北京市各区2012年高考数学一模试题分类解析(17) 几何证明选讲 理

合集下载

2012年理数高考试题答案及解析北京

2012年理数高考试题答案及解析北京

2012年普通高等学校招生全国统一考试数学 (理 )(北京卷 )本试卷共 5 页 . 150 分 .考试时长 120 分钟 .考试生务必将答案答在答题卡上 .在试卷上作答无效 .考试结束后,将本试卷和答题卡一并交回.第一部分 ( 选择题共 40 分 )一、选择题共 8 小题。

每小题 5 分 .共 40 分 .在每小题列出的四个选项中, 选出符合胜目要求的一项 .1.已知集合 A={x ∈ R|3x+2> 0} B={x ∈ R|( x+1 ) (x-3) > 0} 则 A ∩ B=A ( -, -1) B ( -1, -2) C( -2,3)D (3,+ )33【解析】和往年一样,依然的集合 (交集 )运算,本次考查的是一次和二次不等式的解法。

因为 A{ x R | 3x 20}x2 B{ x | x1或 x 3} 画出数,利用二次不等式可得3轴易得: A B { x | x 3} .故选 D .【答案】 D2.设不等式组0 x2,D ,在区域 D 内随机取一个点,则此点到坐标y,表示平面区域为2原点的距离大于 2 的概率是(A )(B ) 2( C )( D ) 44246【解析】题目中0 x 2 D0 y表示的区域如图正方形所示,而动点2可以存在的位置为正方形面积减去四分之一圆的面积部分,因此2 2 1224P4,故选 D 。

2 24【答案】 D3.设 a , b ∈R 。

“ a=0”是“复数 a+bi 是纯虚数”的( )A. 充分而不必要条件B.必要而不充分条件C.充分必要条件D. 既不充分也不必要条件【解析】当 a0 时,如果 b0同时等于零,此时 a bi0 是实数,不是纯虚数,因此不是充分条件;而如果 a bi 已经为纯虚数,由定义实部为零,虚部不为零可以得到a 0 ,因此想必要条件,故选 B 。

【答案】 B4.执行如图所示的程序框图,输出的 S 值为( )A. 2 B .4 C.8 D. 16【解析】 k 0 , s1k 1, s 1 k 2 , s 2k 2 , s 8 ,循环结束,输出的 s 为 8,故选 C。

2012年北京市各区二模试题分类解析【数学理】(17):几何证明选讲.pdf

2012年北京市各区二模试题分类解析【数学理】(17):几何证明选讲.pdf

二、[教学重点] 1.了解作者留学日本的情况、与藤野先生的交往和本文的写作背景。

2.把握课文的组织结构,理解课文的思想内容。

三、[教学难点] 掌握本文通过典型事例突出人物品质的写法 五、[教学过程] 第一课时 [教学内容] 了解背景,学习词语,初读课文。

[教学环节] 一、导入新课 学过了《从百草园到三味书屋》这篇散文,我们了解到三味书屋中的老先生虽然施行的是封建书塾教育,但思想还算开明,因此,鲁迅对他“很恭敬”。

虽是“很恭敬”,但并不是很有感情。

藤野先生是鲁迅在日本仙台学医时的一位日本医专的教授,他是一位怎样的老师呢?鲁迅对他的感情又是如何呢?让我们一起走访《藤野先生》吧! 二、简介作者、藤野先生和作品的写作背景。

三、学生默读课文,疏通有关阅读障碍 要求:1.标注出难字难词。

2.注意:文章变换了几个地点? 3.划分文章的段落层次,并说说各部分的大意。

学生默读后,讨论明确: 1.需要注意的字词列举如下: (多媒体展示) 绯(fēi)红:鲜红。

会馆:旧时同乡或同业的人在京城、省会或大商埠设立的寄寓和机构。

流言:流传的毫无根据的坏话。

瞥(pīe)见:很快地看一下。

畸(jī)形:不正常的形状。

遗民:a.留下的在国外的人;b.改朝换代后仍效忠前一朝代的人;c.大乱后遗留下来的 人民。

不逊(Xùn):不客气;无礼貌;骄傲、蛮横。

美其名曰:(把不美的事物)美化它的名字叫。

四、学习课文第一部分 1.学生自由朗读第一部分内容。

2.思考:(1)请标出最能表现清国留学生丑态的词语和句子。

(2)对于这些清国留学生,“我”是持什么态度?哪些词语表明了“我”的态度? (3)从“我”的态度,可以看出作者的什么思想? 表达了作者对东京“清国留学生”的恶浊生活的憎恶、失望和不满,强有力地讽刺了这些顽固维护清王朝统治的“遗少”,强烈表达了作者对他们的极端憎恶的感情。

3.找出人物外貌、语言描写的语句,体现了人物什么特点。

2012年高考数学试卷及解析北京卷(理科)

2012年高考数学试卷及解析北京卷(理科)

2012年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考试生务必将答案答在答题卡上,在试卷上作 无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{}|320A x x =∈+>R ,()(){}|130B x x x =∈+->R ,则A B = ( )A .()1-∞-,B .213⎧⎫--⎨⎬⎩⎭,C .233⎛⎫- ⎪⎝⎭,D .()3+∞,2.设不等式组0202x y ⎧⎨⎩≤≤,≤≤表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A .π4B .π22- C .π6D .4π4- 3.设a b ∈R ,.“0a =”是“复数i a b +是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.执行如图所示的程序框图,输出的S 值为( )A .2B .4C .8D .165.如图,90ACB ∠=︒,CD AB ⊥于点D ,以BD 为直径的圆与BC 交于点E ,则( )A .CE CB AD DB ⋅=⋅ B .CE CB AD AB ⋅=⋅C .2AD AB CD ⋅= D .2CE EB CD ⋅=EBDAC6.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( ) A .24 B .18 C .12 D .67.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+B.30+C.56+D.60+8.某棵果树前n 前的总产量n S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,m 值为( )A .5B .7C .9D .11344正(主)视图侧(左)视图俯视图第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9直线21x t y t =+⎧⎨=--⎩(t 为参数)与曲线3cos 3sin x y αα=⎧⎨=⎩(α为参数)的交点个数为 .10.已知{}n a 为等差数列,n S 为其前n 项和.若112a =,23S a =,则2a = . 11.在ABC △中,若2a =,7b c +=,1cos 4B =-,则b = .12.在直角坐标系xOy 中,直线l 过抛物线24y x =的焦点F ,且与该抛物线相交于A ,B 两点,其中点A在x 轴上方,若直线l 的倾斜角为60︒.则OAF △的面积为 .13.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为 ;DE DC ⋅的最大值为 .14.已知()()()23f x m x m x m =-++,()22x g x =-.若同时满足条件:①x ∀∈R ,()0f x <或()0g x <;②()()()40x f x g x ∃∈-∞-<,,, 则m 的取值范围是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数()()sin cos sin 2sin x x x f x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递增区间. 16.(本小题共14分)如图1,在Rt ABC △中,90C ∠=︒,3BC =,6AC =.D ,E分别是AC ,AB 上的点,且DE BC ∥,2DE =,将ADE △沿DE 折起到1A DE △的位置,使1AC CD ⊥,如图2. (1)求证:1AC ⊥平面BCDE ; (2)若M 是1A D 的中点,求CM 与平面1A BE 所成角的大小; (3)线段BC 上是否存在点P ,使平面1A DP 与平面1A BE 垂直?说明理由.ACDEA 1MCBE D图1图217.(本小题共13分)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a b c ,,,其中0a >,600a b c ++=.当数据a b c ,,的方差2s 最大时,写出a b c ,,的值(结论不要求证明),并求此时2s 的值. (求:()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦ ,其中x 为数据1x ,2x ,…,n x 的平均数)18.(本小题共13分)已知函数()()210f x ax a =+>,()3g x x bx =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点()1c ,处具有公共切线,求a ,b 的值; (2)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(]1-∞-,上的最大值.19.(本小题共14分)已知曲线()()()22:528C m x m y m -+-=∈R(1)若曲线C 是焦点在x 轴上的椭圆,求m 的取值范围;(2)设4m =,曲线C 与y 轴的交点为A B ,(点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点M ,N ,直线1y =与直线BM 交于点G .求证:A G N ,,三点共线.20.(本小题共13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记()S m n ,为所有这样的数表构成的集合.对于()A S m n ∈,,记()i r A 为A 的第i 行各数之和()1i m ≤≤,()j c A 为A 的第j 列各数之和()1j n ≤≤;记()k A 为()1||r A ,()2||r A ,…,()||m r A ,()1||c A ,()2||c A ,…,()||n c A 中的最小值.(1)对如下数表A ,求()k A 的值;(2)设数表(A S ∈求()k A 的最大值;(3)给定正整数t ,对于所有的()221A S t ∈+,,求()k A 的最大值.参考答案一、选择题二、填空题三、解答题 15. 解: (sin cos )sin 2(sin cos )2sin cos ()2(sin cos )cos sin sin x x x x x x xf x x x x x x--===-{}πsin 21cos 221|π4x x x x x k k ⎛⎫=-+=--≠∈ ⎪⎝⎭Z ,,(1)原函数的定义域为{}|πx x k k ≠∈Z ,,最小正周期为π.(2)原函数的单调递增区间为πππ8k k ⎡⎫-+⎪⎢⎣⎭,k ∈Z ,3πππ8k k ⎛⎤+⎥⎝⎦,k ∈Z16.解:(1) CD DE ⊥,1A E DE ⊥∴DE ⊥平面1A CD ,又 1AC ⊂平面1A CD , ∴1AC ⊥DE 又1AC CD ⊥, ∴1AC ⊥平面BCDE yC(2)如图建系C xyz -,则()200D -,,,(00A ,,,()030B ,,,()220E -,,∴(103A B =-,,,()1210A E =-- ,,设平面1A BE 法向量为()n x y z =,,则1100A B n A E n ⎧⋅=⎪⎨⋅=⎪⎩∴3020y x y ⎧-=⎪⎨--=⎪⎩∴2z y y x ⎧=⎪⎪⎨⎪=-⎪⎩∴(12n =-,又∵(10M -,∴(10CM =-,∴cos ||||CM n CM n θ⋅====⋅ ∴CM 与平面1A BE 所成角的大小45︒(3)设线段BC 上存在点P ,设P 点坐标为()00a ,,,则[]03a ∈,则(10A P a =-,,,()20DP a = ,,设平面1A DP 法向量为()1111n x y z =,,则1111020ay x ay ⎧-=⎪⎨+=⎪⎩∴111112z x ay⎧=⎪⎪⎨⎪=-⎪⎩∴()136n a =-,假设平面1A DP 与平面1A BE 垂直 则10n n ⋅=,∴31230a a ++=,612a =-,2a =- ∵03a <<∴不存在线段BC 上存在点P ,使平面1A DP 与平面1A BE 垂直 17.(1)由题意可知:4002=6003(2)由题意可知:200+60+403=100010(3)由题意可知:22221(120000)3s a b c =++-,因此有当600a =,0b =,0c =时,有280000s =.18. 解:(1)由()1c ,为公共切点可得:2()1(0)f x ax a =+>,则()2f x ax '=,12k a =, 3()g x x bx =+,则2()=3f x x b '+,23k b =+,∴23a b =+①又(1)1f a =+,(1)1g b =+,∴11a b +=+,即a b =,代入①式可得:33a b =⎧⎨=⎩. (2) 24a b =,∴设3221()()()14h x f x g x x ax a x =+=+++则221()324h x x ax a '=++,令()0h x '=,解得:12a x =-,26ax =-;0a >,∴26a a -<-,∴原函数在2a ⎛⎫-∞- ⎪⎝⎭,单调递增,在26a a ⎛⎫-- ⎪⎝⎭,单调递减,在6a ⎛⎫-+∞ ⎪⎝⎭,上单调递增 ①若12a--≤,即2a ≤时,最大值为2(1)4a h a =-;②若126a a -<-<-,即26a <<时,最大值为12a h ⎛⎫-= ⎪⎝⎭③若16a --≥时,即6a ≥时,最大值为12a h ⎛⎫-= ⎪⎝⎭. 综上所述:当(]02a ∈,时,最大值为2(1)4a h a =-;当()2,a ∈+∞时,最大值为12a h ⎛⎫-= ⎪⎝⎭.19.(1)原曲线方程可化简得:2218852x y m m +=--由题意可得:8852805802m m mm ⎧>⎪--⎪⎪>⎨-⎪⎪>⎪-⎩,解得:752m <<(2)由已知直线代入椭圆方程化简得:22(21)16240k x kx +++=,2=32(23)k ∆-,解得:232k >由韦达定理得:21621M N k x x k +=+①,22421M N x x k =+,② 设(,4)N N N x k x +,(,4)M M M x kx +,(1)G G x ,MB 方程为:62M M kx y x x +=-,则316M M x G kx ⎛⎫⎪+⎝⎭,, ∴316M M x AG x k ⎛⎫=-⎪+⎝⎭ ,,()2N N AN x x k =+,, 欲证A G N ,,三点共线,只需证AG ,AN共线即3(2)6MN N M x x k x x k +=-+成立,化简得:(3)6()M N M N k k x x x x +=-+将①②代入易知等式成立,则A G N ,,三点共线得证。

数学_2012年北京市西城区高考数学一模试卷(理科)(含答案)

数学_2012年北京市西城区高考数学一模试卷(理科)(含答案)

2012年北京市西城区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集U =R ,集合A ={x|1x ≥1},则∁U A( )A (0, 1)B (0, 1]C (−∞, 0]∪(1, +∞)D (−∞, 0)∪[1, +∞)2. 执行如图所示的程序框图,若输入x =2,则输出y 的值为( )A 2B 5C 11D 233. 若实数x ,y 满足条件{x +y ≥0x −y +3≥00≤x ≤3,则z =2x −y 的最大值为( )A 9B 3C 0D −34. 已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则其左视图的面积是( )A 4√3cm 2B 2√3cm 2C 8cm 2D 4cm 25. 已知函数f(x)=sin 4ωx −cos 4ωx 的最小正周期是π,那么正数ω=( )A 2B 1C 12D 14 6. 若a =log 23,b =log 32,c =log 46,则下列结论正确的是( )A b <a <cB a <b <cC c <b <aD b <c <a7. 设等比数列{a n }的各项均为正数,公比为q ,前n 项和为S n .若对∀n ∈N ∗,有S 2n <3S n ,则q 的取值范围是( )A (0, 1]B (0, 2)C [1, 2)D (0,√2)8. 已知集合A ={x|x =a 0+a 1×3+a 2×32+a 3×33},其中a k ∈{0, 1, 2}(k =0, 1, 2, 3),且a 3≠0.则A 中所有元素之和等于( )A 3240B 3120C 2997D 2889二、填空题共6小题,每小题5分,共30分.9. 某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13, 14),[14, 15),[15, 16),[16, 17),[17, 18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16, 18]的学生人数是________.10. (x −2)6的展开式中x 3的系数是________.(用数字作答)11. 如图,AC 为⊙O 的直径,OB ⊥AC ,弦BN 交AC 于点M .若OC =√3,OM =1,则MN =________. 12. 在极坐标系中,极点到直线l:ρsin(θ+π4)=√2的距离是________.13. 已知函数f(x)={x 12,0≤x ≤c x 2+x,−2≤x <0其中c >0.那么f(x)的零点是________;若f(x)的值域是[−14,2],则c 的取值范围是________.14. 在直角坐标系xOy 中,动点A ,B 分别在射线y =√33x(x ≥0)和y =−√3x(x ≥0)上运动,且△OAB 的面积为1.则点A ,B 的横坐标之积为________;△OAB 周长的最小值是________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15. 在△ABC 中,已知sin(A +B)=sinB +sin(A −B).(1)求角A ;(2)若|BC →|=7,AB →⋅AC →=20,求|AB →+AC →|.16. 乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(1)求甲以4比1获胜的概率;(2)求乙获胜且比赛局数多于5局的概率;(3)求比赛局数的分布列.17. 如图,四边形ABCD 与BDEF 均为菱形,∠DAB =∠DBF =60∘,且FA =FC .(1)求证:AC ⊥平面BDEF ;(2)求证:FC // 平面EAD ;(3)求二面角A −FC −B 的余弦值.18. 已知函数f(x)=e ax⋅(ax+a+1),其中a≥−1.(1)当a=1时,求曲线y=f(x)在点(1, f(1))处的切线方程;(2)求f(x)的单调区间.19. 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√53,定点M(2, 0),椭圆短轴的端点是B1,B2,且MB1⊥MB2.(1)求椭圆C的方程;(2)设过点M且斜率不为0的直线交椭圆C于A,B两点.试问x轴上是否存在定点P,使PM平分∠APB?若存在,求出点P的坐标;若不存在,说明理由.20. 对于数列A n:a1,a2,…,a n(a i∈N, i=1, 2,…,n),定义“T变换”:T将数列A n变换成数列B n:b1,b2,…,b n,其中b i=|a i−a i+1|(i=1, 2,…,n−1),且b n=|a n−a1|,这种“T 变换”记作B n=T(A n).继续对数列B n进行“T变换”,得到数列C n,…,依此类推,当得到的数列各项均为0时变换结束.(1)试问A3:4,2,8和A4:1,4,2,9经过不断的“T变换”能否结束?若能,请依次写出经过“T变换”得到的各数列;若不能,说明理由;(2)求A3:a1,a2,a3经过有限次“T变换”后能够结束的充要条件;(3)证明:A4:a1,a2,a3,a4一定能经过有限次“T变换”后结束.2012年北京市西城区高考数学一模试卷(理科)答案1. C2. D3. A4. A5. B6. D7. A8. D9. 5410. −16011. 112. √213. −1和0,0<c≤414. √32,2(1+√2)15. 解:(1)原式可化为:sinB=sin(A+B)−sin(A−B)=sinAcosB+cosAsinB−sinAcosB+cosAsinB=2cosAsinB,…∵ B∈(0, π),∴ sinB>0,∴ cosA=12,…又A∈(0, π),∴ A=π3;…(2)由余弦定理,得|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cosA ,…∵ |BC →|=7,AB →⋅AC →=|AB →|⋅|AC →|⋅cosA =20,∴ |AB →|2+|AC →|2=89,…∵ |AB →+AC →|2=|AB →|2+|AC →|2+2AB →⋅AC →=89+40=129,…∴ |AB →+AC →|=√129.…16. 解:(1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是12. … 记“甲以4比1获胜”为事件A ,则P(A)=C 43(12)3(12)4−312=18. … (2)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为P 1=C 53(12)3(12)5−312=532,… 乙以4比3获胜的概率为P 2=C 63(12)3(12)6−312=532,… 所以 P(B)=P 1+P 2=516. …(3)设比赛的局数为X ,则X 的可能取值为4,5,6,7.P(X =4)=2C 44(12)4=18,…P(X =5)=2C 43(12)3(12)4−312=14,…P(X =6)=2C 53(12)3⋅(12)5−3⋅12=516,…P(X =7)=2C 63(12)3(12)6−3⋅12=516. … 比赛局数的分布列为: 84161617. (1)证明:设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点.又 FA =FC ,所以 AC ⊥FO .因为 FO ∩BD =O ,BD ⊂平面BDEF ,所以 AC ⊥平面BDEF .(2)证明:因为四边形ABCD 与BDEF 均为菱形,所以AD // BC ,DE // BF ,因为AD ∩DE =D ,BC ∩BF =B ,所以 平面FBC // 平面EAD .又FC ⊂平面FBC ,所以FC // 平面EAD ;(3)解:因为四边形BDEF 为菱形,且∠DBF =60∘,所以△DBF 为等边三角形.因为O 为BD 中点,所以FO ⊥BD ,故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立如图所示的空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘,则BD =2,所以OB =1,OA =OF =√3. 所以 O(0,0,0),A(√3,0,0),B(0,1,0),C(−√3,0,0),F(0,0,√3).所以 CF →=(√3,0,√3),CB →=(√3,1,0).设平面BFC 的法向量为n →=(x, y, z),则有{√3x +√3z =0√3x +y =0, 取x =1,得n →=(1,−√3,−1).∵ 平面AFC 的法向量为v →=(0, 1, 0).由二面角A −FC −B 是锐角,得|cos <n →,v →>|=|n →⋅v →|n →||v →||=√155. 所以二面角A −FC −B 的余弦值为√155. 18. 解:(1)当a =1时,f(x)=e x ⋅(1x+2), f ′(x)=e x ⋅(1x +2−1x 2).由于f(1)=3e ,f ′(1)=2e ,所以曲线y =f(x)在点(1, f(1))处的切线方程是2ex −y +e =0.(2)f ′(x)=ae ax (x+1)[(a+1)x−1]x 2,x ≠0.①当a =−1时,令f ′(x)=0,解得x =−1,所以f(x)的单调递减区间为(−∞, −1),单调递增区间为(−1, 0),(0, +∞);当a ≠−1时,令f ′(x)=0,解得x =−1或x =1a+1.②当−1<a <0时,f(x)的单调递减区间为(−∞, −1),(1a+1,+∞),单调递增区间为(−1, 0),(0,1a+1);③当a =0时,f(x)为常值函数,不存在单调区间;④当a >0时,f(x)的单调递减区间为(−1, 0),(0,1a+1),单调递增区间为(−∞, −1),(1a+1,+∞). 19. 解:(1)由 59=e 2=a 2−b 2a 2=1−b 2a 2,得 b a =23.… 依题意△MB 1B 2是等腰直角三角形,从而b =2,故a =3.… 所以椭圆C 的方程是x 29+y 24=1.…(2)设A(x 1, y 1),B(x 2, y 2),直线AB 的方程为x =my +2.将直线AB 的方程与椭圆C 的方程联立,消去x 得 (4m 2+9)y 2+16my −20=0.… 所以 y 1+y 2=−16m 4m 2+9,y 1y 2=−204m 2+9.…若PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,所以k PA +k PB =0.…设P(a, 0),则有 y 1x 1−a +y 2x 2−a =0.将 x 1=my 1+2,x 2=my 2+2代入上式,整理得2my 1y 2+(2−a)(y 1+y 2)(my 1+2−a)(my 2+2−a)=0, 所以 2my 1y 2+(2−a)(y 1+y 2)=0.…将 y 1+y 2=−16m4m 2+9,y 1y 2=−204m 2+9代入上式,整理得 (−2a +9)⋅m =0.…由于上式对任意实数m 都成立,所以 a =92.综上,存在定点P(92,0),使PM 平分∠APB .…20. (1)解:数列A 3:4,2,8不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形. … 数列A 4:1,4,2,9能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0.…(2)解:A 3经过有限次“T 变换”后能够结束的充要条件是a 1=a 2=a 3.…若a 1=a 2=a 3,则经过一次“T 变换”就得到数列0,0,0,从而结束. …当数列A 3经过有限次“T 变换”后能够结束时,先证命题“若数列T(A 3)为常数列,则A 3为常数列”.当a 1≥a 2≥a 3时,数列T(A 3):a 1−a 2,a 2−a 3,a 1−a 3.由数列T(A 3)为常数列得a 1−a 2=a 2−a 3=a 1−a 3,解得a 1=a 2=a 3,从而数列A 3也为常数列.其它情形同理,得证.在数列A3经过有限次“T变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列A3也为常数列.…所以,数列A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3.(3)证明:先证明引理:“数列T(A n)的最大项一定不大于数列A n的最大项,其中n≥3”.证明:记数列A n中最大项为max(A n),则0≤a i≤max(A n).令B n=T(A n),b i=a p−a q,其中a p≥a q.因为a q≥0,所以b i≤a p≤max(A n),故max(B n)≤max(A n),证毕.…现将数列A4分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max(B4)≤max(A4)−1.第二类是含有为0的项,且与最大项相邻,此时max(B4)=max(A4).下面证明第二类数列A4经过有限次“T变换”,一定可以得到第一类数列.不妨令数列A4的第一项为0,第二项a最大(a>0).(其它情形同理)①当数列A4中只有一项为0时,若A4:0,a,b,c(a>b, a>c, bc≠0),则T(A4):a,a−b,|b−c|,c,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,a,b(a>b, b≠0),则T(A4):a,0,a−b,b;T(T(A4)):a,a−b,|a−2b|,a−b此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,b,a(a>b, b≠0),则T(A4):a,a−b,a−b,b,此数列各项均不为0,为第一类数列;若A4:0,a,a,a,则T(A4):a,0,0,a;T(T(A4)):a,0,a,0;T(T(T(A4))):a,a,a,a,此数列各项均不为0,为第一类数列.②当数列A4中有两项为0时,若A4:0,a,0,b(a≥b>0),则T(A4):a,a,b,b,此数列各项均不为0,为第一类数列;若A4:0,a,b,0(a≥b>0),则T(A):a,a−b,b,0,T(T(A)):b,|a−2b|,b,a,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③当数列A4中有三项为0时,只能是A4:0,a,0,0,则T(A):a,a,0,0,T(T(A)):0,a,0,a,T(T(T(A))):a,a,a,a,此数列各项均不为0,为第一类数列.总之,第二类数列A4至多经过3次“T变换”,就会得到第一类数列,即至多连续经历3次“T变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束.…。

2012年北京市海淀区高考数学一模试卷(理科)(附答案解析)

2012年北京市海淀区高考数学一模试卷(理科)(附答案解析)

2012年北京市海淀区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A ={x|x >1},B ={x|x <m},且A ∪B =R ,那么m 的值可以是( ) A.−1 B.0 C.1 D.22. 在等比数列{a n }中,a 1=8,a 4=a 3a 5,则a 7=( ) A.116B.18C.14D.123. 在极坐标系中,过点(2,3π2)且平行于极轴的直线的极坐标方程是( )A.ρsin θ=−2B.ρcos θ=−2C.ρsin θ=2D.ρcos θ=24. 已知向量a →=(1, x),b →=(−1, x),若2a →−b →与b →垂直,则|a →|=( )A.√2B.√3C.2D.45. 执行如图所示的程序框图,输出的k 值是( )A.4B.5C.6D.76. 从甲、乙等5个人中选出3人排成一列,则甲不在排头的排法种数是( ) A.12 B.24C.36D.487. 已知函数f(x)={−x 2+ax ,x ≤1,ax −1,x >1, 若∃x 1,x 2∈R ,x 1≠x 2,使得f(x 1)=f(x 2)成立,则实数a 的取值范围是( ) A.a <2 B.a >2C.−2<a <2D.a >2或a <−28. 在正方体ABCD −A′B′C′D′中,若点P (异于点B )是棱上一点,则满足BP 与AC′所成的角为45∘的点P 的个数为( )A.0B.3C.4D.6二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上.复数a+2i1−i 在复平面内所对应的点在虚轴上,那么实数a =________.过双曲线x 29−y 216=1的右焦点,且平行于经过一、三象限的渐近线的直线方程是________.若tan α=12,则cos (2α+π2)=________.设某商品的需求函数为Q =100−5P ,其中Q ,P 分别表示需求量和价格,如果商品需求弹性EQEP 大于1(其中EQ EP=−Q ′QP ,Q ′是Q 的导数),则商品价格P 的取值范围是________.如图,以△ABC 的边AB 为直径的半圆交AC 于点D ,交BC 于点E ,EF ⊥AB 于点F ,AF =3BF ,BE =2EC =2,那么∠CDE =________,CD =________.已知函数f(x)={1,x ∈Q0,x ∈C R Q 则(I)f (f(x))=________;(II )给出下列三个命题: ①函数f(x)是偶函数;②存在x i ∈R(i =1, 2, 3),使得以点(x i , f(x i ))(i =1, 2, 3)为顶点的三角形是等腰直角三角形; ③存在x i ∈R(i =1, 2, 3, 4),使得以点(x i , f(x i ))(i =1, 2, 3, 4)为顶点的四边形为菱形. 其中,所有真命题的序号是________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列. (1)若b =√13,a =3,求c 的值;(2)设t =sin A sin C ,求t 的最大值.在四棱锥P −ABCD 中,AB // CD ,AB ⊥AD ,AB =4,AD =2√2,CD =2,PA ⊥平面ABCD ,PA =4. (Ⅰ)设平面PAB ∩平面PCD =m ,求证:CD // m ; (Ⅱ)求证:BD ⊥平面PAC ;(Ⅲ)设点Q 为线段PB 上一点,且直线QC 与平面PAC 所成角的正弦值为√33,求PQPB的值.某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0, 100],样本数据分组为[0, 20),[20, 40),[40, 60),[60, 80),[80, 100].(1)求直方图中x 的值;(2)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(3)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)已知函数f(x)=e −kx (x 2+x −1k )(k <0). (1)求f(x)的单调区间;(2)是否存在实数k ,使得函数f(x)的极大值等于3e −2?若存在,求出k 的值;若不存在,请说明理由.在平面直角坐标系xOy 中,椭圆G 的中心为坐标原点,左焦点为F 1(−1, 0),P 为椭圆G 的上顶点,且∠PF 1O =45∘.(Ⅰ)求椭圆G 的标准方程;(Ⅱ)已知直线l 1:y =kx +m 1与椭圆G 交于A ,B 两点,直线l 2:y =kx +m 2(m 1≠m 2)与椭圆G 交于C ,D 两点,且|AB|=|CD|,如图所示. (ⅰ)证明:m 1+m 2=0;(ⅱ)求四边形ABCD 的面积S 的最大值.对于集合M ,定义函数f M (x)={−1,x ∈M1,x ∉M. 对于两个集合M ,N ,定义集合M △N ={x|f M (x)⋅f N (x)=−1}.已知A ={2, 4, 6, 8, 10},B ={1, 2, 4, 8, 16}.(Ⅰ)写出f A (1)和f B (1)的值,并用列举法写出集合A △B ;(Ⅱ)用Card(M)表示有限集合M 所含元素的个数,求Card(X △A)+Card(X △B)的最小值; (Ⅲ)有多少个集合对(P, Q),满足P ,Q ⊆A ∪B ,且(P △A)△(Q △B)=A △B ?参考答案与试题解析2012年北京市海淀区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【考点】并集及其运算【解析】根据题意,做出集合A,由并集的定义分析可得,若A∪B=R,必有m<1,分析选项,即可得答案.【解答】根据题意,若集合A={x|x>1},B={x|x<m},且A∪B=R,必有m>1,分析选项可得,D符合;2.【答案】B【考点】等比数列的性质【解析】由等比数列的性质可知,a4=a3a5=a42可求a4,然后由a1⋅a7=a42可求【解答】由等比数列的性质可知,a4=a3a5=a42∵a4≠0∴a4=1∵a1=8∴a1⋅a7=a42=1∴a7=183.【答案】A【考点】圆的极坐标方程【解析】如图所示,在Rt△OPQ中,利用直角三角形的边角关系及诱导公式可得ρ=2cos(θ−3π2)=2−sinθ,即可.【解答】解:如图所示,在Rt△OPQ中,ρ=2cos(θ−3π2)=2−sinθ,可化为ρsinθ=−2.故选A.4.【答案】C【考点】数量积判断两个平面向量的垂直关系平面向量数量积【解析】根据向量的坐标运算先求出2a→−b→,然后根据向量垂直的条件列式求出x的值,最后运用求模公式求|a→|.【解答】解∵a→=(1,x),b→=(−1,x),∴2a→−b→=2(1,x)−(−1,x)=(3, x),由(2a→−b→)⊥b→⇒3×(−1)+x2=0,解得x=−√3,或x=√3,∴a→=(1,−√3)或a→=(1,√3),∴|a→|=√12+(−√3)2=2,或|a→|=√12+(√3)2=2.故选C.5.【答案】B【考点】循环结构的应用【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出k的值.【解答】解:第一次循环:n=3×5+1=16,k=0+1=1,继续循环;第二次循环:n=162=8,k=1+1=2,继续循环;第三次循环:n=82=4,k=2+1=3,继续循环;第四次循环:n=42=2,k=3+1=4,继续循环;第五次循环:n=22=1,k=4+1=5,结束循环.输出k=5.故选B .6.【答案】 D【考点】排列、组合及简单计数问题 【解析】先分类:(1)不选甲,有A 43种选法;(2)选甲,共C 21⋅A 42种,相加可得. 【解答】解:(1)若不选甲,则有A 43=24种选法;(2)若选甲,则先从令两个位置中选一个给甲,再从其余的4人中选2人排列,共有C 21⋅A 42=24种, 由分类计数原理可得总的方法种数为24+24=48, 故选D 7. 【答案】 A【考点】全称命题与特称命题分段函数的解析式求法及其图象的作法【解析】若∃x 1,x 2∈R ,x 1≠x 2,使得f(x 1)=f(x 2)成立,则说明f(x)在R 上不单调,分a =0及a ≠0两种情况分布求解即可. 【解答】解:若∃x 1,x 2∈R ,x 1≠x 2,使得f(x 1)=f(x 2)成立,则说明f(x)在R 上不单调.①当a =0时,f(x)={−x 2,x ≤1,−1,x >1,,其图象如图所示,满足题意;②当a <0时,函数y =−x 2+ax 的对称轴x =a2<0,其图象如图所示,满足题意;③当a >0时,函数y =−x 2+ax 的对称轴x =a2>0,其图象如图所示, 要使得f(x)在R 上不单调,则只要二次函数的对称轴x =a2<1, ∴ a <2.综上可得,a <2.故选A. 8.【答案】 B【考点】异面直线及其所成的角 【解析】通过建立空间直角坐标系,通过分类讨论利用异面直线的方向向量所成的夹角即可找出所有满足条件的点P 的个数. 【解答】解:建立如图所示的空间直角坐标系,不妨设棱长AB =1,B(1, 0, 1),C(1, 1, 1).①在Rt △AA′C 中,tan ∠AA′C =|AC||AA ′|=√2,因此∠AA′C≠45∘.同理A′B′,A′D′与A′C 所成的角都为arctan √2≠45∘.故当点P 位于(分别与上述棱平行)棱BB′,BA ,BC 上时,与A′C 所成的角都为arctan √2≠45∘,不满足条件. ②当点P 位于棱AD 上时,设P(0, y, 1),(0≤y ≤1),则BP →=(−1, y, 0),A ′C →=(1, 1, 1). 若满足BP 与AC′所成的角为45∘,则√22=|cos <BP →,A ′C →>|=|BP →⋅A ′C →||BP →||A ′C →|=|−1+y|√1+y 2√3,化为y 2+4y +1=0,无正数解,舍去.同理,当点P 位于棱B′C 上时,也不符合条件.③当点P 位于棱A′D′上时,设P(0, y, 0),(0≤y ≤1), 则BP →=(−1, y, −1),A ′C →=(1, 1, 1). 若满足BP 与AC ′所成的角为45∘,则√22=|cos <BP →,A ′C →>|=|BP →⋅A ′C →||BP →||A ′C →|=√2+y 2⋅√3,化为y 2+8y −2=0,∵ 0≤y ≤1,解得y =3√2−4,满足条件,此时点P(0,3√2−4,0).④同理可求得棱A′B′上一点P(√3−1,0,0),棱A′A 上一点P(0,0,√3−1). 而其它棱上没有满足条件的点P .综上可知:满足条件的点P 有且只有3个. 故选B .二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上. 【答案】 2【考点】复数代数形式的乘除运算 复数的基本概念【解析】由题意,可先对所给的进行化简,由复数的除法规则,将复数化简成代数形式,再由题设条件其在复平面上对应的点在虚轴上,令实部为零即可得到参数的方程,从而解出参数的值 【解答】 解:复数a+2i 1−i=(a+2i)(1+i)(1−i)(1+i)=a−2+(a+2)i2又复数a+2i 1−i在复平面内所对应的点在虚轴上所以a −2=0,即a =2 故答案为2 【答案】4x −3y −20=0 【考点】 双曲线的特性 【解析】根据双曲线方程,可得右焦点的坐标为F(5, 0),且经过一、三象限的渐近线斜率为k =43.由平行直线的斜率相等,可得所求的直线方程的点斜式,再化成一般式即可. 【解答】解:∵ 双曲线的方程为x 29−y 216=1∴ a 2=9,b 2=16,得c =√a 2+b 2=5 因此,该双曲线右焦点的坐标为F(5, 0) ∵ 双曲线x 29−y 216=1的渐近线方程为y =±43x∴ 双曲线经过一、三象限的渐近线斜率为k =43∴ 经过双曲线右焦点,且平行于经过一、三象限的渐近线的直线方程是y =43(x −5) 化为一般式,得4x −3y −20=0. 故答案为:4x −3y −20=0 【答案】 −45【考点】同角三角函数间的基本关系二倍角的三角函数【解析】利用同角三角函数的基本关系,诱导公式,二倍角公式化简cos(2α+π2)为−2tanα1+tan2α,把tanα=12代入运算求得结果.【解答】∵tanα=12,∴cos(2α+π2)=−sin2α=−2sinαcosα=−2sinαcosαcos2α+sin2α=−2tanα1+tan2α=−45,【答案】(10, 20)【考点】函数最值的应用【解析】利用Q=100−5P,弹性EQEP大于1,建立不等式,解不等式即可得到结论.【解答】∵Q=100−5P,弹性EQEP大于1∴EQEP =−Q′QP=5P100−5P>1∴(P−10)(P−20)<0∴10<P<20【答案】60∘,3√1313【考点】与圆有关的比例线段【解析】如图所示,设圆心为点O,半径为R,连接OE,AE.利用已知AF=3FB,AF+FB=2R,可得FB=12R,又EF⊥AB,可得OE=EB,即△OEB为等边三角形,从而利用圆内接四边形的性质即可得出∠CDE的大小;也可求出AE.进而求出AC,再利用割线定理即可得出CD.【解答】解:如图所示,设圆心为点O,半径为R,连接OE,AE.由AB为⊙O的直径,∴∠AEB=90∘,∴AE⊥CE.∵AF=3FB,AF+FB=2R,∴FB=12R,又EF⊥AB,∴OE=EB,即△OEB为等边三角形.∴∠ABE=60∘.∴∠CDE=∠ABE=60∘;∴AE=BE tan60∘=2 √3.在Rt△ACE,AC=√AE2+CE2=√(2√3)2+12=√13.由割线定理可得:CD⋅CA=CE⋅CB,∴CD=√13=3√1313.故答案为60∘;3√1313.【答案】1,①③.【考点】命题的真假判断与应用函数解析式的求解及常用方法【解析】(I)对x分类:x∈Q和x∈C R Q,再由解析式求出f(f(x))的值;(II)①对x分类:x∈Q和x∈C R Q,分别判断出f(−x)=f(x),再由偶函数的定义判断出①正确;②由解析式做出大致图象:根据图象和等腰直角三角形的性质,进行判断即可;③取两个自变量是有理数,使得另外两个无理数差与两个有理数的差相等,即可得出此四边形为平行四边形.【解答】解:(I)由题意知,f(x)={1,x∈Q0,x∈C R Q,当x∈Q时,f(x)=1∈Q,则f(f(x))=1,当x∈C R Q时,f(x)=0∈Q,则f(f(x))=1,综上得,f(f(x))=1;(II)①当x∈Q时,则−x∈Q,故f(−x)=1=f(x),当x∈C R Q时,则−x∈C R Q,故f(−x)=0=f(x),∴函数f(x)是偶函数,①正确;②根据f(x)={1,x∈Q0,x∈C R Q,做出函数的大致图象:假设存在等腰直角三角形ABC,则斜边AB只能在x轴上或在直线y=1上,且斜边上的高始终是1,不妨假设A,B在x轴上,如图故斜边AB=2,故点A、B 的坐标不可能是无理数,否则O点不再是中点,故不存在另外,当AB在y=1上,C在x轴时,由于AB=2,则C的坐标应是有理数,故假设不成立,即不存在符合题意的等腰直角三角形,②错误;③根据②做出的图形知,取两个自变量是有理数,使得另外两个无理数差与两个有理数的差相等,即可画出平行四边形,且是对角线相互垂直,可以做出以点(x i, f(x i))(i=1, 2, 3, 4)为顶点的四边形为菱形,③正确.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.【答案】解:(1)因为A,B,C成等差数列,所以2B=A+C.因为A+B+C=π,所以B=π3.因为b=√13,a=3,b2=a2+c2−2ac cos B,所以c2−3c−4=0,解得c=4,或c=−1(舍去).(2)因为A+C=23π,所以,t=sin A sin(2π3−A)=sin A(√32cos A+12sin A)=√34sin2A+12(1−cos2A2)=14+12sin(2A−π6).因为0<A<2π3,所以,−π6<2A−π6<7π6.所以当2A−π6=π2,即A=π3时,t有最大值34.【考点】余弦定理等差数列的通项公式求两角和与差的正弦【解析】(1)由A,B,C成等差数列求得B的值,再由余弦定理求得c的值.(2)因为A+C=23π,利用两角和差的正弦公式化简函数t的解析式,再利用正弦函数的定义域和值域,求得t的最大值.【解答】解:(1)因为A,B,C成等差数列,所以2B=A+C.因为A+B+C=π,所以B=π3.因为b=√13,a=3,b2=a2+c2−2ac cos B,所以c2−3c−4=0,解得c=4,或c=−1(舍去).(2)因为A+C=23π,所以,t=sin A sin(2π3−A)=sin A(√32cos A+12sin A)=√34sin2A+12(1−cos2A2)=14+12sin(2A−π6).因为0<A<2π3,所以,−π6<2A−π6<7π6.所以当2A−π6=π2,即A=π3时,t有最大值34.【答案】(1)如图所示,过点B作BM // PA,并且取BM=PA,连接PM,CM.∴四边形PABM为平行四边形,∴PM // AB,∵AB // CD,∴PM // CD,即PM为平面PAB∩平面PCD=m,m // CD.(2)在Rt△BAD和Rt△ADC中,由勾股定理可得BD=√42+(2√2)2=2√6,AC=√22+(2√2)2=2√3.∵AB // DC,∴ODOB=OCOA=24=12,∴OD=13BD=2√63,OC=13AC=2√33.∴OD2+OC2=(2√63)2+(2√33)2=4=CD2,∴OC⊥OD,即BD⊥AC;∵PA⊥底面ABCD,∴PA⊥BD.∵PA∩AC=A,∴BD⊥平面PAC.(Ⅲ)建立如图所示的空间直角坐标系,则A(0, 0, 0),B(4, 0, 0),D(0, 2√2, 0),C(2, 2√2, 0),P(0, 0, 4).∴PB→=(4,0,−4),设PQ→=λPB→,则Q(4λ, 0, 4−4λ),∴QC→=(2−4λ,2√2,4λ−4).BD→=(−4,2√2,0),由(2)可知BD→为平面PAC的法向量.∴cos<BD→,QC→>=BD→⋅QC→|BD→||QC→|=2√6√(2−4λ)2+(2√2)2+(4λ−4)2,∵直线QC与平面PAC所成角的正弦值为√33,∴√33=2√6√(2−4λ)2+8+(4λ−4)2,化为12λ=7,解得λ=712.∴PQPB=712.【考点】直线与平面垂直 直线与平面所成的角【解析】(Ⅰ)利用平行四边形的性质和平行线的传递性即可找出两个平面的交线并且证明结论; (Ⅱ)利用已知条件先证明BD ⊥AC ,再利用线面垂直的性质定理和判定定理即可证明; (Ⅲ)通过结论空间直角坐标系,利用法向量与斜线所成的角即可找出Q 点的位置. 【解答】(1)如图所示,过点B 作BM // PA ,并且取BM =PA ,连接PM ,CM . ∴ 四边形PABM 为平行四边形,∴ PM // AB ,∵ AB // CD ,∴ PM // CD ,即PM 为平面PAB ∩平面PCD =m ,m // CD . (2)在Rt △BAD 和Rt △ADC 中,由勾股定理可得 BD =√42+(2√2)2=2√6,AC =√22+(2√2)2=2√3. ∵ AB // DC ,∴ OD OB=OC OA=24=12,∴ OD =13BD =2√63,OC =13AC =2√33. ∴ OD 2+OC 2=(2√63)2+(2√33)2=4=CD 2,∴ OC ⊥OD ,即BD ⊥AC ;∵ PA ⊥底面ABCD ,∴ PA ⊥BD . ∵ PA ∩AC =A ,∴ BD ⊥平面PAC .(Ⅲ)建立如图所示的空间直角坐标系,则A(0, 0, 0), B(4, 0, 0),D(0, 2√2, 0),C(2, 2√2, 0),P(0, 0, 4). ∴ PB →=(4,0,−4),设PQ →=λPB →,则Q(4λ, 0, 4−4λ),∴ QC →=(2−4λ,2√2,4λ−4). BD →=(−4,2√2,0),由(2)可知BD →为平面PAC 的法向量.∴ cos <BD →,QC →>=BD →⋅QC →|BD →||QC →|=2√6√(2−4λ)2+(2√2)2+(4λ−4)2,∵ 直线QC 与平面PAC 所成角的正弦值为√33, ∴√33=2√6√(2−4λ)2+8+(4λ−4)2,化为12λ=7,解得λ=712. ∴ PQPB =712.【答案】 解:(1)由直方图可得:20×x +0.025×20+0.0065×20+0.003×2×20=1. 所以 x =0.0125.(2)新生上学所需时间不少于1小时的频率为:0.003×2×20=0.12, 因为600×0.12=72,所以600名新生中有72名学生可以申请住宿. (3)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14,P(X =0)=(34)4=81256,P(X =1)=C 41(14)(34)3=2764,P(X =2)=C 42(14)2(34)2=27128, P(X =3)=C 43(14)3(34)=364,P(X =4)=(14)4=1256. 所以X 的分布列为:EX =0×81256+1×2764+2×27128+3×364+4×1256=1.(或EX =4×14=1) 所以X 的数学期望为1. 【考点】离散型随机变量及其分布列 离散型随机变量的期望与方差【解析】(1)由题意,可由直方图中各个小矩形的面积和为1求出x 值.(2)再求出小矩形的面积即上学所需时间不少于1小时组人数在样本中的频率,再乘以样本容量即可得到此组的人数即可.(3)求出随机变量X 可取得值,利用古典概型概率公式求出随机变量取各值时的概率,列出分布列,利用随机变量的期望公式求出期望.【解答】 解:(1)由直方图可得:20×x +0.025×20+0.0065×20+0.003×2×20=1. 所以 x =0.0125.(2)新生上学所需时间不少于1小时的频率为:0.003×2×20=0.12, 因为600×0.12=72,所以600名新生中有72名学生可以申请住宿. (3)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14,P(X =0)=(34)4=81256,P(X =1)=C 41(14)(34)3=2764,P(X =2)=C 42(14)2(34)2=27128, P(X =3)=C 43(14)3(34)=364,P(X =4)=(14)4=1256.所以X 的分布列为:EX =0×81256+1×2764+2×27128+3×364+4×1256=1.(或EX =4×14=1)所以X 的数学期望为1. 【答案】 解:(1)f(x)的定义域为R ,f′(x)=−ke −kx (x 2+x −1k )+e −kx (2x +1)=e −kx [−kx 2+(2−k)x +2],即 f ′(x)=−e −kx (kx −2)(x +1)(k <0).令f ′(x)=0,解得:x =−1或x =2k .①当k =−2时,f ′(x)=2e 2x (x +1)2≥0, 故f(x)的单调递增区间是(−∞, +∞);②当−2<k <0时,f(x),f ′(x)随x 的变化情况如下:所以,函数f(x)的单调递增区间是(−∞,2k )和(−1, +∞),单调递减区间是(2k ,−1). ③当k <−2时,f(x),f ′(x)随x 的变化情况如下:所以,函数f(x)的单调递增区间是(−∞, −1)和(2k ,+∞),单调递减区间是(−1,2k ).综上,当k =−2时,f(x)的单调递增区间是(−∞, +∞);当−2<k <0时,f(x)的单调递增区间是(−∞,2k )和(−1, +∞),单调递减区间是(2k ,−1);当k <−2时,f(x)的单调递增区间是(−∞, −1)和(2k ,+∞),单调递减区间是(−1,2k ). (2) ①当k =−2时,f(x)无极大值.②当−2<k <0时,f(x)的极大值为f(2k )=e −2(4k 2+1k ), 令e −2(4k 2+1k )=3e −2,即4k 2+1k =3,解得 k =−1或k =43(舍). ③当k <−2时,f(x)的极大值为f(−1)=−e kk . 因为 e k <e −2,0<−1k <12,所以 −e k k<12e −2.因为 12e −2<3e −2,所以 f(x)的极大值不可能等于3e −2,综上所述,当k=−1时,f(x)的极大值等于3e−2.【考点】利用导数研究函数的单调性函数在某点取得极值的条件【解析】(1)求出f′(x))=−e−kx(kx−2)(x+1)(k<0),令f′(x)=0,解得:x=−1或x=2k .按两根−1,2k的大小关系分三种情况讨论即可;(2)由(1)分情况求出函数f(x)的极大值,令其为3e−2,然后解k即可,注意k的取值范围;【解答】解:(1)f(x)的定义域为R,f′(x)=−ke−kx(x2+x−1k)+e−kx(2x+1)=e−kx[−kx2+(2−k)x+2],即f′(x)=−e−kx(kx−2)(x+ 1)(k<0).令f′(x)=0,解得:x=−1或x=2k.①当k=−2时,f′(x)=2e2x(x+1)2≥0,故f(x)的单调递增区间是(−∞, +∞);②当−2<k<0时,f(x),f′(x)随x的变化情况如下:所以,函数f(x)的单调递增区间是(−∞,2k )和(−1, +∞),单调递减区间是(2k,−1).③当k<−2时,f(x),f′(x)随x的变化情况如下:所以,函数f(x)的单调递增区间是(−∞, −1)和(2k ,+∞),单调递减区间是(−1,2k).综上,当k=−2时,f(x)的单调递增区间是(−∞, +∞);当−2<k<0时,f(x)的单调递增区间是(−∞,2k)和(−1, +∞),单调递减区间是(2k,−1);当k<−2时,f(x)的单调递增区间是(−∞, −1)和(2k ,+∞),单调递减区间是(−1,2k).(2)①当k=−2时,f(x)无极大值.②当−2<k<0时,f(x)的极大值为f(2k )=e−2(4k2+1k),令e−2(4k2+1k)=3e−2,即4k2+1k=3,解得k=−1或k=43(舍).③当k<−2时,f(x)的极大值为f(−1)=−e kk.因为e k<e−2,0<−1k<12,所以−ekk<12e−2.因为12e−2<3e−2,所以f(x)的极大值不可能等于3e−2,综上所述,当k=−1时,f(x)的极大值等于3e−2.【答案】(1)设椭圆G的标准方程为x2a2+y2b2=1(a>b>0).因为F1(−1, 0),∠PF1O=45∘,所以b=c=1.所以,a2=b2+c2=2.所以,椭圆G的标准方程为x22+y2=1.(2)设A(x1, y1),B(x2, y2),C(x3, y3),D(x4, y4).(ⅰ)证明:由{y=kx+m1x22+y2=1.消去y得:(1+2k2)x2+4km1x+2m12−2=0.则△=8(2k2−m12+1)>0,{x1+x2=−4km11+2k2x1x2=2m12−21+2k2.⋯所以|AB|=√(x1−x2)2+(y1−y2)2=√1+k2√(x1+x2)2−4x1x2=√1+k2√(−4km11+2k2)2−4⋅2m12−21+2k2=2√2√1+k2√2k2−m12+11+2k2.同理|CD|=2√2√1+k2√2k2−m22+11+2k2.因为|AB|=|CD|,所以2√2√12√2k2−m12+11+2k2=2√2√1+k2√2k2−m22+11+2k2.因为m1≠m2,所以m1+m2=0.(ⅱ)由题意得四边形ABCD是平行四边形,设两平行线AB,CD间的距离为d,则d=12√1+k2.因为m1+m2=0,所以d=1√1+k2.所以S=|AB|⋅d=2√2√1+k2√2k2−m12+11+2k21√1+k2=4√2√(2k2−m12+1)m121+2k2≤4√22121221+2k2=2√2.(或S=4√2√(2k2+1)m12−m14(1+2k2)2=4√2√−(m121+2k2−12)2+14≤2√2)所以当2k2+1=2m12时,四边形ABCD的面积S取得最大值为2√2.【考点】直线与椭圆结合的最值问题椭圆的标准方程【解析】(Ⅰ)根据F 1(−1, 0),∠PF 1O =45∘,可得b =c =1,从而a 2=b 2+c 2=2,故可得椭圆G 的标准方程; (Ⅱ)设A(x 1, y 1),B(x 2, y 2),C(x 3, y 3),D(x 4, y 4).(ⅰ)直线l 1:y =kx +m 1与椭圆G 联立,利用韦达定理,可求AB ,CD 的长,利用|AB|=|CD|,可得结论; (ⅱ)求出两平行线AB ,CD 间的距离为d ,则 d =12√1+k 2,表示出四边形ABCD 的面积S ,利用基本不等式,即可求得四边形ABCD 的面积S 取得最大值. 【解答】(1)设椭圆G 的标准方程为x 2a2+y 2b 2=1(a >b >0).因为F 1(−1, 0),∠PF 1O =45∘,所以b =c =1. 所以,a 2=b 2+c 2=2. 所以,椭圆G 的标准方程为x 22+y 2=1.(2)设A(x 1, y 1),B(x 2, y 2),C(x 3, y 3),D(x 4, y 4). (ⅰ)证明:由{y =kx +m 1x 22+y 2=1.消去y 得:(1+2k 2)x 2+4km 1x +2m 12−2=0.则△=8(2k 2−m 12+1)>0,{x 1+x 2=−4km11+2k 2x 1x 2=2m 12−21+2k 2. ⋯ 所以 |AB|=√(x 1−x 2)2+(y 1−y 2)2=√1+k 2√(x 1+x 2)2−4x 1x 2=√1+k 2√(−4km 11+2k 2)2−4⋅2m 12−21+2k 2=2√2√1+k 2√2k 2−m 12+11+2k 2.同理 |CD|=2√2√12√2k 2−m 22+11+2k 2.因为|AB|=|CD|, 所以 2√2√1+k 2√2k 2−m 12+11+2k 2=2√2√1+k 2√2k 2−m 22+11+2k 2.因为 m 1≠m 2,所以m 1+m 2=0.(ⅱ)由题意得四边形ABCD 是平行四边形,设两平行线AB ,CD 间的距离为d ,则 d =122.因为 m 1+m 2=0,所以 d =1√1+k 2.所以 S =|AB|⋅d =2√2√1+k 2√2k 2−m 12+11+2k 212=4√2√(2k 2−m 12+1)m 121+2k 2≤4√22121221+2k 2=2√2.(或S =4√2√(2k 2+1)m 12−m 14(1+2k 2)2=4√2√−(m 121+2k 2−12)2+14≤2√2)所以 当2k 2+1=2m 12时,四边形ABCD 的面积S 取得最大值为2√2.【答案】(1)结合所给定义知,f A (1)=1,f B (1)=−1,A △B ={1, 6, 10, 16}. (2)根据题意可知:对于集合C ,X ,①若a ∈C 且a ∉X ,则Card(C △(X ∪{a})=Card(C △X)−1; ②若a ∉C 且a ∉X ,则Card(C △(X ∪{a})=Card(C △X)+1.所以 要使Card(X △A)+Card(X △B)的值最小,2,4,8一定属于集合X ;1,6,10,16是否属于X 不影响Card(X △A)+Card(X △B)的值,但集合X 不能含有A ∪B 之外的元素. 所以 当X 为集合{1, 6, 10, 16}的子集与集合{2, 4, 8}的并集时,Card(X △A)+Card(X △B)取到最小值4. 所以Card(X △A)+Card(X △B)的最小值 (Ⅲ)因为 A △B ={x|f A (x)⋅f B (x)=−1}, 所以 A △B =B △A .由定义可知:f A△B (x)=f A (x)⋅f B (x).所以 对任意元素x ,f (A△B )△C (x)=f A△B (x)⋅f C (x)=f A (x)⋅f B (x)⋅f C (x), f A△(B△C )(x)=f A (x)⋅f B△C (x)=f A (x)⋅f B (x)⋅f C (x). 所以 f (A△B )△C (x)=f A△(B△C )(x).所以 (A △B)△C =A △(B △C).由 (P △A)△(Q △B)=A △B 知:(P △Q)△(A △B)=A △B . 所以 (P △Q)△(A △B)△(A △B)=(A △B)△(A △B). 所以 P △Q △⌀=⌀.所以 P △Q =⌀,即P =Q . 因为 P ,Q ⊆A ∪B ,所以 满足题意的集合对(P, Q)的个数为27=128. 【考点】集合的包含关系判断及应用 集合中元素个数的最值【解析】(Ⅰ)根据定义直接得答案;(Ⅱ)对于已知集合E 、F ,①若a ∈E 且a ∉F ,则Card(E △(F ∪{a})=Card(E △F)−1;②若a ∉E 且a ∉F ,则Card(E △(F ∪{a})=Card(E △F)+1,据此结论找出满足条件的集合,从而求出Card(X △A)+Card(X △B)的最小值.(Ⅲ)由P ,Q ⊆A ∪B ,且(P △A)△(Q △B)=A △B 求出集合P ,Q 所满足的条件,进而确定集合对(P, Q)的个数. 【解答】(1)结合所给定义知,f A (1)=1,f B (1)=−1,A △B ={1, 6, 10, 16}. (2)根据题意可知:对于集合C ,X ,①若a ∈C 且a ∉X ,则Card(C △(X ∪{a})=Card(C △X)−1; ②若a ∉C 且a ∉X ,则Card(C △(X ∪{a})=Card(C △X)+1.所以 要使Card(X △A)+Card(X △B)的值最小,2,4,8一定属于集合X ;1,6,10,16是否属于X 不影响Card(X △A)+Card(X △B)的值,但集合X 不能含有A ∪B 之外的元素. 所以 当X 为集合{1, 6, 10, 16}的子集与集合{2, 4, 8}的并集时,Card(X △A)+Card(X △B)取到最小值4. 所以Card(X △A)+Card(X △B)的最小值 (Ⅲ)因为 A △B ={x|f A (x)⋅f B (x)=−1}, 所以 A △B =B △A .由定义可知:f A△B (x)=f A (x)⋅f B (x).所以 对任意元素x ,f (A△B )△C (x)=f A△B (x)⋅f C (x)=f A (x)⋅f B (x)⋅f C (x), f A△(B△C )(x)=f A (x)⋅f B△C (x)=f A (x)⋅f B (x)⋅f C (x).所以f(A△B)△C (x)=fA△(B△C)(x).所以(A△B)△C=A△(B△C).由(P△A)△(Q△B)=A△B知:(P△Q)△(A△B)=A△B.所以(P△Q)△(A△B)△(A△B)=(A△B)△(A△B).所以P△Q△⌀=⌀.所以P△Q=⌀,即P=Q.因为P,Q⊆A∪B,所以满足题意的集合对(P, Q)的个数为27=128.。

2012北京高考模拟数学试题汇总-解析几何(理)

2012北京高考模拟数学试题汇总-解析几何(理)

x y 1 0, 2 2 则 x y 的最小值是 x 0,
二、极坐标、参数方程
【 2012 西城一模理】 12. _____. 2 【2012 东城一模理】 (10)在极坐标系中,圆 2 的圆心到直线 cos sin 2 的 距离为 . 2
让你成为下一个状元! 010-67535551
C. (0, 2)

A. (0, 2)
B. (2, 0)
D. (2, 0)
x 1 t, 【2012 丰台一模理】11.在平面直角坐标系 xOy 中,直线 l 的参数方程是 2 (t 为 y 1 t 2

3
参数) 。以 O 为极点, x 轴正方向为极轴的极坐标系中,圆 C 的极坐标方程是
1 的圆在△ ABC 内, 沿着△ ABC 的边滚动一周回到原位. 在滚动过程中, 圆M 至 4 少与△ ABC 的一边相切,则点 M 到△ ABC 顶点的最短距离是 ,点 M 的运
半径为 动轨迹的周长是 .
2 9 4 ,
让你成为下一个状元! 010-67535551
峰炜佳奇·状元教育
在极坐标系中,极点到直线 l : sin( )
π 4
2 的距离是
峰炜佳奇·状元教育
【2012 海淀一模理】 (3)在极坐标系中,过点 (2, (A) sin
3 ) 且平行于极轴的直线的极坐标方程是 2
(C) sin
2 (B) cos
【2012 朝阳二模理】12.如图, AB 是圆 O 的直径,CD AB 于 D ,且 AD 2BD , E 为 AD 的中点,连接 CE 并延长交圆 O 于 F . 若 CD EF _________. 则 AB _______, 2, C

2012-数学一模-试题分类整合-解析几何

2012-数学一模-试题分类整合-解析几何

2012 数学一模 试题分类整合-------解析几何(19)(本小题满分13分)-------- 2012 海淀 一模已知椭圆:C 2222 1 (0)x y a b a b+=>>的右顶点(2,0)A ,离心率为2,O 为坐标原点. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知P (异于点A )为椭圆C 上一个动点,过O 作线段AP 的垂线l 交椭圆C 于点,E D ,求DE AP的取值围.解:(Ⅰ) 椭圆C 的方程为2214x y +=. (Ⅱ)当直线AP 的斜率为0时,||4AP =,DE 为椭圆C 的短轴,则||2DE =.所以||1||2DE AP =. 当直线AP 的斜率不为0时,设直线AP 的方程为(2)y k x =-,00(,)P x y , 则直线DE 的方程为1y x k=-. 由 22(2),14yk x x y =-⎧⎪⎨+=⎪⎩得224[(2)]40x k x +--=. 即2222(14)161640k x k x k +-+-=. 所以202162.41k x k +=+20282.41k x k =+-所以 ||AP ==即 2||41AP k =+.类似可求||DE =所以22||||41DE AP k ==+设24,t k =+则224k t =-,2t >.22||4(4)1415(2).||DE t t t AP t t-+-==>令2415()(2)t g t t t -=>,则22415'()0t g t t+=>. 所以 ()g t 是一个增函数. 所以2||41544151||22DE t AP t -⨯-=>=. 综上,||||DE AP 的取值围是18.(本小题满分14分)----- 2012 西城 一模已知椭圆:C 22221(0)x y a b a b+=>>的离心率为3F .(Ⅰ)求椭圆C 的方程; (Ⅱ)设直线5:2l y kx =-交椭圆C 于A ,B 两点,若点A ,B 都在以点(0,3)M 为圆心的圆上,求k 的值.(Ⅰ)解:依题意,点C 的横坐标为x ,点C 的纵坐标为29C y x =-+.点B 的横坐标B x 满足方程290B x -+=,解得3B x =,舍去3B x =-.所以2211(||||)(223)(9)(3)(9)22C S CD AB y x x x x =+⋅=+⨯-+=+-+. 由点C 在第一象限,得03x <<.所以S 关于x 的函数式为 2(3)(9)S x x =+-+,03x <<.(Ⅱ)解:由 03,,3x x k <<⎧⎪⎨≤⎪⎩ 及01k <<,得03x k <≤.记2()(3)(9),03f x x x x k =+-+<≤, 则2()3693(1)(3)f x x x x x '=--+=--+.令()0f x '=,得1x =. ① 若13k <,即113k <<时,()f x '与()f x 的变化情况如下:x(0,1)1(1,3)k ()f x '+-()f x ↗ 极大值 ↘所以,当1x =时,()f x 取得最大值,且最大值为(1)32f =. ② 若13k ≥,即103k <≤时,()0f x '>恒成立, 所以,()f x 的最大值为2(3)27(1)(1)f k k k =+-. 综上,113k ≤<时,S 的最大值为32;103k <<时,S 的最大值为227(1)(1)k k +-19、(本小题共13分)------ 2012 东城 一模已知椭圆2222:1(0)x y C a b a b+=>>过点()0,1,且离心率为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)12,A A 为椭圆的左、右顶点,直线:l x =x 轴交于点D ,点P 是椭圆C 上异于12,A A 的动点,直线12,A P A P 分别交直线l 于,E F 两点.证明:DE DF ⋅恒为定值.(Ⅰ)解:由题意可知,,, 解得. 所以椭圆的方程为. (Ⅱ)证明:由(Ⅰ)可知,1(2,0)A -,2(2,0)A .设00(,)P x y ,依题意022x -<<, 于是直线1A P 的方程为00(2)2y y x x =++,令x =,则002)2y y x =+.即002)2y DE x =+. 又直线2A P 的方程为00(2)2y y x x =--,令x =02)2y y x =-,即002)2y DF x =-.所以2200220000442)2)2244y y y y DE DF x x x x ⋅=⋅==+---, 又00(,)P x y 在上,所以220014x y +=,即,代入上式,C 1b=2c a =2a =2214x y +=2214x y +=220044y x =-得202414x DE DF x -⋅==-,所以为定值.19.(本题满分14分)-------- 2012 一模已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点分别为1(F,2F ,点(1,0)M 与椭圆短轴的两个端点的连线相互垂直. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点(1,0)M 的直线l 与椭圆C 相交于A ,B 两点,设点(3,2)N ,记直线AN ,BN 的斜率分别为1k ,2k ,求证:12k k +为定值. 解:(Ⅰ)依题意,由已知得c =,222a b -=,由已知易得1b OM ==,解得a =则椭圆的方程为2213x y +=. (II) ①当直线l 的斜率不存在时,由 221, 13x x y =⎧⎪⎨+=⎪⎩ 解得1,3x y ==±. 设(1,3A,(1,3B -, 则122233222k k -++=+= 为定值②当直线l 的斜率存在时,设直线l 的方程为:(1)y k x =-.将(1)y k x =-代入 2213x y +=整理化简,得 2222(31)6330k x k x k +-+-= 依题意,直线l 与椭圆C 必相交于两点,设11(,)A x y ,22(,)B x y ,则 2122631k x x k +=+,21223331k x x k -=+. 又11(1)y k x =-,22(1)y k x =-,所以1212122233y y k k x x --+=+--122112(2)(3)(2)(3)(3)(3)y x y x x x --+--=--12211212[2(1)](3)[2(1)](3)93()k x x k x x x x x x ---+---=-++||||DE DF ⋅11212121212122()[24()6]93()x x k x x x x x x x x -++-++=-++2212222222336122()[246]3131633933131k k x x k k k k k k k --++⨯-⨯+++=--⨯+++ 2212(21)2.6(21)k k +==+ 综上得12k k +为常数2.19.(本小题共14分)------- 2012 丰台 一模已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,且经过点(2,0)M -.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设斜率为1的直线l 与椭圆C 相交于11(,)A x y ,22(,)B x y 两点,连接MA ,MB 并延长交直线x =4于P ,Q 两点,设y P ,y Q 分别为点P ,Q 的纵坐标,且121111P Qy y y y +=+.求△ABM 的面积.解:(Ⅰ)依题意2a =,2c a =,所以c = 因为222a b c =+,所以b = 椭圆方程为22142x y +=. (Ⅱ)因为直线l 的斜率为1,可设l :y x m =+,则2224x y y x m⎧+=⎨=+⎩, 消y 得 2234240x mx m ++-=, 0∆>,得26m <. 因为11(,)A x y ,22(,)B x y ,所以 1243mx x +=-,212243m x x -=.设直线MA :11(2)2y y x x =++,则1162P y y x =+; 同理2262Q y y x =+. 因为121111P Qy y y y +=+,所以12121222666666x x y y y y +++=+, 即121244066x x y y --+=.所以 1221(4)(4)0x y x y -+-=,所以 1221(4)()(4)()0x x m x x m -++-+=, 1212122()4()80x x m x x x x m ++-+-=,224442()4()80333m m mm m -⋅+----=, 所以8803m--=, 所以1(m =-∈. 所以 1243x x +=,1223x x =-.设△ABM 的面积为S ,直线l 与x 轴交点记为N ,所以1212133||||||222S MN y y x x =⋅⋅-=⋅-== 所以 △ABM。

2012年北京市高考数学试卷(理科)答案与解析

2012年北京市高考数学试卷(理科)答案与解析

2012年北京市高考数学试卷(理科)参考答案与试题解析一、选择题共8小题.每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1.(5分)(2012•北京)已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},则A∩B=),}}2.(5分)(2012•北京)设不等式组,表示的平面区域为D,在区域D内随机取B=44.(5分)(2012•北京)执行如图所示的程序框图,输出的S值为()5.(5分)(2012•北京)如图,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC交于点E.则()6.(5分)(2012•北京)从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数=6=6中选两个数字排在个位与十位,共有=637.(5分)(2012•北京)某三棱锥的三视图如图所示,该三棱锥的表面积是()8+60+66+120+12=,=10=6.8.(5分)(2012•北京)某棵果树前n年的总产量S n与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高,则m的值为()二.填空题共6小题.每小题5分.共30分.9.(5分)(2012•北京)直线(t为参数)与曲线(α为参数)的交点个数为2.解:直线d=10.(5分)(2012•北京)已知﹛a n﹜是等差数列,s n为其前n项和.若a1=,s2=a3,则a2= 1.,,知,解得d==,d=11.(5分)(2012•北京)在△ABC中,若a=2,b+c=7,cosB=﹣,则b=4.,利用余弦定理可得﹣12.(5分)(2012•北京)在直角坐标系xOy中.直线l过抛物线y2=4x的焦点F.且与该抛物线相交于A、B两点.其中点A在x轴上方.若直线l的倾斜角为60°.则△OAF的面积为.的方程为:,即代入抛物线方程,化简可得,或的面积为故答案为:13.(5分)(2012•北京)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为1.解:因为==114.(5分)(2012•北京)已知f(x)=m(x﹣2m)(x+m+3),g(x)=2x﹣2,若同时满足条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣∞,﹣4),f(x)g(x)<0.则m的取值范围是(﹣4,﹣2).三、解答题公6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)(2012•北京)已知函数f(x)=.(1)求f(x)的定义域及最小正周期;(2)求f(x)的单调递增区间.sin)﹣)由,解得原函数的单调递增区间为16.(14分)(2012•北京)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(1)求证:A1C⊥平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.,,法向量为垂直,则,可求得2,法向量为∴∴,,∴,,法向量为∴垂直,则,17.(13分)(2012•北京)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.(求:S2=[++…+],其中为数据x1,x2,…,x n的平均数),因此有当正确的概率为率为,18.(13分)(2012•北京)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a、b的值;(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(﹣∞,﹣1)上的最大值.,求导函式可得:.,设,解得:,,∴))﹣在在;<﹣时,即(﹣时,最大值为19.(14分)(2012•北京)已知曲线C:(5﹣m)x2+(m﹣2)y2=8(m∈R)(1)若曲线C是焦点在x轴点上的椭圆,求m的取值范围;(2)设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.则,从而可得,三点共线,只需证,,解得:,解得:,方程为:,,三点共线,只需证,20.(13分)(2012•北京)设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合.对于A∈S (m,n),记r i(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),C j(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值.)首先构造满足是最大值即可.)的最大值为.的下面证明)的最大值为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十七、几何证明选讲
13.(2012年海淀一模理13)如图,以ABC ∆的边AB 为直径的半圆交AC 于点D ,交BC 于点E ,EF AB ^于点F ,3AF BF =,22BE EC ==,那么CDE Ð= ,
CD = .
答案:60°
11.(2012年西城一模理11) 如图,AC 为⊙O 的直径,OB AC
⊥,弦BN 交AC 于点M .若OC =,1OM =,则MN =_____. 答案:1。

12.(2012年东城一模理12)如图,AB 是⊙O 的直径,直线DE 切⊙O 于点D ,
且与AB 延长线交于点C ,若CD =1CB =,则ADE ∠= .
答案:60。

F
E
D
C
B
A
A
B
C
O
M N
12.(2012年丰台一模理12)如图所示,Rt △ABC 内接于圆,60ABC ∠=
,PA 是圆的切线,A 为切点, PB
交AC 于E ,交圆于D .若PA=AE ,
BD=AP= ,AC= .
答案:
10.(2012年东城11校联考理10)如图,已知PA 是⊙O 的切线,A 是切点,直线PO 交⊙O 于,B C 两点,D 是OC 的中点,连结AD 并延长交⊙O 于点E ,

,30P A A P B =∠=︒
,则AE = . 答案:7710。

11.(2012年石景山一模理11)如图,已知圆中两条弦AB 与CD 相交于点F ,CE 与圆相切交AB 延长线上于点E ,
若DF CF ==,::4:2:1AF FB BE =,则线段CE 的长为 . 答案:7。

E
D P C
B
A
3.(2012年房山一模理3)如图,PA 是圆O 的切线,切点为A ,PO 交圆O 于,B C
两点,
1PA PB ==,则ABC ∠=( B )
A.70︒
B.60︒
C.45︒
D.30︒
12.(2012年密云一模理12)如图3所示,AB 与CD 是O 的直径,AB ⊥CD ,P 是AB 延长线上一点,连PC 交O 于点E ,连DE 交AB 于点F ,若42==BP AB ,则
=PF .
答案:3。

12.(2012年门头沟一模理12)如右图:点P 是O 直径AB 延长线上一点, PC 是O 的切线,C 是切点,4AC =,3BC =,则PC = . 答案:60
7。

C。

相关文档
最新文档