第十二讲 一元一次方程的应用——分段计费、税率累进问题 优化选择方案问题
人教版七年级数学上册教案分段计费与方案决策问题

人教版七年级数学上册教案分段计费与方案决策问题本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March课题:分段计费与方案决策问题【学习目标】1.利用一元一次方程解决生活中的分段计费问题和方案决策问题.2.将实际问题转化为数学问题,通过列方程解决问题.3.了解分类讨论思想.【学习重点】用方程解决生活中分段计费问题.【学习难点】将实际问题转化为数学问题,利用一元一次方程做决策.行为提示:创设情境,引导学生探究新知.行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.提示:分段计费问题,涉及分步计费问题,要分步对计费情况进行分析;总费用为各部分费用之和.情景导入生成问题情景导入:我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费,若每月用水量不超过7立方米,则按每立方米1元收费;若每月用水量超过7立方米,则超过部分按每立方米2元收费.如果某户居民今年5月份缴纳了17元水费,那么这户居民今年5月的用水量为多少立方米?解:设5月份水量为x立方米,则超出7立方米的部分为(x-7)立方米,根据题意:7×1+(x-7)×2=17,解得x=12.答:这户居民今年5月的用水量是12立方米.自学互研生成能力知识模块一分段计费问题【自主学习】阅读教材P104“探究3”.【合作探究】出租汽车4千米起价10元,行驶4千米以后,每千米收费元(不足1千米按1千米计).李红乘坐出租车下车时付给司机16元(不计等候时间).问李红乘坐出租车最远可行驶多少千米?解:设李红乘车最远可行驶x千米.由题意,得10+×(x-4)=16,解得x=9.答:李红乘坐出租车最远可行驶9千米.知识模块二方案决策问题【自主学习】阅读教材P105.【合作探究】请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促捎活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯,若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.解:(1)设一个暖瓶x元,则2x+3(38-x)=84.解得:x=30,38-x=8(元)答:一个暖瓶30元,一个水杯8元.(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216(元);若到乙商场购买,则所需的钱数为:4×30+(15-4)×8=208(元)<216(元).所以到乙商场购买更合算.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.方法归纳:讨论谁更优惠,实质是比较表示收费的两个式子的大小,通常的办法是先找到使收费一样时的x 的值,然后再以这个值为基准,比这个值大的为一种情况,比这个值小的为另一种情况,即特殊值法.交流展示生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一 分段计费问题知识模块二 方案决策问题检测反馈 达成目标【当堂检测】1.某同学花了30元钱买图书馆会员证,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张4元,要想使得购会员证比不购会员证合算,该同学去图书馆阅览应超过( C )A .8次B .9次C .10次D .11次2.聪聪到希望书店帮同学买书,售货员主动告诉他,如果用20元钱办“希望书店会员卡”将享受8折优惠,请问:在这次买书中,聪聪在什么情况下,办会员卡与不办会员卡一样?当聪聪买标价为200元的书时,怎么做合算,能省多少钱?解:设聪聪买标价x 元的书时,办会员卡与不办会员卡一样.即20+80%x =x ,解得x =100.∴当聪聪买标价为100元的书时,办会员卡与不办会员卡一样.当聪聪买标价为200元的书时,若用会员卡,则需20+200×80%=180(元),可以节省200-180=20(元). 答:办会员卡合算,能省20元.3.某地上网有两种收费方法,用户可以任选其一:A 计时制:1元/小时,B 包月制:80元/月,此外,每一种上网方式都加收通讯费元/小时.(1)某用户每月上网40小时,选用哪种上网方式比较合算?(2)某用户每月有100元钱用于上网,选用哪种上网方式比较合算?解:(1)如果用户每月上网40小时,则选择A 需支付40×(1+=44(元),选择B 需支付80+40×=84(元). 因为44<84,所以选用A 方式比较合算.(2)设用户选择A 方式用100元可以上网x 小时,选择B 方式用100元可以上网y 小时.由题意,得(1+x =100,80+=100.解得x =100011,y =200.因为100011≈91<200,所以选用B 方式较合算.【课后检测】见学生用书课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
一元一次方程的应用: 分段计费问题

2.94
12
x
总水费 (元)
23.52
问题2:本问题涉及的等量关系有: 标准内水费用 +超标部分水费用 = 总水费 。
水价× 用水量=水费
问题3:如果设该市规定的家庭月标准用水 量为x t,则根据等量关系可得:
1.96x +(12-x)×2.94 = 27.44. x=8
答:该市家庭月标准用水量为8 t
教学结论:解决分段收费问题的三 个步骤
• 1.根据总的费用情况探究该费用所处的 “段”.
• 2.分别计算各段的费用(必要时设未知数). • 3.根据各段费用之和等于总费用列式(或方
程).
练一练
小红同学乘坐出租车由县城回老家看望爷爷,出 租车的收费标准是:起步价5元(含3千米),3千米 以外按每千米1.2元收费,下车后,小红付车费37.4 元,求小红从乘车点到家乡的距离.
解:设小张家该月用电xkw·h,根据题意,得
0.8(x-150)+150×0.5=147.8.
解得 x=241.
答:小张家该月用电约241kw·h.
• 【归纳总结】:
• 运用一元一次方程模型解决水费、电费、出租 费、电话费、煤气费等日常生活所产生的费用:
• 1、注意分段收费问题,分段收费的收费标准以及 分的段数。
• 2、找准等量关系,列方程。
小结与复习
1. 什么样的方程是一元一次方程? 2. 等式有哪些性质? 3. 解一元一次方程的基本步骤有哪些? 4. 应用一元一次方程模型解决实际问题的步骤
有哪些?Leabharlann 本章知识结构实际问题
检验
一元一次方程模型的应用
建立一元一次方程模型
等式的性质
一元一次方程的解法
一元一次方程-分段计费问题

照一定标准计费,场景类似会员制。
3
分段计费
如例题,一定时间或数额内按一定标 准计费,超出后按另一标准计费。
按次计费
按照次数计费, class 入门课程 / class 学位项目等,标榜无限制随意学习。
方案优化的思路
降低成本
通过合理的分段计费方式,让消费者感到公平 并且减少成本。
增加收益
通过营销调查和数据分析,寻找新的优惠方式, 增加产品销量与用户回头率。
答案
解得x=4,因此小明在超市停 留了4小时。
分段计费的应用场景
1 出租车计价器
出租车的计价方式通常是按照时间或路程分段计费。
2 会员制度
企业的会员制度也会采用分段计费来吸引消费者。
3 电信套餐
一些电信套餐也采用分段计费来满足不同用户的需求。
计费方式的不同
1
阶梯计费
2
消费金额或次数达到一定程度后,按
ห้องสมุดไป่ตู้
如何列出方程
确定变量
我们需要确定代表未知量的 变量,比如黄色书店每分钟 的收入可以用x来表示。
列出表达式
接下来,我们通过文字描述 和数学语言构建收入的计算 表达式,比如每分钟的收入 为10元再加上图书销售量的 50%。
化简方程
最后,我们将表达式通过符 号等方式转换为一元一次方 程。
例题解析
题目
解法
某超市为了吸引更多的消费者, 推出了分段计费的优惠活动。 整体来看,每个人的花费都按 照5元/小时计算。然而,当消 费时间超过2小时后,超出的 部分每小时只需3元。如果小 明遵循这个计费方式,共花费 27元,请问他在超市停留了多 长时间?
我们可以设小明在超市消费的 时间为x。则方程为5x+3(x2)=27。
一元一次方程的应用方案设计、分段收费

一元一次方程的应用______________________________________________________________________________________________________________________________________________________________1、通过观察、归纳得出等数学模型的思想。
2、通过应用题教学使学生进一步使用代数中的方程去反映现实中的相等关系,体会代数方法的优越性。
3、能够“找出实际问题中的已知数和求知数,分析它们之间的关系,高级求知数,列出方程表示问题中的相等立关系”,体会建立一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。
4、通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。
1、分段收费问题2、方案设计问题3.列方程解应用题的一般步骤是:(1)“找”:看清题意,分析题中及其关系,找出用来列方程的____________;(2)“设”:用字母(例如x)表示问题的_______;(3)“列”:用字母的代数式表示相关的量,根据__________列出方程;(4)“解”:解方程;(5)“验”:检查求得的值是否正确和符合实际情形,并写出答(6)“答”:答出题目中所问的问题。
例1、某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需付7元车费),超过3km以后,每增加1km,加收2.4元(不足1km按1km计).某人乘这种出租车从甲地到乙地共支付车费19元,则此人从甲地到乙地经过的路程的最大值是多少千米?例2、某商场计划拨款9万元从厂家购进50台电视机。
已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。
(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元。
2024-2024学年湘教版七年级数学上册《分段计费与决策方案

2024-2025学年湘教版七年级数学上册《分段计费与决策、方案》清晨的阳光透过窗帘,洒在了我的书桌上,让我想起了那群可爱的七年级孩子们。
他们即将迎来一次有趣的数学学习之旅,而我作为他们的引路人,要为这次旅程准备一份完美的方案。
一、教学目标我要明确这次教学的目标。
分段计费是现实生活中的常见问题,我希望通过这次教学,让孩子们学会如何运用数学知识解决实际问题,培养他们的决策能力和创新思维。
二、教学内容1.分段计费的基本概念和原理2.分段计费在实际生活中的应用3.决策与方案的制定4.数学与生活的紧密联系三、教学过程1.导入我会以一段有趣的故事导入这节课,讲述一位小朋友在超市购物时,如何运用分段计费的知识,节省了家里的开支。
这个故事既能引起孩子们的兴趣,又能让他们初步了解分段计费的概念。
2.基本概念和原理我会详细介绍分段计费的基本概念和原理。
通过生动的例子,让孩子们理解分段计费是如何在实际生活中发挥作用的。
同时,我会引导他们发现分段计费中的规律,为后续的决策和方案制定打下基础。
3.实际应用在这个环节,我会让孩子们分组讨论,列举一些生活中常见的分段计费现象,如公交车的分段计费、手机套餐等。
通过讨论,让孩子们认识到数学与生活的紧密联系,激发他们运用数学知识解决实际问题的兴趣。
4.决策与方案在这个环节,我会给孩子们提供一个现实生活中的问题:如何制定一个既能满足需求,又能节省开支的手机套餐方案。
孩子们需要运用所学知识,分析各个套餐的优缺点,最终制定出最佳方案。
四、教学评价1.课堂参与度:观察孩子们在课堂上的发言、讨论和互动情况,了解他们的学习兴趣和参与程度。
2.作业完成情况:评估孩子们完成作业的质量,检验他们对课堂所学内容的掌握程度。
3.方案制定能力:评价孩子们在制定方案过程中,能否运用所学知识,解决实际问题。
五、教学反思注意事项:1.学生基础差异每个孩子的数学基础和理解能力都不尽相同,所以在教学过程中要注意到这一点,不能一股脑儿地灌输知识点。
一元一次方程应用专题分段计费与方案问题

某乘客携带了30千克的行李乘飞机,按民 航规定:乘飞机的乘客,每人最多买行李票,现在乘客购买120元的 行李票,求该乘客的飞机票价。
• 小江一家三口准备国庆节外出旅游.现有两家 旅行社,它们的收费标准分别为: • 甲旅行社:大人全价,小孩半价; • 乙旅行社:不管大人小孩,一律八折. • 这两家旅行社的基本价一样.你认为应该选择 哪家旅行社较为合算? • 由学生完成选择旅行社的方案。
• 通讯问题 • 某移动通讯公司升级了两种通讯业务,“全球 通”使用者先缴50元月租费,然后每通话1分 钟,再付话费0.4元,“快捷通”不缴月租费, 每通话1分钟,付话费0.6元.根据上述资料, • (1)你认为一个月通话多少分钟,两种移动通讯 费用相同? • (2)某人估计一个月内通话300分钟,应选择哪 种移动通讯或用长途电话合算些?
一家游泳馆,每年6—8月出售会员证,每张 “会员证”80元,只限本人使用,凭证进游泳 馆,每次1元;无证进游泳馆,每次5元。通过 计算回答: (1)什么情况下,购“会员证”与不购“会 员证”付一样的钱? (2)什么情况下,购“会员证”比不购“会 员证”合算?
§问题:某校打算购买多媒体教学系统 若干套,现从两家商场了解到同一型号 的器材报价均为40000元。 §甲商场:第一套按原价收费,其余每 套优惠25%。 §乙商场:每套优惠20%。 §问:(1)买多少套时两家收费一样多? (2)若买四套到哪家优惠的多?六套 呢?
(1).设定购买x套时收费一样多 40000+40000× (1-25%) (x-1)(甲) =(1-20%) × 40000x(乙) 解得x=5(套) 故买5套时两家商场收费一样多 (2)当x=4时,左边=130000,右边=128000 , 左边>右边,乙家优惠 当x=6时,左边=190000,右边=192000 ,右边>左边,甲家优惠
人教版七年级上数学一元一次方程实际问题——分段计费

一元一次方程实际问题 ——分段计费1、为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道的天然气价格进行调整,实行阶梯式收费,调整后的收费价格如下表示所示:(1)若甲用户3月份的用气量为125m 3,应缴费32.5元,求a 的值;(2)在(1)的条件下,若乙用户2、3月份共用气175m 3(3月份用气量低于2月份用气量),共缴费455元,则乙用户2、3月份的用气量各是多少?2、为了加强公民的节水意识,合理利用水资源。
某市采用价格调控手段达到节水的目的。
该市自来水的收费标准价格见下表。
某用户居民某月份用水8吨,则应收水费:()2068462=-⨯+⨯元。
注:水费按月结算。
(1)若该户居民2月份用水12.5吨,则应收水费 元;(2)若该户居民3、4月份共用水15吨(3月份的用水量少于5吨),共交水费44元,则该户居民3、4月份各用水多少吨?3、在外地打工的赵先生下了火车,为尽快赶回位于市郊的赵庄与家人团聚,他打算乘坐市内出租车,市客运公司规定:起步价为5元(不超过3km 收5元),超过3km ,每千米要加收一定的费用。
赵先生上车时看了一下计费表,车到家门口时又看了一下计费表,已知火车站到赵庄的路程为18km 。
上车时里程表 下车时里程表求行程超过3km 时,每千米收多少元?4、某市公布的居民用电阶梯电价听证方案如下: 例:若某户月用电量为400度,则需交的电费为()()()()23030.052.035040005.052.021035052.0210=+⨯-++⨯-+⨯元。
(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a 元,则小华家该月用电量属于第几档?5、某银行的个人所得税规定个人所得税如下所示:一、以个人每月工资收入额减去3500元后的余额作为其每月应纳税多的额;二、个人所得纳税率如下表:(1)若甲、乙两人的每月工资收入额分别为4000元和6000元,请分别求出甲、乙两人每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月工资收入额应为多少元?6、某城市自来水收费实行阶梯水价,收费标准如下表所示:某用户5月份交水费45元,则该用户5月份所用水量为多少立方米?7、根据国家发改委实施“阶梯电价”的相关文件要求,某市结合地方实际,决定实施收费标准如下表所示:例如:小明家用电100千瓦时,交电费60元。
人教版 七年级上册 一元一次方程 分段计费和方案选择【解析】

分段计费和方案选择小结:解决此类问题的关键是能够根据已知条件找到合适的分段点,然后建立方程模型分类讨论,从而得出整体选择方案.例1公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?例2 某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a=60.(2)若该用户九月份的平均电费为0.36元,则九月份共用电90千瓦时,应交电费是32.40元.练习1.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税元,若王老师获得的稿费为4000元,则应纳税;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?2.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?3.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?4.根据下表的两种移动电话计费方式,回答下列问题:(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?5、广州市为鼓励市民节约用水,作出如下规定:陈刚家11月份缴水费31元,他家11月实际用水多少m3?6、某地电话拨号入网有两种收费方式,用户可任选一种:A、计时制:3元/时;B、包月制:50元/月(限一部个人住宅电话入网).此外,每一种上网方式都得加通讯费1.2元/时.(1)某用户某月的上网时间为x小时,请写出两种收费方式下该用户应该支付的费用:A、计时制:B、包月制:(2)一个月内上网时间为多少小时,两种上网方式的费用相同?7、某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中,平均每生产一件产品有0.5米3污水排出,为了净化环境,工厂设计了两种处理污水的方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习目标:
1.经历问题的分析与解决的过程,初步掌握分段计费、税率累进的问题和优化选择方案的问题的解决方法。
2.培养和提高列一元一次方程解决分段计费问题、计算累进税率问题的能力及选择优化方案的能力。
3.体会数学源于生活、用于生活。
一、新课讲授:
例1、某市出租汽车3千米起步价10元,行驶3千米以后,每千米收费2元(不足1千米按1千米计算)。
王明和李鸿要到离学校15千米的博物馆为同学们联系参观适宜。
为了尽快到达博物馆,他们想乘坐出租汽车。
如果他们只有30元,那么他们乘坐的出租汽车能到达博物馆吗?(不计等候时间)
例2、某城市按以下规定收取每月的煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费,如果超过60立方米,超过部分按每立方米1.2元收费,已知某用户4月份的煤气费平均每立方米0.88元,求该用户4月份应交的煤气费。
例3、我市为鼓励节约用水,对自来水的收费标准作如下规定:每月用水不超过10吨部分按4.5元/吨收费,超过10吨而不超过20吨部分按8元/吨收费,超过20吨部分按10元/吨,某月甲用户比乙用户多交水费37.5元,已知乙用户交水费31.5元。
问:(1)甲乙两户该月各用水多少吨?(2)用25吨水应交多少元水费?
例题4、(2012•淮安)某省公布的居民用电阶梯电价听证方案如下:
第一档电量第二档电量第三档电量
月用电量210度以下,每度价格0.52元月用电量210度至350度,每度比第一档提
价0.05元
月用电量350度以上,每度比第一档提
价0.30元
例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)
(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;
(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?
例题5、国家规定个人发表文章、出版著作所获稿费应纳税,其计算方法是:
①稿费不高于800元的免税;
②稿费高于800元,但不高于4000元的,应缴税超过800元的那一部分的14%;
③稿费高于4000元的,应缴税全部稿费的11%。
(1)若秦老师获得的稿费为2000元,他应缴税多少元?
(2)若秦老师获得的稿费为5000元,他应缴税多少元?
(3)若秦老师出版一部著作获得一笔稿费,他缴了550元的税,秦老师的这笔稿费是多少元?
例题6、(11·无锡)(本题满分10分)十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的1~5级税率情况见下表:
所得税而设定的一个数.
例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:
方法一:按1~3级超额累进税率计算,即500×5%+1500×10%十600×15%=265(元).
方法二:用“月应纳税额x适用税率一速算扣除数”计算,即2600×15%一l25=265(元)。
(1)请把表中空缺的“速算扣除数”填写完整;
(2)甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元?
(3)乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴的税款恰好不变,那么乙今年3
月所缴税款的具体数额为多少元?
例题7.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
1、出租汽车4千米起价10元,行驶4千米以后,每千米收费1.2元(不足1千米按1千米计算)。
李红乘坐出租车下车时付给司机16元(不计等候时间)。
问李红乘坐出租车行驶了多少千米?
2.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。
一名旅客带了35千克行李乘机,机票连同行李费共付了1323元,求该旅客的机票票价?
3.(2007•芜湖)芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.
(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?
(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?
5.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别
为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
6. 清风乐园门票价格如下表所示:
某校七年级①、②两个班共104人去清风乐园春游,其中①班人数较少,不到50人,②班人数较多,超过50人,经估算若两班都以班为单位分别购票,则一共应付1240元.
(1)请算出两个班各有多少名学生.
(2)想一想:你认为他们如何购票比较合算?
(3)假如①班先到达乐园,想要单独购票,你能帮他们想出一个比较合算的购票方案吗?
7..(2004•常州)某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满
一定金额后,还可按如下方案获得相应金额的奖券:
消费金额a(元)200≤a<400 400≤a<500 500≤a<700 700≤a<900 …
获奖券金额(元)30 60 100 130 …
根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元).
购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价.
试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?
8.(2005•烟台)为庆祝第29届北京奥运圣火在泉州站传递,甲、乙两校联合准备文艺汇演.甲、乙两校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:
购买服装的套数1套至45套46套至90套91套及以上
每套服装的价格60元50元40元
如果两所学校分别单独购买服装,一共应付5000元.
(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?
(2)甲、乙两校各有多少学生准备参加演出?
(3)如果甲校有9名同学抽调去参加迎奥运书法比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?。