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选:C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.10【考点】IR:两点间的距离公式.【专题】11:计算题;5B:直线与圆.【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】2:创新题型;51:函数的性质及应用;53:导数的综合应用.【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.【考点】96:平行向量(共线).【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)=,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z 最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a= 3.【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.【解答】解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),①令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.②①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=﹣.【考点】8H:数列递推式.【专题】54:等差数列与等比数列.﹣S n=a n+1可知S n+1﹣S n=S n+1S n,两边同时除以S n+1S n可知﹣【分析】通过S n+1=1,进而可知数列{}是以首项、公差均为﹣1的等差数列,计算即得结论.=S n+1S n,【解答】解:∵a n+1﹣S n=S n+1S n,∴S n+1∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【考点】HP:正弦定理;HT:三角形中的几何计算.【专题】58:解三角形.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.【考点】BA:茎叶图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(2)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【考点】MI:直线与平面所成的角.【专题】5G:空间角;5H:空间向量及应用.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF 与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】2:创新题型;5E:圆锥曲线中的最值与范围问题.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=,即l的方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】2:创新题型;52:导数的概念及应用.【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2c osθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。
河北省保定市第一中学2015届高三上学期模拟演练(六)即期中考试数学(文)试题(扫描版,文档答案)

数学(文)答案一、选择题(每小题5分)1~5 CAABC 6~10 BBCCD 11~12 DB二、填空题(每小题5分,共20分)13、(0,1)1415、5- 16、①②③三、解答题17.(10分)解:(1)设数列{}n a 的公差为d 根据题意得11251514152252a d a d +=⎧⎪⎨⨯+=⎪⎩………………2分 解得:112a d =⎧⎨=⎩……………………4分 21n a n ∴=- …………………………5分(2)由(1)可得2122n n b n -=+352122122222322n n T n -∴=+⨯++⨯++⨯+++…………6分 3521(2222)(2462)n n -=+++++++++…………8分 22(41)3n n n =-++…………10分 18.(满分12分)解:(1)2()cos 2cos f x x x x =+(x R ∈)2cos 21x x =++2sin(2)16x π=++)…………4分 22T ππ∴==…………6分 (2)由1()23f α=12sin()163πα++= 1sin()63πα∴+=-…………8分 0απ≤≤7666ππαπ∴≤+≤ 又sin()06πα+<…………10分cos()6πα∴+==…………12分 19.(满分12分)解:(1)由正弦定理得sin sin a b A B=…………2分解得AC =…………4分(2)设AC b =AB c =1sin 2y bc A ∴==…………6分 由余弦定理得222cos 12b c bc A +-=即2212b c bc +-=………………8分又222b c bc +≥(当且仅当b=c 时等号成立)22b c bc bc ∴+-≥12bc ∴≤…………10分y ∴=≤…………11分max y ∴=…………12分20.(满分12分)证明:(1)连接1A B 交1AB 于O ,连接OD ,在1BAC ∆中,O 为1BA 中点,D 为BC 中点1//OD AC ∴…………3分1OD AB D ⊆面11//AC AB D ∴平面…………6分(2)解法一:设1A 点到平面1AB D 的距离为h在1ADB ∆中,1AB == sin 603AD AB =⋅=1DB ==1ADB ∆为Rt ∆112ADB S ∆==…………8分 112222AB A S ∆=⨯⨯= 过D 作DH AB ⊥于H又111A B C ABC -为直棱柱1DH BB ∴⊥11DH A B BA ∴⊥面 且3sin 30DH AD =⋅=…………10分 1111A AB D D AA B V V --=即11233h =解得h =分 解法二:由①可知11//AC AB D 平面∴点1A 到平面1AB D 的距离等于点C 到平面1AB D 的距离…………8分 1AD B ∆为Rt ∆1ADB S ∆∴=12ADC ABC S S ∆∆==分 设点C 到面1AB D 的距离为h11C AB D B ADC V V --=即11233h =⨯解得h =分 21.(满分12分)解:(1)根据题意得2221c c aa b c =⎧⎪⎪=⎨⎪⎪=+⎩解得11a b c ⎧=⎪=⎨⎪=⎩…………2分 ∴所求椭圆方程为2212x y +=…………4分 (2)解:设1122(,),(,)A x y B x y 连立方程组2212x y y x m ⎧+=⎪⎨⎪=+⎩化简得:2234220x mx m ++-=…………6分有两个不同的交点22(4)12(22)0m m ∴∆=-->即m <<且0m ≠ 由根与系数的关系得21212422,33m m x x x x -+== 设A 、B 中点为C ,C 点横坐标122,233C C C x x m m x y x m +==-=+=- 2(,)33m m ∴-∴线段AB 垂直平分线方程为2()33m m y x -=-+∴T 点坐标为(,0)3m-T 到AB的距离d 分由弦长公式得AB ==……………………10分12TABC S ∆∴===≤ 当232m =即m=(∈时等号成立max TAB S ∆∴=…………12分22.(满分12分)解:(1)()f x 过点(1,1)P -1ln1m ∴-=-1m ∴=…………1分()ln f x x x ∴=- 1'()1f x x =-'(1)0f =…………2分∴过点(1,1)P -的切线方程为1y =-…………3分(2)()0f x ≤恒成立,即ln 0x mx -≤恒成立 ln mx x ∴≥又()f x 定义域为(0,)+∞ln x m x∴≥恒成立…………4分 设ln ()x g x x= 21ln '()x g x x-= ∴当x=e 时,'()0g e =当0x e <<时,'()0,()g x g x >为单调增函数当x e >时,'()0,()g x g x <为单调减函数max 1()()g x g e e∴==…………6分 ∴当1m e≥时,()0f x ≤恒成立…………7分 (3)11'()mx f x m x x-=-= ①当0m ≤时,'()0f x > ()f x ∴在(0,)+∞为单增函数 在[1,]x e ∈上,max ()()1f x f e me ==-…………8分 ②当11m e ≤≤时,即11e m≤≤时 1(0,)x m∈时,'()0f x >,()f x 为单增函数 1(,)x m∈+∞时,'()0f x <,()f x 为单减函数 [1,]x e ∴∈上max 1()()ln 1f x f m m==--…………9分 ③当1m >时,101,()f x m <<在1(,)m+∞为单减函数 [1,]x e ∴∈上,max ()(1)f x f m ==-…………10分 ④当10m e <<时,即1e m >时,()f x 在1(0,)m为单增函数 [1,]x e ∴∈时,max ()()1f x f e me ==-…………11分 综上所述当1m e<时,max ()()1f x f e me ==- 当11m e ≤≤时,max 1()()ln 1f x f m m ==-- 当1m >时, max ()(1)f x f m ==-…………12分。
河北省保定市第一中学2015届高三上学期模拟演练(七)数学(文)试卷word版含答案

2015年高三模拟演练(七)文科数学第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设{|{|ln(1)}A x y B x y x ====+,则AB =( )A .{|1}x x >-B .{|1}x x ≤C .{|11}x x -<≤D .φ 2、函数2sin(2)14y x π=-+的最大值为( )A .-1B .1C .2D .3 3、已知1:1,:1p x q x><,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也必要条件 4、若正实数,x y 满足2x y +=,则1xy的最小值为( ) A .1 B .2 C .3 D .45、已知ABC ∆中,2,3AB AC ==,且ABC ∆的面积为32,则BAC ∠=( ) A .150 B .120 C .60或120 D .30或150 6、已知2sin 3cos 0θθ+=,则tan 2θ=( )A .59 B .125 C .95 D .5127、已知(,)M x y为由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩所确定的平面区域上的动点,若点A ,则z OM OA =⋅的最大值为( )A .3B ..4 D .8、定义在R 上的偶函数()f x 满足:对12,(0,)x x ∀∈+∞,且12x x ≠,都有1212()[()()]0x x f x f x --<,则( )A .()()()321f f f <-<B .()()()123f f f <-<C .()()()213f f f -<<D .()()()312f f f <<-9、在ABC ∆中,若OA OB OB OC OC OA ⋅=⋅=⋅,且2OA OB OC ===,则ABC ∆的周长为( )A ...10、若变量,x y 满足1ln 0yx -=,则y 关于x 的函数图象大致是( )11、设点P 是函数1)y x =+图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为θ,则θ的取值范围是( ) A .2,3πθπ⎛⎤∈⎥⎝⎦ B .3,24ππθ⎛⎤∈ ⎥⎝⎦ C .2,23ππθ⎛⎤∈ ⎥⎝⎦ D .,32ππθ⎛⎤∈ ⎥⎝⎦12、已知n S 是等差数列{}n a n N *∈的前n 项和,且675S S S >>,给出下列五个命题: ①0d <;②110S >;③120S <;④数列{}n S 中最大项为11S ;⑤67a a >, 其中正确命题的个数( )A .5B .4C .3D .1第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
河北省保定市高三理综(化学部分)第一次模拟考试试题(含解析)

河北省保定市2015届高三第一次模拟考试理综化学试题(扫描版)2015年4月高三模拟理综化学参考答案7. 【命题立意】考查化学基本用语和元素化合物的性质。
【答案】B【解析】碘单质遇淀粉溶液变蓝色,A项错误;CS2电子式为,C项错误;醋酸晶体为分子晶体,不含有H+,D项错误。
8.【命题立意】考查除杂、氧化还原反应和离子反应的相关知识。
【答案】B【解析】氢氧化钠与碳酸氢根离子反应的同时,也能与铵根离子反应,A项错误;氯化氢能与碳酸氢钠溶液反应生成二氧化碳气体,不能得到纯净的氯气,B项正确;氯化氢溶液和四氧化三铁反应生成氯化铁、氯化亚铁和水,碘化氢溶液与四氧化三铁发生氧化还原反应生成碘单质和碘化亚铁,C项错误;若固体中含有硫离子或硫酸氢根离子与足量的硝酸反应加热,产生二氧化硫气体,能使澄清的石灰水变浑浊,D项错误。
【易错警示】本题容易错选B项,看到碳酸根离子或是碳酸氢根离子就会联想到亚硫酸根离子或是亚硫酸氢根离子,但是亚硫酸根离子或是亚硫酸氢根离子与浓硝酸发生氧化还原反应被氧化为硫酸,不会产生能使澄清石灰水变浑浊的气体,然后就认为D项正确。
此处容易忽视如果是硫离子或是硫氢根离子,能与浓硝酸在加热的条件下发生反应生成二氧化硫气体,二氧化硫气体能使澄清石灰水变浑浊。
9. 【命题立意】考查元素的推断、盐的水解、氢键的相关知识以及水的电离知识。
【答案】D【解析】通过题目信息可推断出气体X为氨气,a溶液为氯化氢溶液,当氨气易液化是因为氨气分子间可以形成氢键,,A项错误;W溶液中是四种离子为氯离子、氢氧根离子、氢离子和铵根离子,这四种离子两两组合只能形成氯化铵一种离子化合物,C项错误;a溶液中由水电离出的氢离子浓度等于氢氧根离子的浓度,a溶液中由水出来的的氢离子浓度为10-12mol/L,D项正确。
10.【命题立意】考查难溶电解质的沉淀溶解平衡和难溶电解质的转化。
【答案】C【解析】在含有碳酸镁固体的溶液中,镁离子浓度不一定等于碳酸根离子,A项错误;碳酸镁的溶解度大于氢氧化镁的溶解度,除去粗盐中含有的氯化镁杂质,最佳除杂试剂为氢氧化钠溶液,B项错误;D项中用足量石灰水处理,应该得到的氢氧化镁沉淀,正确。
(新课标Ⅱ-2)2015届高三数学上学期第一次月考试题 理

(新课标Ⅱ-2)2015届高三数学上学期第一次月考试题理考试说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟1.答卷前,考生务必将自己的某某、某某号填写在本试卷和答题卡相应位置上.2.做答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效.3.做答第Ⅱ卷时,请按题号顺序在各题目规定的答题区域内做答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持答题卡面清洁,不得折叠、不要弄破、弄皱,不准用涂改液、修正带、刮纸刀.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z满足izi31)3(+-=-(其中i是虚数单位),则z的实部为()(A)6 (B)1 (C)1-(D)6-2.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加视力测试,则一班和二班分别被抽取的人数是()(A)8,8 (B)9,7 (C)10,6 (D)12,43.一个简单几何体的正视图、侧视图如图所示,则其俯视图可能为:①长、宽不相等的长方形;②正方形;③圆;④椭圆.其中正确的是()(A)①②(B)②③(C)③④(D)①④4.函数xxxf1ln)(-=的零点所在区间是()(A)1(0,)2(B)1(,1)2(C)(1,2)(D)(2,3)5.执行如图所示的程序框图,若输入n 的值为8,则输出S 的值为( ) (A )4 (B )8 (C )10 (D )126.“n =10”是 “3nx x ”的展开式中有常数项的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件7.双曲线22221x y a b -=的渐近线与圆22(2)1x y +-=相切,则双曲线的离心率为( ) (A 2 (B 3(C )2 (D )38.已知函数①x x y cos sin +=,②x x y cos sin 22=,则下列结论正确的是( )(A )两个函数的图象均关于点(,0)4π-成中心对称(B )两个函数的图象均关于直线4x π=-成轴对称(C )两个函数在区间(,)44ππ-上都是单调递增函数(D )两个函数的最小正周期相同9.设c b ,表示两条直线,βα,表示两个平面,则下列命题是真命题的是( )10.已知等比数列{}n a 的前10项的积为32,则以下说法中正确的个数是( )①数列{}n a 的各项均为正数; ②数列{}n a 2③数列{}n a 的公比必是正数; ④数列{}n a 中的首项和公比中必有一个大于1.(A )1个 (B )2个 (C )3个 (D )4个11.已知函数2)(x e x f x -=,b ax x g +=)((0>a ),若对]2,0[1∈∀x ,]2,0[2∈∃x ,使得)()(21x g x f =,则实数a ,b 的取值X 围是( )(A )2502-≤<e a ,1≥b (B )2502-≤<e a ,1≤b (C )252-≥e a ,1≥b (D )252-≥e a ,1≤b 12.已知中心在原点的椭圆与双曲线有公共焦点,且左右焦点分别为12,F F ,两条曲线在第一象限的交点记为P ,12PF F ∆是以1PF 为底边的等腰三角形.若110PF =,椭圆与双曲线的离心率分别为12,e e ,则12e e ⋅的取值X 围是( )(A ))51,0( (B ))31,51( (C )1(,)3+∞ (D )1(,)5+∞第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答,第22题~24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.设n 为正整数,n n f 131211)(++++= ,经计算得25)8(,2)4(,23)2(>>=f f f ,27)32(,3)16(>>f f ,观察上述结果,对任意正整数n ,可推测出一般结论是____________14.设,,是单位向量,且+=,则向量,的夹角等于____________15.已知抛物线)0(2:2>=ppxyC的准线为l,过点)0,1(M且斜率为3的直线与l相交于点A,与C的一个交点为B,若MBAM=,则p等于____________16.正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为1,此时四面体ABCD 外接球表面积为____________三、解答题:本大题共70分,解答应写出必要的文字说明,证明过程或演算步骤.(17)(本小题满分12分)函数)2||,0,0)(sin()(πϕωϕω<>>+=AxAxf的一段图象如图所示.(1)求函数)(xf的解析式;(2)求函数)(xf的单调减区间,并求出)(xf的最大值及取到最大值时x的集合;(19)(本小题满分12分)如图所示,在四棱锥ABCD P -中,四边形ABCD 为菱形,PAD ∆为等边三角形,平面⊥PAD 平面ABCD ,且2,60=︒=∠AB DAB ,E 为AD 的中点. (1)求证:PB AD ⊥;(2)在棱AB 上是否存在点F ,使EF 与平面PDC 成角正弦值为515,若存在,确定线段AF 的长度,不存在,请说明理由.(20)(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,过焦点且垂直于长轴的直线被椭圆截得的弦长为1,过点(3,0)M 的直线与椭圆C 相交于两点,A B (1)求椭圆C 的方程;(2)设P 为椭圆上一点,且满足OA OB tOP +=(O 为坐标原点),当3||<AB 时,某某数t 的取值X 围.请考生在题(22)(23)(24)中任选一题作答,如果多做,则按所做的的第一题计分.做题时用2B 铅笔在答题卡上把所选题目对应的题号涂黑. (22)(本小题满分10分)选修4—1:几何证明选讲 如图,AB 是⊙O 的直径,弦CA BD ,的延长线相交于点E ,EF 垂直BA 的延长线于点F . 求证:(1)2CE CE AC DE BE =⋅+⋅; (2)B C F E ,,,四点共圆.(23)(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧-=--=t y tx 322(t为参数),直线l 与曲线1)2(:22=--x y C 交于B A ,两点(1)求||AB 的长;(2)在以O 为极点,x 轴的正半轴为极轴建立极坐标系,设点P 的极坐标为)43,22(π,求点P 到线段AB 中点M 的距离.(24)(本小题满分10分)选修4—5:不等式选讲 已知函数)|5||1(|log )(2a x x x f --+-= (1)当5=a 时,求函数)(x f 的定义域;(2)当函数)(x f 的值域为R 时,某某数a 的取值X 围.参考答案 一、选择题1A 2B 3D4C 5 B6A7C8C 9D10A 11D12C二、填空题13、22)2(+≥n f n 14、3π15、2 16、313π三、解答题 17.(本小题满分12分)解(1)由图知πππ4154443,3=-==T A , ∴π5=T ,∴52=ω,∴)52sin(3)(ϕ+=x x f …… 2分∵)(x f 的图象过点)3,4(-π,∴)58sin(33ϕπ+=-,∴Z k k ∈-=+,2258ππϕπ,∴Zk k ∈-=,10212ππϕ, ∵2||πϕ<,∴10πϕ-=,∴)1052sin(3)(π-=x x f …… 6分(2)由Z k k x k ∈+≤-≤+,232105222πππππ解得函数)(x f 的单调减区间为Z k k k ∈++],45,235[ππππ,…… 9分函数)(x f 的最大值为3,取到最大值时x 的集合为},235|{Z k k x x ∈+=ππ.…… 12分18(本小题满分12分)解:(1)设得分为60分为事件A …… 1分得分为60分,12道题必须全做对.在其余的3道题中,有1道题答对的概率为12,有1道题答对的概率为13,还有1道答对的概率为14,…… 4分所以得分为60分的概率为241413121)(=⋅⋅=A P …… 5分(2)依题意,该考生得分ξ的取值X 围为{45,50,55,60} …… 6分解(1)证明:连接PE ,EB ,因为平面⊥PAD 平面ABCD ,PAD ∆为等边三角形,E 为AD 的中点,所以⊥PE 平面ABCD ,AD PE ⊥…… 2分因为四边形ABCD 为菱形,且︒=∠60DAB ,E 为AD 的中点,所以AD BE ⊥…… 4分E BE PE = ,所以⊥AD 面PBE ,所以PB AD ⊥…… 6分(2)以E 为原点,EP EB EA ,,分别为z y x ,,轴建立空间直角坐标系…… 7分)3,0,0(),0,0,1(),0,3,2(),0,3,0(),0,0,1(P D C B A --因为点F 在棱AB 上,设)0),1(3,(x x F -,面PDC 法向量),,(c b a u =03=+=⋅c a DP u ,03=+-=⋅b a DC u所以)1,1,3(-=u ,…… 9分515)1(353|,cos |22=-+=><x x EF u ,解得21=x ,…… 11分所以存在点F ,1=AF …… 12分 20(本小题满分12分)解(1) 由已知3c e a ==,所以2234c a =,所以22224,3a b c b ==所以222214x y b b += …… 1分又由过焦点且垂直于长轴的直线被椭圆截得的弦长为221b a =所以1b = …… 3分所以2214x y += …… 4分(2)设1122(,),(,),(,)A x yB x y P x y设:(3)AB y k x =-与椭圆联立得22(3)14y k x x y =-⎧⎪⎨+=⎪⎩整理得2222(14)243640k x k x k +-+-= 24222416(91)(14)0k k k ∆=--+>得215k <2212122224364,1414k k x x x x k k -+=⋅=++ …… 6分 1212(,)(,)OA OB x x y y t x y +=++=121()x x x t=+=2224(14)k t k + []12122116()()6(14)k y y y k x x k t t t k -=+=+-=+由点P 在椭圆上得22222(24)(14)k t k ++22221444(14)k t k =+22236(14)k t k =+ …… 8分又由12AB x =-<, 所以2212(1)()3k x x +-<221212(1)()43k x x x x ⎡⎤++-<⎣⎦21(本小题满分12分)解:(1)222)1(1)1(21)(-+=-+='x x x x x x ϕ…… 2分1,0≠>x x ,0)(>'∴x ϕ,增区间为(0,1)和(1,+∞)…… 4分(2),1)(,1)(00x x f x x f ='∴=' 切线方程为)(1ln 000x x x x y -=-①……6分设)(x g y l =与切于点),,(11x e x 010ln ,1,)(1x x x e e x g x x -=∴=∴=' ,l ∴方程0001ln 1x x x x x y ++=,②…… 8分由①②可得11ln ,1ln 1ln 0000000-+=∴+=-x x x x x x x ,由(1)知,11ln )(-+-=x x x x ϕ在区间),1(+∞上单调递增,又01211ln )(<--=-+-=e e e e e ϕ,01311ln )(222222>--=-+-=e e e e e e ϕ,由零点存在性定理,知方程0)(=x ϕ必在区间),(2e e 上有唯一的根,这个根就是0x,故在区间),1(+∞上存在唯一的0x ,使得直线l 与曲线)(x g y =相切…… 12分22(本小题满分10分)word 11 / 11 证明:(1),~CDE ABE ∆∆ DE AE CE BE ::=∴,∴2CE CE AC DE BE =⋅+⋅…… 5分 (2) AB 是⊙O 的直径,所以︒=∠90ECB ,BE CD 21=∴, BF EF ⊥,BE FD 21=∴,∴B C F E ,,,四点与点D 等距,∴B C F E ,,,四点共圆…… 10分23(本小题满分10分)解(1)直线l 的参数方程化为标准型⎪⎪⎩⎪⎪⎨⎧+=+-=t y t x 232212(t 为参数)…… 2分 代入曲线C 方程得01042=-+t t设B A ,对应的参数分别为21,t t ,则421-=+t t ,1021-=t t ,所以142||||21=-=t t AB ……5分(2)由极坐标与直角坐标互化公式得P 直角坐标)2,2(-, …… 6分所以点P 在直线l , …… 7分 中点M 对应参数为2221-=+t t ,由参数t 几何意义,所以点P 到线段AB 中点M 的距离2||=PM ……10分。
2015届高三数学理科统计概率及随机变量分布列大题训练(16题)(含答案)

2015届高三数学理科统计概率及随机变量分布列大题训练(16题)(含答案)1.一个口袋中有2个白球和$n$个红球($n\geq2$,且$n\in\mathbb{N}^*$),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖。
1)试用含$n$的代数式表示一次摸球中奖的概率$p$;2)若$n=3$,求三次摸球恰有一次中奖的概率;3)记三次摸球恰有一次中奖的概率为$f(p)$,当$n$为何值时,$f(p)$取最大值。
2.一次考试中,5名同学的语文、英语成绩如下表所示:学生 | S1.| S2.| S3.| S4.| S5.|语文 | 87.| 90.| 91.| 92.| 95.|英语 | 86.| 89.| 89.| 92.| 94.|1)根据表中数据,求英语分$y$对语文分$x$的线性回归方程;2)要从4名语文成绩在90分(含90分)以上的同学中选出2名参加一项活动,以$\xi$表示选中的同学的英语成绩高于90分的人数,求随机变量$\xi$的分布列及数学期望$E\xi$。
3.某中学举行了一次“环保知识竞赛”活动。
为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为$n$)进行统计。
按照$[50,60)$,$[60,70)$,$[70,80)$,$[80,90)$,$[90,100]$的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在$[50,60)$,$[90,100]$的数据)。
1)求样本容量$n$和频率分布直方图中$x$,$y$的值;2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设$\xi$表示所抽取的3名同学中得分在$[80,90)$的学生个数,求$\xi$的分布列及其数学期望。
4.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年保定市第一次高考模拟考试理科数学答案一.选择题:A 卷: CDBCA ADABC BDB 卷:DCBCA AADBC BD二.填空题:14.163- ; 15.=12k=k 16.-1 16题解析:该题的设计是从不同的层面考查学生的思维能力.方法1:设M 中的5个元素分别为12345,,,,a a a a a ,则1231125(1)(1)(1)1m m m a a a +++=+++-,注意到M 中的元素有1- ,所以,所求结果为1-,这就是该题要考查的思维能力,层次较高,其中体现着二项式定理的推导思想和技巧,如果命题时把1-去掉,就变成蛮算的题目.而0的设置为思维一般的同学也能找到下手的机会,如方法2:考虑到0与任何实数的积都为0,所以上述集合只相当于有四个元素的情况,这样非空子集只有15个,因此也不难求得结果;方法3:按31个子集,一个一个硬算。
苏学良供三.解答题:17. (本小题满分12分)解:(1)22111()sin sin cos cos cos 22222f x x x x x x x x ⎛⎫=++-=+ ⎪⎝⎭111112cos2sin 22224264x x x π⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭.……………………………4分 ∴函数的最大值为34.……………………………………………6分 (2)由题意111()sin 22642f A A π⎛⎫=++= ⎪⎝⎭,化简得 ,, ∴, ∴……………………………8分 )(x f 1sin(2).62A π+=()π,0∈A 132(,)666A πππ∴+∈5266A ππ+=.3π=A1sin 4,521,44,101bc A bc b c b c b c ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯==+=∴===⋯⋯⋯⋯⋯⋯⋯=由又或分 在中,根据余弦定理,得2222cos 13a b c bc A =+-=.所以=分18. (本小题满分12分)解: (1)设事件A =“小明所取的3道题至少有1道主观题”, 则有A =“小明所取的3道题都是客观题”.因为P(A )=C 36C 310=16,所以P(A)=1-P(A )=56..........................4分 (2)X 所有的可能取值为0,1,2,3. P(X =0)=⎝ ⎛⎭⎪⎫252·15=4125; P(X =1)=C 12·⎝ ⎛⎭⎪⎫351·⎝ ⎛⎭⎪⎫251·15+⎝ ⎛⎭⎪⎫252·45=28125; P(X =2)=⎝ ⎛⎭⎪⎫352·15+C 12⎝ ⎛⎭⎪⎫351·⎝ ⎛⎭⎪⎫251·45=57125; P(X =3)=⎝ ⎛⎭⎪⎫352·45=36125.............................................9分 X 的分布列为:所以E(X)=0×4125+1×28125+2×57125+3×36125=2................ .........12分19. (本小题满分12分)解:(1)矩形ABCD 中,2,1,AB AD M ==为ABC ∆aCD中点,AM BM ==由勾股定理逆定理得BM AM ⊥; ………………2分折起后,平面平面,且平面ADM 平面AM =,BM ⊂平面; 得BM ⊥平面ADM ,又AD ⊂平面ADM ,所以; ………………………………4分(2)法一:在BDM 中,作//EF BM 交DM 于F .(1)中已证明BM ⊥平面ADM ,EF ∴⊥平面ADM ,EF 是三棱锥E MAD -的高. ………………………………………………6分11()32M ADE E MAD V V AD DM EF --==⨯⋅=12,EF ∴=DMB中BM =//EF BM ,EF ∴为中位线,E 为BD 的中点 ……………………………………8分 法二:由题意知,AD DM ⊥由(1)知,,sin 6111.1332128M ADE A DME DME DM BM M AD BDM AD DMEADM BM DM BD BM MDE BD V V S AD DE DE DE E BD --∆⋂=∴⊥∴⊥⊥∴⊥==∴∠==∴===⨯⨯⨯=∴=⋯⋯⋯⋯⋯⋯⋯⋯又平面平面由(1)知BM 平面分为的中点。
分法三:分别取AM ,AB 的中点O 和N ,则ON BM .(1)中已证明BM ⊥平面ADM ,∴ AD ON M ⊥平面,A ,ON M ON OD∴⊥⊥ AD DM =,∴ DO AM ⊥. 建立空间直角坐标系如图ADM ⊥ABCM ABCM ABCM BM AD ⊥BM AD ⊥则(0,0,(222D A B-()22DB ∴=--………………6分 点是线段上的一动点,(,),()DE DBE λ∴==-∴(,)2222AE λλ∴=--- 显然(0,1,0)n =是平面ADM 的一个法向量 ∴点E 到平面ADM的距离=2AE nd n λ•=111V 1133212M ADE ADM S d -∴=•=⨯⨯⨯=,12λ∴= 所以E 为BD 的中点。
……………………………………8分E DB11113(0,0,((22222(,0,),(n (,,)n0,n 0.x 0,0,x1,1, 1.2222n =1,1-110A D M C DM MC x y z CDM DM MC z x y y z DM -∴=--=-=•=•=--=-+====-⋯⋯⋯⋯⋯⋯⋯()设是平面的法向量,则即令则向量(,)分易知平面的法向量为212n =0,103cos n ,n --123=A DM C (,)。
则所以二面角分 20. (本小题满分12分)解:(1)由椭圆短轴长为2得1b =,又 ==∴=2e a 所求椭圆方程为2212x y +=. ...................3分 (2)假设在线段OF 上存在点()(),001M m m ≤≤,使得+⋅-=()()0MP MQ MP MQ 成立,即=或22||-||0||=||MP MQ MP MQ①当l ⊥x 轴时,显然线段OF 上的点都满足条件,此时01m ≤≤...... ..........5分 ②当l 与x 轴重合时,显然只有原点满足条件,此时m=0............. ..........6分 ③法1:当l 的斜率存在且不为零时,设直线l 的方程为()()10y k x k =-≠.由 ()2222,1,x y y k x ⎧+=⎪⎨=-⎪⎩ 可得()2222124220k x k x k +-+-=. 22121222422,1212k k x x x x k k -+==++........................................8分 ()()1122,,,MP x m y MQ x m y =-=-其中210x x -≠()()121221212,,0x x m y y x x y y ∴+-+--=12211221(2)()()()0x x m x x y y y y ⇔+--++-=1212(2)()0x x m k y y ⇔+-++=2222244(2)(2)01212k k m k k k ⇔-+-=++ ()222240k k m ⇔-+=()22210=1122k k m k k ⇔=≠++. ∴102m <<. ∴综上所述:①当l ⊥x 轴时,存在01m ≤≤适合题意②当l 与x 轴重合时, 存在m 0=适合题意③当l 的斜率存在且不为零时存在102m <<适合题意...................12分 法2:+⋅-=()()0MP MQ MP MQ ⇔=||||MP MQ 因为2212122222422,,,12121212k k k k x x y y PQ k k k k+=∴+=--++++即线段的中点为() 2222221212121m==1122+k k PQ y x k k kk k k ∴+=--+++线段的中垂线方程为()令y=0得 ∴102m <<. ∴综上所述:①当l ⊥x 轴时,存在01m ≤≤适合题意②当l 与x 轴重合时, 存在m 0=适合题意③当l 的斜率存在且不为零时存在102m <<适合题意...................12分21. (本小题满分12分)解:(1)∵()'e x f x a =-,……………………………………1分 ①当0a ≤时,()'0f x >,函数()f x 在R 上单调递增;………2分 ②当0a >时,由()'e 0x f x a =-=得ln x a =,∴(),ln x a ∈-∞时,()'0f x <,()f x 单调递减;()ln ,x a ∈+∞时,()'0f x >,()f x 单调递增.综上,当0a ≤时,函数()f x 的单调递增区间为(,)-∞+∞;当0a >时,函数()f x 的单调递增区间为()ln ,a +∞,单调递减区间为(),ln a -∞.………5分(2)由(1)知,当0a <时,函数()f x 在R 上单调递增且,x →-∞时()f x →-∞, ∴()f x b ≥不可能恒成立; ………………………………………………………………6分 当0a =时,此时0ab =; ………………………………………………………7分当0a >时,由函数()f x b ≥对任意x ∈R 都成立,得()min b f x ≤,∵()()min ln 2ln f x f a a a a ==-,∴2ln b a a a -≤ ………………………………9分 ∴222ln ab a a a -≤,设()()222ln 0g a a a a a =->,∴ ()()'42ln 32ln g a a a a a a a a =-+=-, 由于0a >,令()'0g a =,得3ln 2a =,32e a =, 当320,e a ∈⎛⎫ ⎪⎝⎭时,()'0g a >,()g a 单调递增;32e ,a ∈+∞⎛⎫ ⎪⎝⎭时,()0g a '<,()g a 单调递减. ∴()3max e 2g a =,即33221e ,e 2a b ==时,ab 的最大值为3e 2………… 12分22. (本小题满分10分)选修4-1:平面几何选讲解:(1)证明:连接AB ,∵AC 是⊙O 1的切线,∴∠BAC=∠D,……………………………1分又∵∠BAC=∠E,∴∠D=∠E,∴AD∥EC.………………………4分(2)∵PA 是⊙O 1的切线,PD 是⊙O 1的割线,∴PA 2=PB•PD,∴62=PB•(PB+9)∴PB=3,………………………………………6分在⊙O 2中由相交弦定理,得PA•PC=BP•PE,∴PE=4,………………………………………8分∵AD 是⊙O 2的切线,DE 是⊙O 2的割线,∴AD 2=DB•DE=9×16,∴AD=12…………………………………………10分23.(本小题满分10分)选修4-4:坐标系与参数方程解:(1).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x ……………………………………………3分 (2)直线l 的参数方程:⎩⎪⎨⎪⎧ x =4+t cos α,y =2+t sin α(t 为参数), 代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧ Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,……………………………………………………………6分∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4,…………………8分 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4,∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].…………………………………………………10分24. (本小题满分10分)选修4-5:不等式选讲解:(1)当x 时2x+1-(x-4)=x+5>0得x >-5,所以x成立 当时, 2x +1+x -4=3x -3>0得x >1,所以1<x <4成立当时-x -5>0得x <-5所以x <-5成立,……………………………………4分 综上,原不等式的解集为{x |x >1或x <-5} ..............................5分 或:当4a =,不等式()121f x x <++即为421x x -<+两边平方 得 22816441x x x x -+〈++ ……………………………………2分 解得 15x 〉〈-或x所以不等式的解集为{x |x >1或x <-5} .................................5分(2)依题可知||111x a a x a -≤⇒-≤≤+,所以1a =,即111(0,0)m n m n +=>>所以2=2m n m n ++()112=++n m m n m n+≥()33当且仅当11m n ==+时取等号 ……10分。