数学模型应用问题(讲义和习题)含答案
2020年九年级数学中考复习专题专题:函数模型的应用(含答案)

专题:函数模型的应用1.超市以每千克40元的价格购进夏威夷果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种夏威夷果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)超市要想获利2090元,则这种夏威夷果每千克应降价多少元?2.如图①,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=-310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图②所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.3.某智能品牌店,在销售某型号运动手环时,以高出进价的50%标价.已知按标价九折销售该型号运动手环8个与将标价直降100元销售7个获利相同.(1)求该型号运动手环的进价和标价分别是多少元?(2)若该型号运动手环的进价不变,按(1)中的标价出售,该店平均每月可售出38个;若每个运动手环每降价20元,每月可多售出2辆,求该型号运动手环降价多少元时,每月获利最大?最大利润是多少?4.一水果店以进价为每千克16元购进万荣苹果,销售中发现,销售单价定为20元时,日销售量为50千克;当销售单价每上涨1元,日销售量就减少5千克,设销售单价为x(元),每天的销售量为y(千克),每天获利为w(元).(1)求y与x之间的函数关系式;(2)求w与x之间的函数关系式;该苹果售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果商家规定这种苹果每天的销售量不低于40千克,求商家每天销售利润的最大值是多少元?5.挂灯笼成为我国的一种传统文化. 小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对;物价部门规定其销售单价不高于每对65元,设乙灯笼每对涨价x元,小明一天通过乙灯笼获得利润y元.①求出y与x之间的函数解析式;②乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?6.甲、乙两个批发店销售同一种苹果.在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50 kg时,价格为7元/kg;一次购买数量超过50 kg时,其中有50 kg的价格仍为7元/kg,超出50 kg部分的价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为x kg(x>0).(Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为________kg;②若小王在同一个批发店一次购买苹果的数量为120 kg,则他在甲、乙两个批发店中的________批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的________批发店购买数量多.7.某工厂计划生产甲乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元,设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨,受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.8.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可销售出100件,根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每月少销售出2件,设每件商品的售价为x元.每个月的销售为y件.(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?9.某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化,设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x 之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?10. 某商店销售一种商品,经市场调查发现,该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价,周销售量,周销售利润w (元)的三组对应值如下表:(1)①求y 关于x 的函数解析式(不要求写出自变量的取值范围);②该商品进价是________元/件;当售价是____元/件时,周销售利润最大,最大利润是______元;(2)由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值.参考答案1. 解:(1)设一次函数解析式为y =kx +b , ∵当x =2,y =120;当x =4,y =140;∴⎩⎪⎨⎪⎧2k +b =120,4k +b =140, 解得⎩⎪⎨⎪⎧k =10,b =100.∴y 与x 之间的函数关系式为y =10x +100; (2)由题意得(60-40-x )(10x +100)=2090, 整理得x 2-10x +9=0, 解得x 1=1,x 2=9. ∵让顾客得到更大的实惠, ∴x =9,答:超市要想获利2090元,则这种夏威夷果每千克应降价9元.2. 解:(1)设y 关于x 的函数解析式为y =kx +b ,把点(0,6)(15,3)代入y =kx +b 得⎩⎪⎨⎪⎧6=b ,3=15k +b ,解得⎩⎪⎨⎪⎧k =-15,b =6,∴y 关于x 的函数解析式为y =-15x +6;(2)甲:当h =0时,得x =20.乙:当y=0时,得x=30.∵20<30,∴甲先到达一楼地面.3.解:(1)设该型号运动手环的进价为x元,根据题意得[(1+50%)x×0.9-x]×8=[(1+50%)x-100-x]×7,∴x=1000,∴(1+50%)x=1500元,∴该型号运动手环的进价为1000元,标价为1500元;(4分) (2)设该型号运动手环降价y元,利润为w元.根据题意得w=(38+y20×2)(1500-1000-y)=(38+0.1y)(500-y)=-0.1(y-60)2+19360,当y=60时,w有最大值19360.∴降价60元,每月获利最大,最大利润为19360元.4.解:(1)根据题意得y=50-5(x-20)=-5x+150;(2)根据题意得w=(x-16)(-5x+150)=-5x2+230x-2400,∴w与x的函数关系式为:w=-5x2+230x-2400=-5(x-23)2+245.∵-5 <0,∴当x=23时,w有最大值,最大值为245.(5分)答:w与x之间的函数关系式为w=-5x2+230x-2400.该苹果售价定为每千克23元时,每天销售利润最大,最大利润是245元;(3)根据题意得-5x+150≥40,解得x≤22.∵w=-5(x-23)2+245.∵-5<0,w≤23时,w随x增大而增大,∴当x=22时w有最大值,其最大值为-5×(22-23)2+245=240(元).答:商家每天销售利润的最大值是240元.5.解:(1)设甲种灯笼进价为x元/对,则乙种灯笼的进价为(x+9)元/对,由题意得3120 x=4200 x+9,解得x=26,经检验,x=26是原方程的解,且符合题意,∴x+9=26+9=35,答:甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对;(2)①y=(50+x-35)(98-2x)=-2x2+68x+1470,答:y与x之间的函数解析式为:y=-2x2+68x+1470;②∵a=-2<0,∴函数y有最大值,该二次函数的对称轴为:x=-b2a=17,物价部门规定其销售单价不高于每对65元,∴x+50≤65,∴x≤15,∵x<17时,y随x的增大而增大,∴当x=15时,y最大=2040.∴15+50=65.答:乙种灯笼的销售单价为每对65元时,一天获得利润最大,最大利润是2040元.6.解:(Ⅰ)180,900,210,850;【解法提示】甲批发店花费:当x=30时,花费为30×6=180;当x=150时,花费为150×6=900.乙批发店花费:当x =30时,花费为30×7=210;当x =150时,花费为50×7+(150-50)×5=850.(Ⅱ)y 1=6x (x >0), 当0<x ≤50时,y 2=7x ;当x >50时,y 2=7×50+5(x -50),即y 2=5x +100;即y 2=⎩⎪⎨⎪⎧7x (0<x ≤50),5x +100(x >50).(Ⅲ)①100;②乙;③甲.【解法提示】①当0<x ≤50时,甲批发店和乙批发店花费不可能相同,则x >50时,令y 1=y 2,则6x =5x +100,解得x =100;②当x =120时,y 1=6×120=720,y 2=5×120+100=700,∵720>700,∴在乙批发店购买花费少;③对甲批发店而言:令y 1=360,则6x =360,解得x =60.对乙批发店而言:当x =50时,花费为350<360,则令5x +100=360,解得x =52,∵60>52,∴小王花费360元时,在甲批发店购买数量多.7. 解:(1)y =x ·0.3+(2500-x )·0.4=-0.1x +1000; (2)由题意得x ·0.25+(2500-x )·0.5≤1000,解得x ≥1000. 又∵x ≤2500, ∴1000≤x ≤2500. 由(1)可知,-0.1<0,∴y 的值随着x 的增加而减小,∴当x =1000时,y 取最大值,此时生产乙种产品2500-1000=1500(吨) 答:工厂生产甲产品1000吨,乙产品1500吨时,能获得最大利润. 8. 解:(1)根据题意得y = 100-2(x -60)=-2x +220(60≤x ≤110);(2)由题意可得:(-2x +220)(x -40)=2250. x 2-150x +5525=0, 解得x 1=65,x 2=85.答:当每件商品的售价定为65元或85元时,利润恰好是2250元; (3)设利润为W 元,∴W =(x -40)(-2x +220)=-2x 2+300x -8800=-2(x -75)2+2450. ∵a =-2<0, ∴抛物线开口向下. ∵60≤x ≤110,∴当x =75时,W 有最大值,W 最大=2450(元).答:当售价定为75元时,获得最大利润,最大利润是2450元. 9. 解:(1)设y 关于x 的函数关系式为y =kx +b (k ≠0),由图象可知,将点(1,7000),(5,5000)代入得⎩⎪⎨⎪⎧k +b =7000,5k +b =5000,解得⎩⎪⎨⎪⎧k =-500,b =7500,∴y 关于x 的函数关系式为y =-500x +7500; (2)设销售收入为W ,根据题意得 W =yp =(-500x +7500)·(12x +12),整理得W =-250(x -7)2+16000,∵-250<0,∴W 在x =7时取得最大值,最大值为16000元, 此时该产品每台的销售价格为-500×7+7500=4000元.答:第7个销售周期的销售收入最大,此时该产品每台的销售价格为4000元.10. 解:(1)①y =-2x +200; ②40,70,1800;(2)由题意可知w =(-2x +200)×(x -40-m )=-2x 2+(280+2m )x -8000-200m ,对称轴为直线x =140+m2,∵m >0,∴对称轴x =140+m2>70,∵抛物线开口向下,在对称轴左侧,y 随x 的增大而增大, ∴当x =65时,y max =1400,代入表达式解得m =5.。
第二十讲 数学建模(含解答)-

第二十讲 数学建模【趣题引路】某工厂生产某种产品,每件产品的出厂价为50元,其成本为25元.•因为在生产过程中,平均每生产一件产品有0.5m 3污水排出,为了净化环境,工厂设计两种方案对污水进行处理.方案1:工厂污水先净化处理后再排出,每处理1m 3•污水所有原材料费为2元,并且每月排污设备损耗费为30 000元;方案2:•工厂将污水排到污水厂统一处理,每处理1m 3污水需付14元排污费.问题:(1)设工厂每月生产x 件产品,每月利润为y 元,分别求出依方案1和方案2处理污水时y 与x 的函数关系式;(2)•设工厂每月生产量为6 000件产品时,你若作为厂长在不污染环境,又节约资金的前提下,•应选用哪种处理污水的方案?请通过计算加以说明. 解析 (1)设选用方案1,每月利润为y 1元,选用方案2,每月利润为y 2元,则: y 1=(50-25)x-2×0.5x-30 000=24x-30 000, y 2=(50-25)x-14×0.5x=18x. 故y 1=24x-30 000,y 2=18x;(2)当x=6000时,y 1=24×6000-30 000=114 000(元),y 2=18x=18×6000=108 •000(元). ∴y 1>y 2.答:我若作为厂长,应选方案1. 点评本例是生产经营决策问题,其难点在于建立相应的数学模型,构建函数关系式,•然后,通过问题中所给的条件判断,若不能判断,就要进行分类讨论.【知识延伸】例 某工厂有14m 长的旧墙一面,现在准备利用这面旧墙,建造平面图形为矩形,•面积为126m 2的厂房,工程条件为:①建1m 新墙的费用为a 元;②修1m 旧墙的费用为4a元;③拆去1m 旧墙,用所得材料建造1m 新墙的费用为2a元.经过讨论有两种方案:(Ⅰ)利用旧墙的一段xm(x<14)为矩形厂房一面的边长;(Ⅱ)•矩形厂房利用旧墙的一面边长为x(x ≥14).问:如何利用旧墙,即x 为多少米时,建墙费用最省?(Ⅰ)(Ⅱ)两种方案哪个更好?解析 设利用旧墙的一面矩形边长为xm,则矩形的另一边长为126xm . (Ⅰ)利用旧墙的一段xm(x<14)为矩形一面边长,则修旧墙费用为x ·4a元,•将剩余的旧墙拆得材料建新墙的费用为(14-x)·2a元,其余建新墙的费用为(2x+2126x -14)·a 元.故总费用为y=x ·4a +142x -·a+(2x+252x -14)·a=a(74x+252x-7)=7a(364x x +-1).(0<x<14)∴y ≥364x x -1]=35a.当且仅当364x x=,即x=12m 时,y min =35a(元); (Ⅱ)若利用旧墙的一面矩形边长为x ≥14,则修旧墙的费用为4a ·14=72a 元,建新墙的费用为(2x+252x-14)a 元. 故总费用为y=72a+(2x+252x-14)a=72a+2a(x+126x -7) (x ≥14).设14≤x 1<x 2,则x 1-x 2<0,x 1x 2>196. 则(x 1+1126x )-(x 2+2126x )=(x 1-x 2)(1-12126x x ) ∴函数y=x+126x在区间[14,+∞]上为增函数. 故当x=14时,y min =72a+2a(14+12614-7)=35.5a>35a.综上讨论可知,采用第(Ⅰ)方案,建墙总费用最省,为35a 元.点评解答选择方案应用题同处理其他应用题一样,重点要过好三关(1)事理关:•读懂题意,知道讲的是什么事情,要比较的对象是什么;(2)文理关:•把实际问题文字语言转化为数学的符号语言,然后用数学式子表达数学关系式;(3)数理关:在构建数学模型的过程中,要对数学知识有检索的能力,认定或构建相应的数学模型,•完成由实际问题向数学问题的转化.【好题妙解】佳题新题品味例 在一次人才招聘会上,有A 、B 两家公司分别开出他们的工资标准:A 公司允诺第一年月工资为1500元,以后每月工资比上一年工资增加230元;B 公司允诺第一个月工资为2000元,以后每月工资在上一年月工资基础上递增5%,设某人年初被A 、B 两家公司同时录取,试问 :(1)若该人打算在A 公司或B 公司连续工作n 年,则他第n 年的月工资收入各为多少? (2)如该人打算连续在一家公司工作10年,仅以工资收入来看,•该人去哪家公司较合算?解析 (1)此人在A、B公司第n年的月工资数分别为a n=1 500+230(n-1),b n=2 •000(1+5%)n-1.其中n为正整数;(2)若该人在A公司连续工作10年,则他的工资收入总量为12(a1+a2+…+a10)=•304 200(芜).若该人在B公司连续工作10年,则他的工资收入总量为12(b1+b2+•…b10)=301 869(元).故该人应选择在A公司工作.点评最佳方案的选择问题充分体现了数学在生活中的无穷乐趣,•同时也从数学角度诠释了“知识就是力量”,“知识就是财富”的道理.中考真题欣赏例 (2002年长沙市)某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价x元与日销售量y之间有如下关系:x 3 5 9 11y 18 14 6 2(1)在所给的直角坐标系中:①根据提供的数据描出实数对(x,y)对应点;②猜测并确定日销售量y件与日销售单价x元之间的函数关系式,并画出图象.(2)设经营此商品的日销售利润为P元,根据日销售规律:①试求出日销售利润p元与日销售单价x元之间的函数关系式,•并求出日销售单价x为多少元时,才能获得最大日销售利润?试问:日销售利润p是否存在最小值?若有,试求出,若无,试说明理由;②在给定的直角坐标系中,画出日销售利润p元与日销售单价x•元之间的函数图象,观察图象,写出x与p的取值范围.解析 (1)①准确描出四点位置.②猜测它是一次函数y=kx+b.由两点(3,18),(5,14)代入上式求得k=-2,b=24,则有y=-2x+24.(9,6),(11,2)代入同样满足,∴所求函数关系式为y=-2x+24.由实际意义知,所求函数关系式为y=-•2x+24(0≤x<12)和y=0(x≥12).(2)①p=xy-2y,即p=y(x-2)=(24-2x)(x-2)=-2x2+28x-48=-2(x-7)2+50.当x=7时,日销售利润最大值50元.当x>12时,此时无人购买,故此时利润p=0(x≥12).由实际意义知,当销售价x=0即亏完本卖出,此时利润p=-48,即为最小值;②据实际意义有:0≤x<2时,亏本卖出.当x=2或x=12时,利润p=0.当x>12时,即高价卖出,无人购买,p=0.故作出图象,图(20-2)由图象知,x≥0,-48≤p≤50.竞赛样题展示例 (1998年“祖冲之杯”初中数学邀请赛)某商店将进货价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理在市场上做了一番调查后发现,•若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销售量就增加10个,•为获得每日最大利润,此商品售价应定为多少元?解析设商品每个售价x元,每日利润为y元,则当x>18时,y=[60-5(x-18)](x-10)=-5(x-20)2+500,即在商品提价时,提到20元时,y max=500元;当x<18时,y=[60+10(18-x)](x-10)=-10(x-17)2+490.即在商品降价时,降到17元时,y max=490元 .综上可得,此商品售价定为20元时,才能获得每日最大利润.点评本题首先应搞清题目的意思,设未知数,转化为函数问题,•因为售价的上升或下降,利润的情况是不一样的,故应分情况讨论.全能训练A级1.某移动通讯公司开设了两种通讯业务,“全球通”:使用者先缴50元月租费,•然后每通话1min,再付话费0.4元;“快捷通”:不缴月租费,每通话1min,付话费0.•6元(本题通话均指市内话话).若一个月内通话xmin,两种方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式;(2)一个月内通话多少分钟,两种通讯费用相同?(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些?2.某旅行社有客房120间,每间房的日租金为50元,每天都客满.旅行社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则客房每天出租后会减少6间,不考虑其他因素,旅社将每间客房将日租金提高到多少元时,客房日租金的总收入最高?比装修前日租金总收入增加多少元?3.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,那么经销这种商品原来的利润率是多少?A级(答案)1.(1)y1=0.4x+50,y2=0.6x;(2)令y1=y2,0.4x+50=0.6x,则x=250;故每一个月内通话250min,通讯费用相同.(3)全球通合算些.2.设每间房的日租金提高x个5元,日租金总收入为y,则y=(50+5x)(120-6x)即y=-30(x-5)2+6 750当x=5时,y max=6 750.∴日租金总收入多6 750-120×50=750(元)3.17%.B级1.某环形道路上顺时针排列着4所中学:A1,A2,A3,A4,它们顺次有彩电15台,8台,5台,12台.为使各校的彩电数相同,允许一些中学向相邻中学调出彩电.问怎样调配才能使调出的彩电台数最小?并求调出彩电的最小总台数.2.某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器,彩电、冰箱共360台,且冰箱至少生产60台,•已知生产这些家电产品每问:,•最高产值是多少?B级(答案)1.设A1中学调给A2彩电x1台(若x1<0,则认为是A2,向A1调出│x1│台),A2中学调给A3彩电x2台,A3调给A4x3台,A4调给A1x4台.因为共有40台彩电,平均每校10台,•因此,15-x1+x4=10,8-x2+x1=10,5-x3+x2=10,12-x4+x3=10,得x4=x1-5,x1=x2+2,x2=x3+5,x3=x4-2,x3=(x1-5)-2=x1-7,x2=(x1-7)+5=x1-2.本题即求y=│x1│+│x2│+│x3│+│x4│=│x1│+│x1-2│+│x1-7│+│x1-5│的最小值,其中x1是满足-8≤x1≤15的整数.设x1=x,并考虑定义在-8≤x≤15•上的函数:y=│x│+│x-2│+│x-7│+│x-5│, 当2≤x≤5时,y取最小值10,即当x1=2,3,4,5时,│x1│+│x1-2│+│x1-7│+│x1-5│取到最小值10.从而调出彩电的最小台数为10,调配方案有如下4种:2.设3种家电数量分别为x,y,z台,则各自的工时数、产值数、工时总数、•产值总数如下表所示.家电名称空调彩电冰箱总数台数x y z x+y+z=360(z≥60)工时数12x13y14z12x+13y+14z=120产值(千元) 4x 3y 2z A=4x+3y+2z ∵工时总数=12x+13y+14z=112(6x+4y+3z)=14(x+y+z)+112(3x+y)=14×360+112(3x+y)=90+112(3x+y)总产值数A=4x+3y+2z=2(x+y+z)+(2x+y) =2×360+(2x+y)=720+(2x+y)由300,190(3)120,12720(2)720(3).x yx yA x y x y x+≤⎧⎫⎪⎪⎪⎪++=⎨⎬⎪⎪=++=++-⎪⎪⎩⎭⇒A=1 080-x≤1 050.当总产值A取到最大值1 050时, x=30,y=270,z=60.。
数学模型课后习题答案

数学模型课后习题答案数学模型课后习题答案数学模型作为一门应用数学的学科,通过建立数学模型来解决实际问题。
在学习数学模型的过程中,课后习题是非常重要的一环。
通过解答习题,我们可以巩固和应用所学的知识,提高解决实际问题的能力。
在这篇文章中,我将为大家提供一些数学模型课后习题的答案,希望能够对大家的学习有所帮助。
一、线性规划1. 某工厂生产甲、乙两种产品,每天生产的总量不能超过100个。
甲产品每个利润为5元,乙产品每个利润为8元。
甲产品需要2个工时,乙产品需要3个工时。
每天工厂总共有200个工时可用。
如何确定每天生产甲、乙产品的数量,使得利润最大化?答案:设甲产品的数量为x,乙产品的数量为y。
根据题意,我们可以列出如下的约束条件:x + y ≤ 100 (每天生产的总量不能超过100个)2x + 3y ≤ 200 (每天工厂总共有200个工时可用)利润最大化即为目标函数,设为f(x, y) = 5x + 8y。
我们需要求解目标函数的最大值。
通过求解线性规划问题,可以得到最优解。
2. 某公司生产甲、乙两种产品,每天生产的总量不能超过200个。
甲产品每个利润为10元,乙产品每个利润为15元。
甲产品需要1个工时,乙产品需要2个工时。
每天工厂总共有300个工时可用。
如何确定每天生产甲、乙产品的数量,使得利润最大化?答案:设甲产品的数量为x,乙产品的数量为y。
根据题意,我们可以列出如下的约束条件:x + y ≤ 200 (每天生产的总量不能超过200个)x + 2y ≤ 300 (每天工厂总共有300个工时可用)利润最大化即为目标函数,设为f(x, y) = 10x + 15y。
我们需要求解目标函数的最大值。
通过求解线性规划问题,可以得到最优解。
二、微分方程1. 某物质的衰减速率与其当前的数量成正比。
已知初始数量为100,经过3小时,其数量减少到80。
求该物质的衰减速率。
答案:设物质的数量为N(t),t表示时间。
数学模型(第四版)课后详细答案

数学模型作业六道题 作业一1.P56.8一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 解:要求鱼的体重,我们利用质量计算公式:M=ρV 。
我们假定鱼池中是同一种鱼,于是可以近似地考虑其密度是相同的。
至于鱼的体积问题,由于是同一种类,可以假定这种鱼在体型上是一致的。
我们假设鱼的体积和鱼身长的立方成正比。
即:V=k 1L 3,因此,模型为:33111M V k l K L ρρ===……………………………模型一 利用Eviews 软件,用最小二乘法估计模型中的参数K 1,如下图1所示:图1从图1结果可以得到参数K 1=0.014591,所以模型为:31M 0.014591 L =上述模型存在缺陷,因为它把肥鱼和瘦鱼同等看待。
因此,有必要改进模型。
如果只假定鱼的横截面是相似的,假设横截面积与鱼身最大周长的平方成正比,即:V=k 2d 2L ,因此,模型为:身长/cm36.8 31.8 43.8 36.8 32.1 45.1 35.9 32.1 质量/g765 482 1162 737 482 1389 652 454 胸围/cm24.8 21.3 27.9 24.8 21.6 31.8 22.9 21.622222M V k d K d L L ρρ===………………………………模型二利用Eviews 软件,用最小二乘法估计模型中的参数K 2,如下图2所示:图2从图2可以得到参数K 2=0. 032248,所以模型为:22M 0.032248d L=将实际数据与模型结果比较如表1所示:表1实际数据M765 482 1162 737 482 1389 652 454模型一M 1 727.165 469.214 1226.061 727.165 482.629 1338.502 675.108 482.619 模型二M 2 729.877 465.248 1099.465 729.877 482.960 1470.719 607.106 483.9602.P131.2 一家出版社准备在某市建立两个销售代理点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上。
初中数学数学模型应用练习题及参考答案

初中数学数学模型应用练习题及参考答案1. 题目:小明每天骑自行车上学,上一次维修后他发现,每骑行1公里需要250个脚蹬。
如果小明骑行8公里,脚蹬的总脚程是多少个?答案:小明骑行8公里,脚蹬的总脚程为8公里 × 250个脚蹬 = 2000个脚蹬。
2. 题目:甲、乙两个人合作修建一座墙,甲每小时砌砖75块,乙每小时砌砖60块。
如果他们合作8小时,共砌砖多少块?答案:甲每小时砌砖75块,乙每小时砌砖60块,所以他们每小时共砌砖75块 + 60块 = 135块。
他们合作8小时,共砌砖135块 × 8小时 = 1080块。
3. 题目:若一个数的2/5等于20,那么这个数是多少?答案:设这个数为x,则有:2/5x = 20。
通过交叉相乘得到:2x =20 × 5。
计算得到:2x = 100,所以x = 100 ÷ 2 = 50。
所以这个数是50。
4. 题目:某图书店打折促销,原价100元的书现以8折出售,打完折的价格是多少?答案:原价100元的书以8折出售,打完折的价格为100元 × 0.8 = 80元。
5. 题目:一只长方体纸箱的长度是宽度的3倍,而宽度是高度的2倍,已知纸箱的总体积为240立方厘米,求纸箱的长、宽、高分别是多少?答案:设纸箱的高度为h,则宽度为2h,长度为3 × 2h = 6h。
根据体积的计算公式,可得到方程:h × 2h × 6h = 240。
化简得到:12h^3 = 240。
两边同时除以12得到:h^3 = 20。
求解方程,可得到h ≈ 2.714。
所以纸箱的长约为6 × 2.714 ≈ 16.286厘米,宽约为2 × 2.714 ≈ 5.428厘米,高约为2.714厘米。
6. 题目:某班级有50名学生,男生和女生的比例为3:2。
求男生和女生的人数各是多少?答案:男生和女生的比例为3:2,所以男生数与女生数可表示为3x和2x,总学生数为50人,所以有3x + 2x = 50。
数学建模-指数函数模型的应用(含答案解析)

数学建模-指数函数模型的应用学校:___________姓名:___________班级:___________考号:___________一、解答题1.观察实际情景,提出并分析问题(1)实际情景2022年2月,某地发生了新冠肺炎疫情,新冠肺炎是一种传染病,其传染过程的强度和广度分为:(1)散发:是指传染病在人群中散在发生;(2)流行:是指某一地区或某一单位,在某一时期内,某种传染病的发病率,超过了历年同期的发病水平;(3)大流行:指某种传染病在一个短时期内迅速传播、蔓延,超过了一般的流行强度;(4)暴发:指某一局部地区或单位,在短期内突然出现众多的同一种疾病的病人. 如果在新冠肺炎传染的过程中不认为介入,切断其传染链,则对整个社会经济的发展带来严重的后果.(2)提出问题如果没有人工干预,不同时间段内的病例数会按照怎样的规律进行增长呢,对于某个时间内新增的病例数是否可以预测,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失呢?(3)分析问题可以通过收集合适地区的新增病例数并结合建立适当的数学模型,找出病例数增长规律,并对一定时间后新增病例进行估计以支持卫生部门的防疫工作.2.收集数据利用互联网等信息技术,我们可以搜索到一些原始的数据.例如,我们搜集到某地区一周内的累计病例数,请结合上述数据建立合理的数学模型,并估计第9天新增病例数.3.分析数据累计病例数是时间的函数,但没有现成的函数模型.因此,可以先画出散点图,利用图象直观分析这组数据的变化规律,从而帮助我们选择函数类型,散点图如图所示:当然,我们可以利用信息技术,通过函数拟合的方法来帮助选择适当的函数模型. 4.建立模型根据散点图的形状可设函数模型近似为e at y k =,利用表中的数据可求0.221000e t y =. 5.检验模型画出函数的图形,对比散点图,吻合度很好.6.问题解决该地区病例数y 与时间t 基本满足0.221000e t y =的函数关系,第9天时,预计新增病例数为:0.2291000e 7242y ⨯=≈,我们会发现累计病例数急剧增加,需卫生防疫部门及时介入,采取相应阻断措施.7.问题拓展在上述模型的建立的过程中,我们根据散点图选择了函数模型,然后利用其中的两个点求出模型的两个参数,随着点的选择的不同,所得函数的模型也相异,那么请同学利用课余时间思考如何评价不同模型的优劣?2.大气压强p =压力受力面积,它的单位是“帕斯卡”(Pa ,21Pa 1N/m =),已知大气压强()Pa p 随高度()m h 的变化规律是0e kh p p -=,0p 是海平面大气压强,10.000126m k -=.当地高山上一处大气压强是海平面处大气压强的13,求高山上该处的海拔.3.牛奶保鲜时间因储藏时温度的不同而不同,假定保鲜时间与储藏温度间的关系为指数型函数,若牛奶放在0℃的冰箱中,保鲜时间约是192h ,而在22℃的厨房中则约是42h.(1)写出保鲜时间y (单位:h )关于储藏温度x (单位:℃)的函数解析式;(2)利用(1)中结论,指出温度在30℃和16℃的保鲜时间;(参考数据15110.125732⎛⎫ ⎪≈⎝⎭,81170.32832⎛⎫≈ ⎪⎝⎭,精确到1h )(3)运用上面的数据,作此函数的图象.二、单选题4.我国某科研机构新研制了一种治疗新冠肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量c (t )(单位:mg/L )随着时间t (单位:h )的变化用指数模型()0e ktc c t -=描述,假定某药物的消除速率常数0.1k =(单位:1h -),刚注射这种新药后的初始血药含量02000mg/L c =,且这种新药在病人体内的血药含量不低于1000mg/L 时才会对新冠肺炎起疗效,现给某新冠病人注射了这种新药,则该新药对病人有疗效的时长大约为( )(参考数据:ln20.693,ln3 1.099≈≈)A .5.32hB .6.23hC .6.93hD .7.52h 5.2021年,郑州大学考古科学队在荣阳官庄遗址发现了一处大型青铜铸造作坊.利用碳14测年确认是世界上最古老的铸币作坊.已知样本中碳14的质量N 随时间t (单位:年)的衰变规律满足5730012t N N ⎛⎫=⋅ ⎪⎝⎭(0N 表示碳14原有的质量).经过测定,官庄遗址青铜布币样本中碳14的质量约是原来的2至34,据此推测青铜布币生产的时期距今约多少年?()(参考数据:2log 3 1.6≈) A .2600年 B .3100年 C .3200年D .3300年参考答案:1.略【详解】略2.约为8719m 【分析】解方程001e 3kh p p -=即可得解. 【详解】解:由001e 3kh p p p -==可得ln3kh -=-,可得()ln 38719m h k =≈. 3.(1)22719232x y ⎛⎫=⋅ ⎪⎝⎭()0x(2)储藏温度为30C ︒保鲜时间约24小时;储藏温度为16C ︒保鲜时间约为63小时.(3)图象见解析【分析】(1)设(0x y k a k =≠,0a >且1)a ≠,则利用牛奶放在0C ︒的冰箱中,保鲜时间约为192h ,放在22C ︒的厨房中,保鲜时间约为42h ,即可得出函数解析式; (2)将30x =与16x =代入函数解析式,求值即可;(3)根据函数解析式画出函数草图.(1)解:设(0x y k a k =≠,0a >且1)a ≠,则有2219242?k k a =⎧⎨=⎩,∴1221927()32k a =⎧⎪⎨=⎪⎩,22719232xy ⎛⎫∴=⋅ ⎪⎝⎭()0x .(2)解:30x =时,30227192()3242y =≈,即储藏温度为30C ︒保鲜时间约24小时;16x =时,16227192()6332y =≈,即储藏温度为16C ︒保鲜时间约为63小时.(3)解:因为22719232x y ⎛⎫=⋅ ⎪⎝⎭()0x ,函数图象如下所示:.4.C【分析】利用已知条件()0.100e e 200kt t t c c --==,该药在机体内的血药浓度变为1000mg/L 时需要的时间为1t ,转化求解即可.【详解】解:由题意得:()0.100e e 200kt t t c c --==设该要在机体内的血药浓度变为1000mg/L 需要的时间为1t()10.1120001000e t t c -=≥10.12e 1t -≥ 故0.1ln 2t -≥-,ln 2 6.930.1t ≤≈ 故该新药对病人有疗效的时长大约为6.93h故选:C5.A【分析】根据题意列出不等式,求出22922865t <<,从而求出正确答案.57300001324t N N N ⎛⎫<⋅< ⎪⎝⎭,解得:22922865t <<,故选A. 故选:A。
习题参考解答

《数学建模》习题解答第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。
甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。
问开往甲乙两站的电车经过丙站的时刻表是如何安排的。
参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
数学模型习题答案

数学模型习题答案数学模型习题答案数学模型是一门应用数学的学科,它通过建立数学模型来解决实际问题。
数学模型习题是数学模型课程中重要的一环,通过解答这些习题,我们可以更好地理解和应用数学模型的知识。
在本文中,我将为大家提供一些数学模型习题的答案,希望能对大家的学习有所帮助。
1. 一辆汽车以每小时60公里的速度匀速行驶,行驶了4小时后,行驶的总里程是多少?解答:根据题意,汽车的速度是每小时60公里,行驶了4小时,所以行驶的总里程为60公里/小时× 4小时 = 240公里。
2. 一个球从高度为10米的地方自由落下,每次落地后反弹的高度是前一次高度的一半,求球在第5次落地时的总共运动距离。
解答:球第一次落地时的高度为10米,第二次落地时的高度为10米的一半,即5米,第三次落地时的高度为5米的一半,即2.5米,以此类推,第五次落地时的高度为10米× (1/2)^4 = 0.625米。
球在每次落地前的运动距离为高度的两倍,所以总共运动距离为10米 + 5米 + 2.5米 + 1.25米 + 0.625米 = 19.375米。
3. 一个水桶的容量为10升,水龙头每分钟可以注满3升的水,水桶中原有4升的水,问需要多少时间才能将水桶注满?解答:水龙头每分钟可以注满3升的水,所以注满10升的水需要10升÷ 3升/分钟 = 3.33分钟。
水桶中原有4升的水,所以需要的时间为3.33分钟 - 4升÷ 3升/分钟 = 2.33分钟。
4. 一个人每天早上骑自行车上班,速度为每小时15公里,下班时因为疲劳速度减半,求他每天上下班总共需要多长时间?解答:上班的路程和下班的路程是一样的,所以只需要考虑一段路程的时间。
上班时速度为每小时15公里,所以上班需要的时间为路程÷ 速度 = 路程÷ 15公里/小时。
下班时速度减半,所以下班需要的时间为路程÷ (15公里/小时× 1/2) = 路程÷ 7.5公里/小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学模型应用问题(讲义)➢ 课前预习1. 填写下列表格,并回忆相关概念.2. 解下列方程[](10)38010(12)1750x x ---=10(8)200106400.5x x -⎛⎫--⋅= ⎪⎝⎭➢ 知识点睛应用题的处理思路 1. 理解题意,梳理信息通过列表或画线段图等方式,对信息分类整理.2. 辨识类型,建立模型根据所属类型,围绕关键词、隐含的数学关系,建立数学类型常考虑:①所属的数学模型(方程不等式问题、函数问题、测量问题);②实际生活的背景(工程问题、行程问题、经济问题).常见关键词:①共需、同时、刚好、恰好、相同……,考虑方程;②不超过、不多于、少于、至少……,考虑不等式(组);③最大利润、最省钱、运费最少、尽可能少、最小值……,考虑函数(一次函数、二次函数),根据函数性质求取最值.隐含的数学关系:①原材料供应型(使用量≤供应量)②容器容量型(载重量≥货物量)3.求解验证,回归实际①结果是否符合题目要求;②结果是否符合实际意义.➢精讲精练1.某次地震后,政府为安置灾民,准备从某厂调拨用于搭建帐篷的帆布5 600 m2和撑杆2 210 m.(1)该厂现有帆布4 600 m2和撑杆810 m,不足部分计划安排110人进行生产.若每人每天能生产帆布50 m2或撑杆40 m,则应分别安排多少人生产帆布和撑杆,才能确保同时完成各自的生产任务?(2)计划用这些材料在某安置点搭建甲、乙两种规格的帐篷共100顶,若搭建一顶甲型帐篷和一顶乙型帐篷所需帆布与撑杆的数量及安置人数如下表所示,则这100顶帐篷最多能安置多少灾2.现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(2)如果安排9辆货车前往甲地,其余货车前往乙地.设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围).(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.3.随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位数不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率.(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位).因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍.设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?4.旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的运营规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1 100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)设每日净收入为w元,请写出w与x之间的函数关系式.(3)若某日的净收入为4 420元,且使游客得到实惠,则当天的观光车的日租金是多少元?5.洛阳某校组织学生、家长代表与部分老师到郑州进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6 175元,都买二等座单程火车票需3 150元;家长代表与老师的人数之比为2:1.(1)参加社会实践活动的老师、家长代表与学生各有多少人?(2)由于各种原因,二等座单程火车票只能买x张(x<参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y与x之间的函数关系式.(3)在(2)的方案下,请求出当x=30时,购买单程火车票的总费用.【参考答案】➢课前预习1.二,一,等式,消元,加减消元法;未知数,等式,去分母,检验;一,二,等式,配方法,公式法,因式分解法;不等号,不等式.2. (1)121545x x ==,(2)121612x x ==,➢ 精讲精练1. (1)应安排40人生产帆布,70人生产撑杆,才能确保同时完成各自的生产任务.(2)这100顶帐篷最多能安置760名灾民. 2. (1)大货车8辆,小货车10辆.(2)W =70a +11 550(0≤a ≤8且a 为整数). (3)总运费最少的货车调配方案:4辆,前往乙地的大货车3辆,前往乙地的小货车6辆时,总运费最少,最少总运费为11 900元.3. (1)该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率为20%.(2)①t 的值为25.②该养老中心建成后最多提供养老床位260个,最少提供养老床位180个. 4. (1)每辆车的日租金至少应为25元.(2)250110001005170110010035055x x x w x x x x -<⎧⎪=⎨-+-<⎪⎩≤≤(且为的倍数)(且为的倍数).(3)当天的观光车的日租金是120元.5. (1)参加社会实践活动的老师有5人,家长代表有10人,学生有50人.(2)当0<x <50时,最经济的购票方案为:一部分学生买二等座学生票x 张,其余学生、家长代表、老师买一等座火车票(65-x )张;当50≤x <65时,最经济的购票方案为:学生都买二等座学生票50张,(x -50)名成年人买二等座火车票,(65-x )名成年人买一等座火车票.5061750503554255065x x x y x x x -+<<⎧=⎨-+<⎩≤(,且为整数)(,且为整数).(3)当x =30时,购买单程火车票的总费用为4 675元.数学模型应用问题(习题)➢ 例题示范例1:为支持抗震救灾,某市A ,B ,C 三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往重灾地区的D ,E 两县.根据灾区的情况,这批赈灾物资运往D 县的数量比运往E 县的数量的2倍少20吨.(1)求这批赈灾物资运往D ,E 两县的数量各是多少.(2)若要求C 地运往D 县的赈灾物资为60吨,A 地运往D 县的赈灾物资为x 吨(x 为整数),B 地运往D 县的赈灾物资数量小于A 地运往D 县的赈灾物资数量的2倍.其余的赈灾物资全部运往E 县,且B 地运往E 县的赈灾物资数量不超过23吨,则A ,B 两地的赈灾物资运往D ,E 两县的方案有几种?请你写出具体的运送方案.(3)已知A ,B ,C 三地的赈灾物资运往D ,E 两县的费用如下表:2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【解题要点】①理解题意,梳理信息 列表梳理信息,如下:关键词“全部运往”、“小于”、“不超过”,确定属于方程不等式类型. 隐性条件:运送赈灾物资均为正整数. ③求解验证,回归实际根据关键词列等式、不等式,求解.验证结果是否符合实际. 【过程示范】解:(1)设运往E 县的物资为m 吨,则运往D 县的物资为(2m -20)吨.根据题意得,m +2m -20=100+100+80 解得,m =100 2×100-20=180(吨)∴运往E 县的物资为100吨,运往D 县的物资为180吨.(2)根据题意得,12022023x x x -<-⎧⎨⎩≤解得,4043x <≤ ∵x 是正整数 ∴x 可取41,42,43 运送方案如下, 方案一:w=220x+250(100-x)+200(120-x)+220(x-20)+200×60+210×20=-10x+60 800∵-10<0∴w随x的增大而减小∴当x=41时,w max=60 390(元)∴该公司承担运送物资的总费用最多是60 390元.➢巩固练习1.某服装公司招工广告承诺:熟练工人每月工资至少3 000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B 型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为w元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?【列表分析】【解题过程】2.在“绿满河南”行动中,某社区计划对面积为1 800 m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队工作3天,乙队工作2天共可完成400 m2,甲队工作1天,乙队工作4天共可完成300 m2.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用为0.6万元,乙队每天绿化费用为0.25万元,且甲、乙两队施工的总天数不超过26天,则如何安排甲、乙两队施工的天数,才能使施工总费用最低?并求出最低费用.【列表分析】【解题过程】3.某镇水库的可用水量为12 000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能维持居民15年的用水量.(1)该镇年降水量以及每人年平均用水量分别是多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米的水才能实现目标?(3)某企业投入1 000万元购买设备,每天能淡化5 000立方米海水,淡化率为70%.每淡化1立方米海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/立方米的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后才能收回成本?(结果精确到个位)【列表分析】【解题过程】➢思考小结应用题中建立数学模型往往要考虑两方面:①题目当中明确指出的数学关系,常和关键词相关;②隐含的数学关系,往往结合实际情况考虑,常见的有非负数、整数等制约条件.【参考答案】1.(1)一名熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.(2)该公司在执行规定后违背了广告承诺,理由略.2.(1)甲队每天能完成绿化的面积是100 m2,乙队每天能完成绿化的面积是50 m2.(2)y=-2x+36(0<x<18且x为整数).(3)安排甲队施工10天,乙队施工16天,施工总费用最低,最低费用为10万元.3.(1)该镇年降水量是200万立方米,每人年平均用水量是50立方米.(2)该镇居民人均每年需节约16立方米的水才能实现目标.(3)该企业至少9年后才能收回成本.。