人教版八年级数学下册期中测试题附答案.doc
人教版八年级下册数学《期中检测试题》附答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________第I 卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. ,字母x 取值必须满足( ) A. 0x ≥B. 0x ≤C. 1≥xD. 1x ≥-2. 下列二次根式中,最简二次根式是( )A.B.C.D.3. 下列计算中,正确的是( )A.B.C.D.﹣34. 方程240x x -=的解是( ) A. 4x =B. 2x =C. 124,0x x ==D. 0x =5. 用配方法将方程26110?x x +-=变形,正确的是( ) A. 2(3)20x -= B. 2(3)2x -= C. 2(3)2x += D. 2(3)20x +=6. 已知关于的一元二次方程2(1)210a x x --+=有实数根,则的取值范围是( ) A. 2a ≤B. 2a >C. 2a ≤且1a ≠D. 2a <-7. 已知一个直角三角形的两边长分别3和4,则第三边长是( ) A. 5B. 7C. 25D. 5或78. 已知方程22610x x +-=的两个实数根为12,x x ,则1211+x x 的值为( ) A. -3 B. 3 C. 6D. -69. 某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是,那么可列出的方程是( ) A. ()21001364x += B. ()()210010011001364x x ++++= C. ()210012364x +=D. ()()2100100112364x x ++++=10. 如图,在Rt △ABC 中,∠ACB =90°,AE 为△ABC 的角平分线,且ED ⊥AB ,若AC =6,BC =8,则ED 的长( )A. 2B. 3C. 4D. 511. 直线:(3)2l y m x n =--+(m ,n 为常数)的图象如图,化简︱3m -︱-244n n -+得( )A. 5m n --B. 1n m -+C. m n 1--D. 5m n +-12. △ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( ) ①222a c b -=;②2()()0a b a b c -++=;③ ∠A =∠B ∠C; ④∠A ∶∠B ∶∠C =1∶2∶3 ;⑤111,,345a b c ===;⑥10,a = 24,b = 26c = A. 2个B. 3个C. 4个D. 5个第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每题3分,共18分)13. 计算4812-结果是_____.14. 如图,在一个高为5m ,长为13m 的楼梯表面铺地毯,则地毯的长度至少是_______.15.271m +,则m = .16. 等腰三角形的顶角为120︒,底边上的高为2,则它的周长为_____.17. 若关于x 的一元二次方程()2215360m x x m m -+++-=的常数项为-2,则m 的值为 .18. 若关于x 方程()()220ax a b b a x +-+-=有两个相等的实数根,则a :b = .三、解答题(本大题共8小题,满分66分.解答题应写出文字说明、证明过程或演算步骤.)19. 计算:(11182432(2188222220. 解下列方程:(1)()2943-=-x x (2)231x x -=21. 已知:21,21a b ==,求:(1)a -b 的值;(2)ab 的值;(3)a bb a-的值. 22. 如图,在4x4的正方形网格中,每个小正方形的边长都为1.求:(1)△ABC 的周长;(2)∠ABC 度数. 23. 已知关于x 的方程22210x kx k ++-=.(1)试说明:无论k 取何值时,方程总有两个不相等实数很; (2)如果方程有一个根为-3,试求22122019k k ++的值.24. 一架梯子AB 长25米,如图斜靠在一面墙上,梯子底端B 离墙7米. (1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?25. 已知,,a b c 是△ABC 的三边长,关于的一元二次方程x 2+2b 有两个相等的实数根,关于的方程322cx b a +=的根为0x =.(1)试判断△ABC 的形状;(2)若,a b 是关于一元二次方程230x mx m +-=的两个实数根,求的值.26. 某商场计划购进一批书包,市场调查发现:当某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,每月销售量就减少10个. (1)当售价定为42元时,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月获得10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少元?答案与解析第I 卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. ,字母x 的取值必须满足( ) A. 0x ≥ B. 0x ≤C. 1≥xD. 1x ≥-[答案]D [解析] [分析]根据二次根式有意义的条件:被开方数是非负数即可求解. [详解]解:由题意得x+1≥0, 解得:1x ≥-, 故选:D .[点睛]本题考查二次根式有意义的条件,掌握知识点是解题关键. 2. 下列二次根式中,最简二次根式是( )[答案]A [解析] [分析]利用最简二次根式定义判断即可.[详解]解:A 、原式为最简二次根式,符合题意;B 2,不是最简二次根式;C =不是最简二次根式;D 不是最简二次根式;故选:A .[点睛]本题考查的是最简二次根式的概念,掌握被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式是解题的关键. 3. 下列计算中,正确的是( )A. B.=3 ﹣3[答案]C [解析] [分析]根据二次根式的性质和乘除法运算法则,对每个选项进行判断,即可得到答案.[详解]解:A 、,不能合并,故A 错误;B 、18=,故B 错误;C 3=,故C 正确;D 3==,故D 错误; 故选择:C.[点睛]本题考查了二次根式的性质,二次根式的乘除运算,以及同类二次根式的定义,解题的关键是熟练掌握二次根式的性质,以及熟记乘除法运算的运算法则. 4. 方程240x x -=的解是( ) A. 4x = B. 2x =C. 124,0x x ==D. 0x =[答案]C [解析] [分析]先提取公因式变形为(4)0x x -=即可求解.[详解]解:由题意可知240x x -=可变形为:(4)0x x -=, ∴124,0x x ==, 故选:C .[点睛]本题考查一元二次方程的解法,熟练掌握一元二次方程的解法,其解法包括:直接开平方法、配方法、公式法、因式分解法,本题采用因式分解法求解速度较快. 5. 用配方法将方程26110?x x +-=变形,正确的是( ) A. 2(3)20x -= B. 2(3)2x -= C 2(3)2x += D. 2(3)20x += [答案]D [解析] [分析]在本题中,把常数项-11移项后,应该在左右两边同时加上一次项系数6的一半的平方.[详解]把方程x 2 +6x -11=0的常数项移到等号的右边,得到x 2 +6x =11, 方程两边同时加上一次项系数一半的平方,得到x 2 +6x +9=11+9, 配方得(x +30)2 =20. 故选D .[点睛]本题考查了配方法解一元二次方程.6. 已知关于的一元二次方程2(1)210a x x --+=有实数根,则的取值范围是( ) A. 2a ≤ B. 2a >C. 2a ≤且1a ≠D. 2a <-[答案]C [解析] [分析]根据方程有两个实数根列出关于a 的不等式,求出a 的取值范围即可. [详解]解:∵关于x 的一元二次方程(a -1)x 2-2x +1=0有两个实数根,∴1044(1)0a a -≠⎧⎨=--⎩,解得a ≤2且a ≠1. 故选:C .[点睛]本题考查的是根的判别式,熟知一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 的关系是解答此题的关键.7. 已知一个直角三角形的两边长分别3和4,则第三边长是( ) A. 5C. 25D. 5[答案]D [解析] [分析]根据勾股定理可以求得第三边长. [详解]5== ∴第三边长是5. 故选D .[点睛]本题考查勾股定理的应用,熟练掌握勾股定理及其变形是解题关键.8. 已知方程22610x x +-=的两个实数根为12,x x ,则1211+x x 的值为( ) A. -3 B. 3C. 6D. -6[答案]C [解析] [分析]根据一元二次方程根与系数关系得出123x x +=-,1212x x =-,将1211+x x 通分,代入数值即可求解. [详解]∵方程2610x x +-=的两个实数根为12,x x , ∴123x x +=-,1212x x =-,∴121212113612x x x x x x +-+===-, 故选:C .[点睛]本题考查了一元二次方程根与系数关系、分式的化简求值,熟练掌握根与系数关系是解答的关键. 9. 某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是,那么可列出的方程是( ) A ()21001364x += B. ()()210010011001364x x ++++= C. ()210012364x += D. ()()2100100112364x x ++++=[答案]B [解析] [分析]设月平均增长的百分率是x ,则该超市二月份的营业额为100(1+x )万元,三月份的营业额为100(1+x )2万元,根据该超市第一季度的总营业额是364万元,即可得出关于x 的一元二次方程,此题得解.[详解]解:设月平均增长的百分率是x ,则该超市二月份的营业额为100(1+x )万元,三月份的营业额为100(1+x )2万元,依题意,得:100+100(1+x )+100(1+x )2=364. 故选B .[点睛]本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 10. 如图,在Rt △ABC 中,∠ACB =90°,AE 为△ABC 的角平分线,且ED ⊥AB ,若AC =6,BC =8,则ED 的长( )A. 2B. 3C. 4D. 5[答案]B [解析][分析]根据勾股定理和角平分线的性质,以及直角三角形全等的判定和性质解答即可. [详解]解:∵在Rt △ABC 中,∠ACB=90°,AC=6,BC=8, ∴22226810ABAC BC ,∵AE 为△ABC 的角平分线,∠ACB=90°,ED ⊥AB , ∴DE=CE ,在Rt △ADE 和Rt △ACE 中, ∵AE=AE ,DE=CE ,∴Rt △ADE ≌Rt △ACE (HL ), ∴AD=AC=6, ∴BD=10-6=4,设DE=x ,则CE=x ,BE=8-x , 在Rt △BDE 中, DE 2+BD 2=BE 2, 即x 2+42=(8-x )2, 解得x=3, 所以ED 的长是3, 故选:B .[点睛]本题考查了勾股定理、角平分线的性质以及直角三角形全等的判定和性质.解题的关键是能够根据勾股定理得出AB 和DE 的长,能够根据角平分线的性质得出DE=CE,能够证明两个直角三角形全等的判定. 11. 直线:(3)2l y m x n =--+(m ,n 为常数)的图象如图,化简︱3m -︱-244n n -+得( )A. 5m n --B. 1n m -+C. m n 1--D. 5m n +-[答案]A [解析][分析]根据一次函数的图像,可得30m -<,20n -+>,解得3m <,2n >,然后对代数式进行化简,即可得到答案.[详解]解:由图可知,直线从左到右是下降趋势,且直线与y 的正半轴有交点,∴30m -<,20n -+>,∴3m <,2n >,∴︱3m -=(3)m --=3(2)m n -+--=32m n -+-+=5m n --;故选择:A.[点睛]本题考查了一次函数的性质,以及绝对值的意义、二次根式的性质,解题的关键是利用一次函数的性质正确求出m 、n 的范围,从而正确进行化简.12. △ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( )①222a c b -=;②2()()0a b a b c -++=;③ ∠A =∠B ∠C; ④∠A ∶∠B ∶∠C =1∶2∶3 ;⑤111,,345a b c ===;⑥10,a = 24,b = 26c = A. 2个B. 3个C. 4个D. 5个[答案]D[解析][分析]根据勾股定理的逆定理,三角形的内角和定理,分别对每个选项进行判断,即可得到答案.[详解]解:∵222a c b -=,得222a b c =+,符合勾股定理逆定理,则①正确;∵2()()0a b a b c -++=,得到222a c b +=,符合勾股定理逆定理,则②正确;∵∠A =∠B ∠C ,得∠B=∠A+∠C ,∵∠A+∠B+∠C=180°,∴∠B=90°,故③正确;∵∠A ∶∠B ∶∠C =1∶2∶3,∠A+∠B+∠C=180°, ∴318090123C ∠=︒⨯=︒++,故④正确; ∵222111()()()453+≠,则⑤不能构成直角三角形,故⑤错误;∵222102426+=,则⑥能构成直角三角形,故⑥正确;∴能构成直角三角形的有5个;故选择:D.[点睛]本题考查了勾股定理的逆定理,以及三角形的内角和定理,解题的关键是熟练掌握用勾股定理的逆定理和三角形内角和定理进行判断三角形是直角三角形. 第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每题3分,共18分)13. 计算4812-的结果是_____.[答案]23[解析][分析]先将二次根式化简,然后合并同类二次根式即可.[详解]解:原式432323=-=故答案为:23.[点睛]此题考查的是二次根式的减法,掌握合并同类二次根式法则是解决此题的关键.14. 如图,在一个高为5m ,长为13m 的楼梯表面铺地毯,则地毯的长度至少是_______.[答案]17米[解析][分析]在直角三角形ABC中,已知AB,BC,根据勾股定理即可求得AC的值,根据题意求地毯长度即求得AC+BC 即可.[详解]将水平地毯下移,竖直地毯右移即可发现:地毯长度为直角三角形ABC的两直角边之和,即AC+BC,在直角△ABC中,已知AB=13米,BC=5米,且AB为斜边,则根据勾股定理22-=12(米),故地AB BC毯长度为AC+BC=12+5=17(米).故答案为17米[点睛]本题考查勾股定理的应用,解题的关键是知道求地毯长度即求AC+BC.m+,则m=.15. 271[答案]2[解析][分析]27化为最简二次根式33再根据同类二次根式的定义得到m+1=3,然后解方程即可.[详解]27=33∴m+1=3,∴m=2,故答案为:2.[点睛]本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式,掌握知识点是解题关键.16. 等腰三角形的顶角为120︒,底边上的高为2,则它的周长为_____.+[答案]843[解析][分析]根据等腰三角形的性质可分别求得腰长和底边的长,从而不难求得三角形的周长.[详解]解:∵等腰三角形的顶角为120°,底边上的高为2,∴腰长=4,底边的一半∴周长=4+4+2×故答案为[点睛]本题考查勾股定理及等腰三角形的性质的综合运用.17. 若关于x 的一元二次方程()2215360m x x m m -+++-=的常数项为-2,则m 的值为 . [答案]-4[解析][分析]由常数项为,求出m 的值,再结合10m -≠,即可得到答案.[详解]解:根据题意,由常数项为,则∴2362m m +-=-,解得:4m =-或1m =,∵10m -≠,∴1m ≠,∴4m =-;故答案为:4-.[点睛]本题考查了解一元二次方程,一元二次方程的定义,解题的关键是熟练掌握解一元二次方程的方法. 18. 若关于x 的方程()()220ax a b b a x +-+-=有两个相等的实数根,则a :b = . [答案]17-或1 [解析][分析] 根据题意,由根的判别式列出方程进行计算,即可求出答案.[详解]解:∵关于x 的方程()()220ax a b b a x +-+-=有两个相等的实数根,∴2()42()0b a a a b ∆=--•-=,∴22760a ab b -++=,方程两边同时除以2b ,则27()610a a b b-+•+=, 设a bm =,则27610m m -+•+=, 解得:17m =-或1m =, ∴17a b =-或1a b=; 故答案为:17-或1. [点睛]本题考查了解一元二次方程,根的判别式,解题的关键是熟练掌握运算法则进行解题.三、解答题(本大题共8小题,满分66分.解答题应写出文字说明、证明过程或演算步骤.) 19. 计算:(1(2[答案](1) (2)2[解析][分析](1)根据二次根式运算法则,先化成最简二次根式,然后再运算即可;(2)根据二次根式的运算法则,先乘除后加减运算即可求解.[详解]解:(1)原式=42⨯+==(2)原式21=+3=31=-2=[点睛]本题考查了二次根式的加减乘除混合运算,熟练掌握二次根式的运算法则及运算顺序是解决此类题的关键.20. 解下列方程:(1)()2943-=-x x (2)231x x -=[答案](1)1213x x ==, (2)116+=x ,216-=x [解析][分析] (1)先整理方程,然后因式分解即可得出答案;(2)将常数项移到方程的左边,然后利用公式法求解即可.详解](1)解:整理得:x 2-4x +3=0,分解因式得:(x -1)(x -3)=0,可得x -1=0或x -3=0,解得:x 1=1,x 2=3;(2)23=1x x -解:原方程可化为2310x x --=∵ a =3,b =-1,c =-1,∴△=()2(1)431--⨯⨯-=13>0, ∴方程有两个不相等的实数根x ==,∴116+=x ,216=x . [点睛]本题考查了解一元二次方程,掌握方程解法是解题关键.21. 已知:1,1a b ==,求:(1)a -b 的值;(2)ab 的值;(3)a b b a-的值. [答案](1)-2 (2)1 (3)-[解析][分析](1)直接把a 、b 的值代入计算,即可得到答案;(2)直接把a 、b 的值代入计算,即可得到答案;(3)先求出a+b 的值,然后把分式进行化简,再整体代入计算,即可得到答案.[详解]解:(1)a -b =1)-11=-2;(2) ab = 1)=221-=1;(3)∵a +b 1=a -b =-2,ab =1 ∴22a b a b b a ab--= =()()a b a b ab+-=(2)-=-;[点睛]本题考查了二次根式的混合运算,分式的混合运算,分式的化简求值,以及平方差公式,解题的关键是熟练掌握运算法则进行解题.22. 如图,在4x4的正方形网格中,每个小正方形的边长都为1.求:(1)△ABC 的周长;(2)∠ABC 度数.[答案](1)355;(2)90°[解析][分析](1)分别求出AB 、BC 和AC 的长即可求得周长;(2)根据勾股定理逆定理即可求得.[详解]解:(1)AB 2242=25+,BC 22251=+AC 2234=5+,∴△ABC 的周长=555=355;(2)∵AC 2=25,AB 2=20,BC 2=5,∴AC 2=AB 2+BC 2,∴∠ABC =90°.[点睛]本题考查了勾股定理和勾股定理逆定理,熟练掌握勾股定理是解题关键.23. 已知关于x 的方程22210x kx k ++-=.(1)试说明:无论k 取何值时,方程总有两个不相等的实数很;(2)如果方程有一个根为-3,试求22122019k k ++的值.[答案](1)证明见解析; (2)k=2,2051或k=4,2099[解析][分析](1)由△=(2k)2-4×1×(k2-1)=4>0可得答案;(2)将x=-3代入方程得k2-6k+8=0,求得k的值,代入原式计算可得.[详解]解:(1)∵△= (2k)2-4(k2-1)=4k2-4k2+4=4>0∴无论k取何值时,方程总有两个不相等的实数根.(2)把x=-3代入原方程得(-3)2-6k+k2-1=0k2-6k+8=0(k-2)(k-4)=0k=2或k=4当k=2时,2k2+12k+2019=2051当k=4时,2k2+12k+2019=2099[点睛]本题考查根的判别式,解一元二次方程.(1)中解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型;(2)中理解方程的解得定义,并能熟练解一元二次方程是解题关键.24. 一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?[答案](1)24米;(2)梯子底部在水平方向不是滑动了4米,而是8米.[解析][分析](1)应用勾股定理求出AC的高度,即可求解;(2)应用勾股定理求出B ′C 的距离即可解答.[详解](1)如图,在Rt △ABC 中AB 2=AC 2+BC 2,得AC =2222257AB BC -=-=24(米)答:这个梯子的顶端距地面有24米.(2)由A 'B '2=A 'C 2+CB '2,得B 'C =2222'''25(244)A B A C -=--=15(米),∴BB '=B 'C ﹣BC =15﹣7=8(米).答:梯子底部在水平方向不是滑动了4米,而是8米.[点睛]本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.25. 已知,,a b c 是△ABC 的三边长,关于的一元二次方程x 2+2b 有两个相等的实数根,关于的方程322cx b a +=的根为0x =.(1)试判断△ABC 的形状;(2)若,a b 是关于的一元二次方程230x mx m +-=的两个实数根,求的值.[答案](1)等边三角形;(2)-12[解析][分析](1)因为方程有两个相等的实数根即△=0,由△=0可以得到一个关于a ,b 的方程,再结合方程3cx+2b=2a 的根为x=0,代入即可得到一关于a ,b 的方程,联立即可得到关于a ,b 的方程组,可求出a ,b 的关系式;(2)根据(1)求出的a=b ,得到方程x 2+mx-3m=0有两个相等的实数根,从而得到关于m 的方程,解方程即可求出m .[详解]解:(1)∵关于x 的一元二次方程x 2+b x+2c-a=0有两个相等的实数根,∴Δ= 2(2b -4×1×(2c-a)=0,∴a+b=2c.又∵关于x的方程3cx+2b=2a的根为x=0,∴a=b,∴a=b=c,即△ABC是等边三角形.(2)∵a,b是关于x的一元二次方程x2+mx-3m=0的两个实数根,又由(1)知a=b,∴方程x2+mx-3m=0有两个相等的实数根,∴Δ=m2+4×3m=0,解得m=0或m=-12.当m=0时,方程x2+mx-3m=0可化为x2=0,解得x1=x2=0.又由a,b,c是△ABC的三边长,得a>0,b>0,c>0,故m=0不符合题意:当m=-12时,方程x2+mx-3m=0可化为x2-12x+36=0,解得x1=x2=6,可知m=-12符合题意.故m的值为-12.[点睛]本题主要考查了一元二次方程的判别式与方程的解得定义,是一个比较简单的问题.26. 某商场计划购进一批书包,市场调查发现:当某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,每月销售量就减少10个.(1)当售价定为42元时,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月获得10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少元? [答案](1)580;(2)70;(3)50[解析][分析](1)由“这种书包的售价每上涨1元,其销售量就减少10个”进行解答;(2)根据“售价+月销量减少的个数÷10”进行解答;(3)设销售价格应定为x元,根据“这种书包的售价每上涨1元,其销售量就减少10个”列出方程并解答.[详解](1)当售价为42元时,每月可以售出的个数为600-10×(42-40)=580(个),答:每月可售出580个;(2)当书包的月销售量为300个时,每个书包的价格为:40+(600-300)÷10=70(元);答:每个书包的定价为70元;(3)设销售价格应定为元,则(x-30)[600-10(x-40)]=10000,解得x1=50,x2=80,当x=50时,销售量为500个;当x=80时,销售量为200个.答:为体现“薄利多销”的销售原则,销售价格应定为50元.[点睛]本题考查了一元二次方程的应用,解题的关键是分别表示出销量和单价,用销量乘以单价表示出利润即可.。
人教版八年级下册数学《期中检测试卷》(含答案)

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x –2<4C. 1x <2D. 4x –3<2y –72. 在△ABC 中,已知CA =CB ,∠A =45°,BC =5,则AB 的长为( ) A. 2 B. 5 C. 52 D. 253. 不等式3x ≥-的解集在数轴上表示为( ) A. B. C. D.4. 到三角形三条边距离都相等的点是这个三角形的( )A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点5. 等腰三角形的一个角是40°,则它的底角是( ) A. 40° B. 40°或70° C. 80°或70° D. 70° 6. 如果a b >,那么下列不等式中正确是( )A 2323a b +>+ B. 55a b < C. 22a b ->- D. 22a b -<- 7. 下列命题的逆命题是假命题的是( )A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除8. 如图,点D 、E 分别在△ABC 的边AC 、BC 上,且DE 垂直平分AC ,若△ABE 的周长为13,AD =5,则△ABC 的周长是( )A. 18B. 23C. 21D. 269. 对于任意实数a 、b ,定义一种运算:a ※b =ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x >2,则不等式的解为( )A. x >1B. x >2C. x <1D. x <210. 如图,△ABC 是等边三角形,AB=12,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,则BE+CF 的长是( )A. 6B. 5C. 12D. 8二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号) 13. 如图,已知OA =OB =OC ,BC ∥AO ,若∠A =36°,则∠B 度数为_____.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.三.解答题15. 解不等式:1﹣3(x ﹣1)<8﹣x .16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.23. 如图,△ABC 中,AB =AC ,D 为BC 边中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示: 品名 厂家批发价(元/个)商场零售价(元/个) 篮球 140180 足球 110140(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个? 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明答案与解析一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x–2<4C. 1x<2 D. 4x–3<2y–7[答案]B[解析][分析]根据一元一次不等式的概念,从未知数的次数、个数及不等式两边的代数式是否为整式的角度来解答.[详解]A、不含未知数,错误;B、符合一元一次不等式的定义,正确;C、分母含未知数,错误;D、含有两个未知数,错误.故选B.2. 在△ABC中,已知CA=CB,∠A=45°,BC=5,则AB的长为( )C. D.[答案]C[解析][分析]根据等腰直角三角形的性质利用特殊角的三角函数值求解即可;[详解]解:∵CA=CB,∠A=45°,∴∠B=∠A=45°,∴∠C=90°,∵BC=5,BC=,故选:C.[点睛]本题主要考查了解直角三角形的应用,准确计算是解题的关键.x≥-的解集在数轴上表示为()3. 不等式3A. B. C. D.[答案]A[解析][分析]根据不等式解集的表示方法即可判断.x≥-的解集在数轴上表示为[详解]3故选A.[点睛]此题主要考查不等式解集的表示,解题的关键是熟知不等式的在数轴上的表示方法.4. 到三角形三条边的距离都相等的点是这个三角形的()A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点[答案]D[解析]分析]根据角的平分线上的点到角的两边的距离相等可得答案.[详解]解:∵角平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.[点睛]该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.5. 等腰三角形的一个角是40°,则它的底角是( )A. 40°B. 40°或70°C. 80°或70°D. 70°[答案]B[解析][分析]分40︒的角为等腰三角形的顶角和40︒的角为等腰三角形的底角两种情况,再根据三角形的内角和定理、等腰三角形的定义即可得.[详解]根据等腰三角形的定义,分以下两种情况:(1)当40︒的角为等腰三角形的顶角时, 则底角18040702;(2)当40︒的角为等腰三角形的底角时,则底角为40︒;综上,它的底角是40︒或70︒,故选:B .[底角]本题考查了等腰三角形的定义、三角形的内角和定理,依据题意,正确分两种情况讨论是解题关键. 6. 如果a b >,那么下列不等式中正确的是( )A. 2323a b +>+B. 55a b <C. 22a b ->-D. 22a b -<- [答案]A[解析][分析]根据不等式性质解答即可;[详解]解:∵a >b∴22a b >∴2323a b +>+,则A 正确∵a >b∴5a >5b ;22a b -<-;22a b ->-故B 、C 、D 错误 故应选A[点睛]本题考查了不等式的性质来,解答关键是注意不等号改变方向的条件.7. 下列命题的逆命题是假命题的是()A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除[答案]C[解析][分析]先写出各命题的逆命题,分析是否为真命题,从而利用排除法得出答案.[详解]解:(1)逆命题为:两条直线被第三条直线所截,如果这两条直线平行,那么同旁内角互补,是真命题;(2)逆命题为:能被2整除的数是偶数,是真命题;(3)逆命题为:如果两个角相等,那么它们是直角,是假命题;(4)逆命题为:如果一个数能被8整除,那么这个数也能被4整除,是真命题.故选C[点睛]此题主要考查了命题的逆命题和命题的真假判断,判断命题的真假关键是要熟悉课本中的性质定理.8. 如图,点D、E分别在△ABC的边AC、BC上,且DE垂直平分AC,若△ABE的周长为13,AD=5,则△ABC 的周长是( )A. 18B. 23C. 21D. 26[答案]B[解析][分析]根据线段垂直平分线性质可得AC=2AD,AE=CE,根据三角形周长得AB+AC=13,故△ABC的周长为AB+BC+AC;[详解]解:∵DE垂直平分AC,AD=5,∴AC=2AD=10,AE=CE,∵△ABE的周长为13,∴AB+BE+AE=AB+CE+BE=AB+AC=13,∴△ABC的周长为AB+BC+AC=13+10=23,故选:B.[点睛]考核知识点:线段垂直平分线.理解线段垂直平分线性质和三角形周长公式是关键.9. 对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x>2,则不等式的解为( )A. x>1B. x>2C. x<1D. x<2[答案]B[解析][分析]根据新定义运算的公式计算即可;[详解]解:∵2※x>2,∴2x﹣2+x﹣2>2,解得x>2,故选:B.[点睛]本题主要考查了新定义运算,准确理解和计算是解题的关键.10. 如图,△ABC是等边三角形,AB=12,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF的长是()A. 6B. 5C. 12D. 8[答案]A[解析][分析]先设BD=x,则CD=20-x,根据△ABC是等边三角形,得出∠B=∠C=60°,再利用三角函数求出BE和CF的长,即可得出BE+CF 的值.[详解]设BD=x ,则CD=20-x ,∵△ABC 是等边三角形,∴∠B=∠C=60°.∴BE=cos60°•BD=2x , 同理可得,CF= 122x -, ∴BE+CF= 12622x x -+=. 故选A .[点睛]本题考查的是等边三角形的性质,及锐角三角函数的知识,难度不大,有利于培养同学们钻研和探索问题的精神.二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.[答案]8x >-.[解析][分析]将不等式两边同时减去6,即可得到答案.[详解]62x +>-,26x ∴>--,即8x >-,故答案为:8x >-.[点睛]本题考查不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号)[答案 [解析][分析]设AC=x,则AB=2x,再根据勾股定理求出x的值,进而得出结论.[详解]解:如图,设AC=x,∵在△ABC中,∠C=90°,∠B=30°,∴AB=2AC=2x,由勾股定理得:AC2+BC2=AB2,即x2+52=(2x)2,解得:x=533,即AB=2×533=1033,故答案为:1033.[点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13. 如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B的度数为_____.[答案]72°[解析][分析]根据OA=OC,得到∠ACO=∠A,又因为BC∥AO,推出∠BCA=∠A,求出∠BCO的度数,再根据OB=OC,得到∠B=∠OCB,即可解决本题.[详解]解:∵OA=OC∴∠ACO=∠A=36°∵BC∥AO∴∠BCA=∠A=36°∴∠BCO=72°∵OB=OC∴∠B=∠OCB=72°故答案为:72°.[点睛]本题主要考查了平行线的性质以及等腰三角形的性质,熟悉平行线以及等腰三角形的性质是解决本题的关键.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.[答案]5[解析][分析]设这个篮球队赢了x场,则最多平(x-1)场,最多输(x-2)场,由该篮球队共打12场比赛,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.[详解]解:设这个篮球队赢了x场,则最多平(x﹣1)场,最多输(x﹣2)场,根据题意得:x+(x﹣1)+(x﹣2)≥12,解得:x≥5.∴这个篮球队最少贏了5场.故答案为:5.[点睛]考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题15. 解不等式:1﹣3(x﹣1)<8﹣x.[答案]x>﹣2[解析][分析]先去括号,移项,再合并同类项,系数化为1,即可求得不等式的解集.[详解]解:1﹣3(x﹣1)<8﹣x去括号得,1﹣3x+3<8﹣x移项得,﹣3x+x<8﹣3﹣1合并同类项得,﹣2x<4系数化为1得,x>﹣2故此不等式的解集为:x>﹣2.[点睛]本题主要考查不等式的解法,熟练不等式的解法以及注意不等号符号的改变是解决本题的关键.16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).[答案]详见解析.[解析][分析]根据过直线外一点作一直直线垂线的方法即可得出结论.[详解]解:如图所示,直线CD即为所求.[点睛]本题考查作图-基本作图,解题关键是熟知线段垂直平分线的作法.17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.[答案]证明见解析[解析][分析]根据OA=OB,得∠A=∠B=60°;根据AB∥DC,得出对应角相等,从而求得∠C=∠D=60°,根据等边三角形的判定就可证得结论.[详解]解:∵OA=OB,∴∠A=∠B=60°,又∵AB∥DC,∴∠A=∠C=60°,∠B=∠D=60°,∴△OCD是等边三角形.[点睛]本题考查等边三角形的判定.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.[答案]见解析[解析][分析]首先假设三角形的一个外角不等于与它不相邻的两个内角的和,根据三角形的内角和等于180°,得到矛盾,所以假设不成立,进而证明三角形的一个外角等于与它不相邻的两个内角的和.[详解]已知:如图,∠1是△ABC的一个外角,求证:∠1=∠A+∠B,证明:假设∠1≠∠A+∠B,△ABC中,∠A+∠B+∠2=180°,如下图所示:∴∠A+∠B=180°﹣∠2,∵∠1+∠2=180°,∴∠1=180°﹣∠2,∴∠1=∠A+∠B,与假设相矛盾,∴假设不成立,∴原命题成立即:∠1=∠A+∠B.[点睛]本题考查了反证法的运用,反证法的一般解题步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围[答案]1a[解析][详解]解:∵4(x+2)-5=3a+2,∴4x+8-5=3a+2∴x=3a-1 4,∴3a-14≤12,∴a≤1.20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.[答案]6cm.[解析]分析]根据含30度角的直角三角形性质求出BC和BD,再相减即可.[详解]∵△ABC中∠ACB=90°,∠A=30°,BC=4cm,∴AB=2BC=8cm,∠B=60°,∵∠BCD=∠A=30°,∴∠B+∠BCD=60°+30°=90°,∴∠CDB=90°,∴BD=12BC=2cm,∴AD=AB-BD=8cm-2cm=6cm.[点睛]此题考查含30度角的直角三角形性质的应用,解题关键在于掌握在直角三角形中,如果有一个角等于30度,那么它所对的直角边等于斜边的一半.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.[答案]9或4[解析][分析]先利用不等式的性质解出不等式,再得出不等式的负整数解,最后将其代入代数式求解即可.[详解]解:不等式去分母得:6+3x+3≥12﹣2x﹣14,移项合并得:5x≥﹣11,解得:x≥﹣2.2,∴不等式的负整数解为﹣2,﹣1,当x=﹣2时,原式=(-2+1)2-4×(-2)=1+8=9;当x=﹣1时,原式=(-1+1)2-4×(-1)=4.故代数式(x+1)2﹣4x的值为9或4.[点睛]本题考查了不等式解法以及求代数式的值,掌握基本运算法则是解题的关键.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.[答案]27[解析][分析]利用已知得出在Rt△BCD中,∠A=30°,DB=4,在直角△DEC中利用勾股定理进而得出EC的长.[详解]如图,∵AD⊥DB,∠A=30°,∴∠1=60°,∵BD平分∠ABC,∴∠3=∠1=60°,∴∠4=30°,又∵∠BCD=90°,DB=4,∴BC=12BD=2,22BD BC3∴∠CDE=∠2+∠4=90°,∵DE=BE,∠1=60°,∴DE=DB =4, ∴EC=22DE CD +=224(23)+=27.[点睛]此题主要考查了勾股定理、含30度角的直角三角形、角平分线的性质等知识点.解题时须注意勾股定理应用的前提条件是在直角三角形中.23. 如图,△ABC 中,AB =AC ,D 为BC 边的中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.[答案](1)见解析;(2)S △ABC =12.[解析][分析](1)根据等腰三角形的性质得到∠DAC =∠DAB ,AD ⊥BC 根据余角的性质即可得到结论;(2)根据三角形的面积公式和三角形的中线把三角形面积分为面积相等的两部分即可得到结论.[详解](1)∵AB =AC ,D 为BC 边的中点∴AD ⊥BC ,12BAD CAD BAC ∠=∠=∠ ∴∠B +∠BAD =90°∵DE ⊥AB∴∠B +∠EDB =90°∴1EDB BAD BAC 2∠=∠=∠ 即∠BAC =2∠EDB(2)∵AB =AC =6,DE =2∴16262ABD S =⨯⨯=∵D为BC边的中点∴S△ADC=S△ADB=6∴S△ABC=12[点睛]本题考查等腰三角形“三线合一”,同角的余角相等.在等腰三角形中,顶角的角平分线,底边的中线,底边的高线,三条线互相重合.熟练掌握这一性质是解决此题的关键.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示:(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个?[答案](1)60只;(2)40个.[解析][分析](1)设采购员购进篮球x个,则足球购进为(100-x)个,根据表格的批发价,列出不等式即可解决本题;(2)设篮球a个,则足球是(100﹣a)个,一个篮球的利润为40元,一个足球的利润为30元,再分别乘对应的数量,相加后大于等于3400,列出不等式,即可解决.[详解]解:(1)设采购员购进篮球x个,根据题意得:140x+110(100﹣x)≤12800解得x≤60所以x的最大值是60.答:采购员最多购进篮球60个;(2)设篮球a个,则足球是(100﹣a)个根据题意得:(180﹣140)a+(140﹣110)(100﹣a)≥3400解得:a≥40则采购员最少可购进篮球40个.答:采购员最少可购进篮球40个.[点睛]本题主要考查了一元一次不等式的应用题,能够读懂题意以及合理的设出未知数是解决本题的关键. 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明[答案](1)详见解析;(2) AC 垂直平分BE[解析][分析](1)证明AC 是∠EAB 的角平分线,根据角平分线的性质即可得到结论;(2)先写出BE 与AC 的关系,再根据题意和图形,利用线段的垂直平分线的判定即可证明.[详解](1)证明:∵AD=CD ,∴∠DAC=∠DCA ,∵AB ∥CD ,∴∠DCA=∠CAB ,∴∠DAC=∠CAB ,∴AC 是∠EAB 的角平分线,∵CE ⊥AE ,CB ⊥AB ,∴CE=CB ;(2)AC 垂直平分BE ,证明:由(1)知,CE=CB ,∵CE ⊥AE ,CB ⊥AB ,∴∠CEA=∠CBA=90°,在Rt △CEA 和Rt △CBA 中,CE CB AC AC =⎧⎨=⎩, ∴Rt △CEA ≌Rt △CBA (HL ),∴AE=AB ,CE=CB ,∴点A 、点C 在线段BE 的垂直平分线上, ∴AC 垂直平分BE .[点睛]本题考查等腰三角形的性质、角平分线的性质、线段垂直平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.。
2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。
()2. 平行四边形的对角线互相平分。
()3. 正方形的对角线相等且互相垂直。
()4. 圆的半径是圆心到圆上任意一点的距离。
()5. 圆的直径是圆上任意两点之间的距离。
()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。
2. 平行四边形的对角线互相平分,所以它的对角线长度是______。
3. 正方形的四个角都是______度。
4. 圆的半径是圆心到圆上______的距离。
5. 圆的直径是圆上______点之间的距离。
四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。
2. 简述平行四边形的性质。
3. 简述正方形的性质。
4. 简述圆的性质。
5. 简述圆的直径和半径之间的关系。
五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。
2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。
人教版数学八年级下册《期中考试试卷》附答案

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题1. 如下图是一次函数y=kx+b图象,当y<-2时,x的取值范围是( )A. x<3B. x>3C. x<-1D. x>-12. 正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )A. B. C. D.3. 直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.4. 若点(x1,y1),(x2,y2),(x3,y3)都是一次函数y=﹣x﹣1图象上的点,并且y1<y2<y3,则下列各式中正确的是( )A. x1<x2<x3B. x1<x3<x2C. x2<x1<x3D. x3<x2<x15. 某一次函数的图象经过点()1,2,且y随x的增大而减小,则这个函数的表达式可能是()A 24y x =+ B. 24y x =-+ C. 31y x D. 31y x -=-6. 一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m,n 的值为( )A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=17. 一组数据:1,2,4,2,2,5,这组数据的众数是( )A. 1B. 2C. 4D. 58. 某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选( )A. 丁B. 丙C. 乙D. 甲9. 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是( )A. 10和7B. 5和7C. 6和7D. 5和610. 在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A. 中位数是90B. 平均数是90C. 众数是87D. 极差是911. 某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是( ).A. 5,5B. 5,6C. 6,6D. 6,512. 下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A. 甲队员成绩平均数比乙队员的大B. 乙队员成绩的平均数比甲队员的大C. 甲队员成绩的中位数比乙队员的大D. 甲队员成绩的方差比乙队员的大二.填空题13. 对于正比例函数23m y mx -=,y 的值随x 的值减小而减小,则m 的值为_______.14. 甲、乙二人沿相同的路线由A 到B 匀速行进,A B ,两地间的路程为20km.他们行进的路程()s km 与甲出发后的时间()t h 之间的函数图象如图所示根据图象信息,填空()1乙的速度是______ km /h()2从A 地到达B 地,甲比乙多用了______ h .15. 如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.16. 若二元一次方程组41,2x y y x m -=⎧⎨=-⎩的解是2,7,x y =⎧⎨=⎩则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为________.17. 一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为___________.18. 某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:植树棵数 3 4 5 6人数20 15 10 5那么这50名学生平均每人植树__________棵.19. 一组数据:﹣1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是__.20. 小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.三.解答题21. 已知一次函数图象经过(-2,1)和(1,3)两点.(1)求这个一次函数的解析式;x 时,求y的值.(2)当322. 如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.23. 一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.24. 某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第1次第2次第3次第4次第5次第6次甲10 9 8 8 10 9乙10 10 8 10 7 9根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.25. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.26. 某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?答案与解析一.选择题1. 如下图是一次函数y=kx+b的图象,当y<-2时,x的取值范围是( )A. x<3B. x>3C. x<-1D. x>-1[答案]C[解析]分析:本题利用一次函数的图像和性质得出结论即可.解析:通过图像,可知函数经过( -1,-2 ),( 3,1),图像的性质可以看出y随x的增大而增大∴当y<-2时,x<-1. 故选C.点睛:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.2. 正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )A. B. C. D.[答案]B[解析][分析]根据图象分别确定的取值范围,若有公共部分,则有可能;否则不可能.[详解]根据图象知:A、k<0,﹣k<0.解集没有公共部分,所以不可能;B、k<0,﹣k>0.解集有公共部分,所以有可能;C、k>0,﹣k>0.解集没有公共部分,所以不可能;D、正比例函数的图象不对,所以不可能.故选:B.[点睛]本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b的图象的四种情况是解题的关键.3. 直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.[答案]B[解析]试题分析:已知直线y=ax+b经过第一、二、四象限,所以a<0,b>0,即可得直线y=bx﹣a的图象经过第一、二、三象限,故答案选B.考点:一次函数图象与系数的关系.4. 若点(x1,y1),(x2,y2),(x3,y3)都是一次函数y=﹣x﹣1图象上的点,并且y1<y2<y3,则下列各式中正确的是( )A. x1<x2<x3B. x1<x3<x2C. x2<x1<x3D. x3<x2<x1[答案]D[解析][分析]由k=-1<0,可得出y随x的增大而减小,再根据y1<y2<y3,即可得出x1>x2>x3.[详解]解:∵一次函数y=﹣x﹣1中k=﹣1<0,∴y随x的增大而减小,又∵y1<y2<y3,∴x1>x2>x3.故选:D .[点睛]本题考查了一次函数的性质,根据k <0找出y 随x 的增大而减小是解题的关键.5. 某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A. 24y x =+B. 24y x =-+C. 31y xD. 31y x -=-[答案]B[解析][分析]设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.[详解]设一次函数关系式为y kx b =+,∵图象经过点()1,2, 2k b ∴+=;∵y 随x 增大而减小,∴0k <,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .[点睛]本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.6. 一次函数y=(m ﹣2)x n ﹣1+3是关于x 一次函数,则m,n 的值为( )A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=1[答案]A[解析][分析]直接利用一次函数的定义分析得出答案.[详解]解:∵一次函数y=(m-2)x n-1+3是关于x的一次函数,∴n-1=1,m-2≠0,解得:n=2,m≠2.故选A.[点睛]此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.7. 一组数据:1,2,4,2,2,5,这组数据的众数是( )A. 1B. 2C. 4D. 5[答案]B[解析][分析]此题涉及的知识点是众数,根据众数的定义就可以判断得出结果[详解]一组数据中出现次数最多的那个数值,就是众数,根据题意,数据中出现最多的是2,所以众数是2,故选B[点睛]此题重点考察学生对于众数的理解和应用,掌握众数就是数据中出现次数最多的数是解题的最佳方法.8. 某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A. 丁B. 丙C. 乙D. 甲[答案]B[解析][分析]先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.[详解]∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.[点睛]本题考查了方差:一组数据中各数据与它们平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9. 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A. 10和7B. 5和7C. 6和7D. 5和6[答案]D[解析]分析:将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.详解:将这组数据按从小到大排列为:5,5,5,6, 7,7,10,∵数据5出现3次,次数最多,∴众数为:5;∵第四个数为6,∴中位数为6,故选D.点睛:本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.10. 在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A. 中位数是90B. 平均数是90C. 众数是87D. 极差是9 [答案]C[解析][分析]根据中位数、平均数、众数、极差的概念求解.[详解]解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=915 6 ,众数是87,极差是97﹣87=10.故选C.[点睛]本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.11. 某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是().A. 5,5B. 5,6C. 6,6D. 6,5[答案]B[解析][分析]根据众数、中位数的定义分别进行解答即可.[详解]解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选:B.[点睛]本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12. 下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A. 甲队员成绩的平均数比乙队员的大B. 乙队员成绩的平均数比甲队员的大C. 甲队员成绩的中位数比乙队员的大D. 甲队员成绩的方差比乙队员的大[答案]D[解析][分析]根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.[详解]甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8, 乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.[点睛]本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二.填空题13. 对于正比例函数23my mx -=,y 的值随x 的值减小而减小,则m 的值为_______.[答案]-2[解析][分析] 根据正比例函数的意义,可得答案.[详解]解:∵y 的值随x 的值减小而减小,∴m <0,∵正比例函数23my mx -=,∴m 2-3=1,∴m=-2,故答案为:-2[点睛]本题考查正比例函数的定义.14. 甲、乙二人沿相同的路线由A 到B 匀速行进,A B ,两地间的路程为20km.他们行进的路程()s km 与甲出发后的时间()t h 之间的函数图象如图所示根据图象信息,填空 ()1乙的速度是______ km /h()2从A 地到达B 地,甲比乙多用了______ h .[答案] (1). 20 (2). 3[解析][分析](1)根据图象确定出A 、B 两地间的距离以乙两人所用的时间,然后根据速度=路程÷时间求出两人的速度; (2)根据图象即可判断甲比乙晚到B 地的时间.[详解](1)由图可知,A. B 两地间的距离为20km ,从A 地到B ,乙用的时间为2−1=1小时,乙的速度是40÷1=40km/h ,故B 选项错误; (2)由图可知,甲4小时到达B 地,乙1小时到达B 地,所以,甲比乙晚到3小时.故答案为20,3.[点睛]本题考查函数的图像,解题的关键是清楚速度路程时间关系.15. 如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.[答案]10[解析][分析]分别令x=0,y=0,可得A 、B 坐标,即可求出OA 、OB 的长,利用三角形面积公式即可得答案.[详解]∵直线510y x =+交x 轴于点A ,交y 轴于点B ,∴令0y =,则2x =-;令0x =,则10y =;∴()2,0A -,()0,10B ,∴2OA =,10OB =,∴AOB 的面积1210102=⨯⨯=. 故答案为10[点睛]本题考查一次函数与坐标轴的交点问题,分别令x=0,y=0即可求出一次函数与坐标轴的交点坐标;也考查了三角形的面积.16. 若二元一次方程组41,2x y y x m -=⎧⎨=-⎩的解是2,7,x y =⎧⎨=⎩则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为________.[答案](2,7).[解析][分析]根据一次函数图象交点坐标为两个一次函数解析式联立组成的方程组的解,确定一次函数2y x m =-与41y x =-的图象的交点坐标.[详解]解:若二元一次方程组412x y y x m -=⎧⎨=-⎩的解是27x y =⎧⎨=⎩,则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为(2,7).故答案为:(2,7).[点睛]本题考查一次函数与二元一次方程组. 理解一次函数与二元一次方程(组)的关系是解决此类问题的关键.17. 一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为___________.[答案]1[解析][分析]根据平均数求得a 的值,然后根据众数求得b 的值后再确定新数据的中位数.[详解]试题分析:∵一组数据1,2,a 的平均数为2,∴1+2+a=3×2解得a=3∴数据﹣l ,a ,1,2,b 的唯一众数为﹣l ,∴b=﹣1,∴数据﹣1,3,1,2,b 的中位数为1.故答案为1.[点睛]本题考查了平均数、众数及中位数的定义,解题的关键是正确的利用其定义求得未知数的值. 18. 某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:那么这50名学生平均每人植树__________棵.[答案]4[解析][分析]利用加权平均数的计算公式进行计算即可.[详解]解:平均每人植树(3×20+4×15+5×10+6×5)÷50=4棵,故答案为4.[点睛]本题考查了加权平均数的计算,解题的关键是牢记加权平均数的计算公式,属于基础题.19. 一组数据:﹣1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是__.[答案]3[解析][分析]先根据数据的众数确定出x的值,即可得出结论.[详解]∵一组数据:﹣1,3,2,x,5,它有唯一的众数是3,∴x=3,∴此组数据为﹣1,2,3,3,5,∴这组数据的中位数为3.故答案为3.[点睛]本题考查了数据的中位数,众数的确定,掌握中位数和众数的确定方法是解答本题的关键.20. 小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试平均成绩不少于80分的目标,他第三次数学考试至少得____分.[答案]82[解析][分析]设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.[详解]设第三次考试成绩为x,∵三次考试的平均成绩不少于80分, ∴7286803x ++≥, 解得:82x ≥,∴他第三次数学考试至少得82分,故答案为:82[点睛]本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.三.解答题21. 已知一次函数图象经过(-2,1)和(1,3)两点.(1)求这个一次函数的解析式;(2)当3x =时,求y 的值.[答案](1)2733y x =+;(2)y 的值是133. [解析][分析](1)设该直线解析式为()0y kx b k =+≠,把(-2,1)和(1,3)代入可得关于k 、b 的二元一次方程组,解方程组求出k 、b 的值即可得答案;(2)把x=3代入(1)中所求的解析式,求出y 值即可得答案.[详解](1)设该直线解析式为()0y kx b k =+≠,∵一次函数图象经过(-2,1)和(1,3)两点,∴213k b k b -+=⎧⎨+=⎩, 解得2373k b ⎧=⎪⎪⎨⎪=⎪⎩. 故该一次函数解析式为:2733y x =+;(2)把3x =代入(1)中的函数解析2733y x =+得:27133333y =⨯+=, ∴3x =时,y 的值是133. [点睛]本题主要考查了待定系数法求一次函数解析式,根据一次函数图象上的点的坐标特征列出方程组求解是解题关键.22. 如图,直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,﹣2).(1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.[答案](1)直线AB 的解析式为y=2x ﹣2,(2)点C 的坐标是(2,2).[解析][分析]待定系数法,直线上点的坐标与方程的.(1)设直线AB 的解析式为y=kx+b ,将点A (1,0)、点B (0,﹣2)分别代入解析式即可组成方程组,从而得到AB 的解析式.(2)设点C 的坐标为(x ,y ),根据三角形面积公式以及S △BOC =2求出C 的横坐标,再代入直线即可求出y 的值,从而得到其坐标.[详解]解:(1)设直线AB 的解析式为y=kx+b ,∵直线AB 过点A (1,0)、点B (0,﹣2),∴k b 0{ b=2+=-,解得k 2{ b=2=-. ∴直线AB 的解析式为y=2x ﹣2.(2)设点C 的坐标为(x ,y ),∵S △BOC =2,∴12•2•x=2,解得x=2. ∴y=2×2﹣2=2.∴点C的坐标是(2,2).23. 一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.[答案](1)x>﹣2;(2)①(1,6);②10.[解析][分析](1)求不等式kx+b>0的解集,找到x轴上方的范围就可以了,比C点横坐标大就行了(2)①我们可以先根据B,C两点求出k值,因为不等式kx+b>﹣4x+a的解集是x>1所以B点横坐标为1,利用x=1代入y1=kx+b,即求出B点的坐标;②将B点代入y2=﹣4x+a中即可求出a值.[详解]解:(1)∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴不等式kx+b>0的解集是x>﹣2,故答案为x>﹣2;(2)①∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴b=4-2k+b=0⎧⎨⎩,得b=4k=2⎧⎨⎩,∴一次函数y1=2x+4,∵不等式kx+b>﹣4x+a的解集是x>1, ∴点B的横坐标是x=1,当x=1时,y1=2×1+4=6,∴点B 坐标为(1,6);②∵点B (1,6),∴6=﹣4×1+a ,得a =10, 即a 的值是10.[点睛]本题主要考查学生对于一次函数图像性质的掌握程度24. 某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.[答案](1)甲、乙六次测试成绩的方差分别是223S =甲,243S =乙;(2)甲 [解析][分析](1)根据方差的定义,利用方差公式分别求出甲、乙的方差即可;(2)根据平均数相同,利用(1)所求方差比较,方差小的成绩稳定,即可得答案.[详解](1)甲、乙六次测试成绩的方差分别是: (222222212[(109)(99)(89)(89)(109)99)63S ⎤=⨯-+-+-+-+-+-=⎦甲, (222222214[(109)(109)(89)(109)(79)99)63S ⎤=⨯-+-+-+-+-+-=⎦乙, (2)推荐甲参加全国比赛更合适,理由如下:∵两人的平均成绩相等,∴两人实力相当;∵甲的六次测试成绩的方差比乙小,∴甲发挥较为稳定,∴推荐甲参加比赛更合适.故答案为:甲[点睛]本题考查方差的求法及利用方差做决策,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;熟练掌握方差公式是解题关键.25. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.[答案](1)详见解析;(2)九()1班成绩好些;(3)九()1班的成绩更稳定,能胜出.[解析][分析]()1由条形图得出两班的成绩,根据中位数、平均数及众数分别求解可得;()2由平均数相等得前提下,中位数高的成绩好解答可得;()3分别计算两班成绩的方差,由方差小的成绩稳定解答.[详解]解:()1九()1班5位同学的成绩为:75、80、85、85、100,其中位数为85分;九()2班5位同学的成绩为:70、100、100、75、80,九()2班平均数为70100100758085(5++++=分),其众数为100分, 补全表格如下:()2九()1班成绩好些,两个班的平均数都相同,而九()1班的中位数高,在平均数相同的情况下,中位数高的九()1班成绩好些.()3九()1班的成绩更稳定,能胜出.()(22222211[(7585)(8085)(8585)(8585)10085)70(5S ⎤=⨯-+-+-+-+-=⎦九分2), ()(22222221[(7085)(10085)(10085)(7585)8085)160(5S 九⎤=⨯-+-+-+-+-=⎦分2), ()()2212S S 九九∴<,九()1班的成绩更稳定,能胜出.[点睛]本题考查了平均数、中位数、众数和方差的意义即运用方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.26. 某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元.(1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?[答案](1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.[解析]分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A 型空调和B 型空调每台各需x 元、y 元,3239000456000x y x y +⎧⎨-⎩==,解得,90006000x y ⎧⎨⎩==, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,()()13029000600030217000a a a a ⎧≥-⎪⎨⎪+-≤⎩, 解得,10≤a≤1213, ∴a=10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w 元,w=9000a+6000(30-a)=3000a+180000,∴当a=10时,w 取得最小值,此时w=210000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.。
人教版八年级下册数学《期中测试题》附答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、单选题(每题 3 分,共 30 分)1. 要使式子2x -有意义,则的取值范围是[ ]A. x 0>B. x 2≥-C. x 2≥D. x 2≤ 2. 平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为( ).A. 120︒B. 60︒C. 30D. 15︒3. 下列根式中,最简二次根式( )A. 9aB. 0.5C. 3aD. 22a b + 4. 满足下列条件的三角形中,不是直角三角形的是( )A. 三内角度数之比为1∶2∶3B. 三内角的度数之比为3∶4∶5C. 三边长之比为3∶4∶5D. 三边长的平方之比为1∶2∶35. 一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为( )A. 6013B. 13C. 6D. 256. 在下列条件中,不能确定四边形ABCD 为平行四边形的是( ).A. ∠A=∠C,∠B=∠DB. ∠A+∠B=180°,∠C+∠D=180°C. ∠A+∠B=180°,∠B+∠C=180°D. ∠A=∠B=∠C=90°7. 如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A. 2B. 6C 236223+-- D. 23225+-8. 如图,在ABC ∆中,90C ∠=︒,2AC =,点在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )A. 51-B. 51+C. 31-D. 31+9. 下列说法不能判断是正方形的是( )A. 对角线互相垂直且相等的平行四边形B. 对角线互相垂直的矩形C. 对角线相等的菱形D. 对角线互相垂直平分的四边形10. 如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC 于E ,AB =3,AC =2,BD =4,则AE 的长为( )A. 32B. 32C. 217D. 2217二、填空题(每题 3 分,共 21 分)11. 若直角三角形斜边上的中线等于3,则这个直角三角形的斜边长为_____12. 已知 114x x y -+-=+,则 y x 的值为_____.13. 将一个矩形纸片沿BC 折叠成如图所示的图形,若27ABC ∠=︒,则ACD ∠的度数为________.14. 45a ,则最小的正整数a 的值是_________.15. 实数a ,b 在数轴上对应点的位置如图所示,化简2()a a b -的结果是_________________16. 如图,在矩形ABCD 中,2AB =,3BC =.若点是边CD 的中点,连接AE ,过点作BF AE ⊥交AE 于点,则BF 的长为______.17. 如图,在□ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG =2BG ,S △BPG =1,则S □AEPH =______.三.解答题18. 计算:(1)(32)(23)-+ (2)1(83)642+⨯- 19. 如图,△ABC 中,∠ACB=Rt ∠,AB=8,BC=2,求斜边AB 上的高CD .20. 先化简,31254y x xy x xy x y y其中15x =,4y = 21. 如图,四边形 ABCD 是正方形,点 E 是 BC 边上任意一点, ∠AEF = 90°,且EF 交正方形外角的平分线 CF 于点 F .求证:AE=EF .22. 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1 中,画一个三角形,使它的三边长都是有理数;(2)在图2 中,画一个直角三角形,使它们的直角边都是无理数;(3)在图3 中,画一个正方形,使它的面积是10.23. 已知a、b、c满足(a﹣3)24+-+|c﹣5|=0.b求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.24. 如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB∶∠ODC=4∶3,求∠ADO的度数.25. 在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF菱形;(3)若AC=4,AB=5,求菱形ADCF 面积.答案与解析一、单选题(每题 3 分,共 30 分)1.,则的取值范围是[ ]A. x 0>B. x 2≥-C. x 2≥D. x 2≤[答案]D[解析][分析][详解]根据二次根式被开方数必须是非负数的条件,,必须2x 0x 2-≥⇒≤. 故选D.2. 平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为( ).A. 120︒B. 60︒C. 30D. 15︒ [答案]B[解析][分析]根据平行四边形的性质:邻角互补,对角线相等即可解答[详解]在平行四边形ABCD 中,2180A B A A ∠+∠=∠+∠=︒∴60A ∠=︒,60C A ∠=∠=︒故选:B.[点睛]本题考查平行四边形的性质,解题关键是熟练掌握平行四边形的角的性质:邻角互补,对角线相等. 3. 下列根式中,最简二次根式是( )A. B. C. D. [答案]D[解析][分析]检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.[详解]解:A、被开方数含能开得尽方的因数或因式,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;故选D.[点睛]本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4. 满足下列条件的三角形中,不是直角三角形的是()A. 三内角的度数之比为1∶2∶3B. 三内角的度数之比为3∶4∶5C. 三边长之比为3∶4∶5D. 三边长平方之比为1∶2∶3[答案]B[解析]试题解析:A、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;B、根据三角形内角和定理可求出三个角分别为45度,60度,75度,所以不是直角三角形;C、因为32+42=52,符合勾股定理的逆定理,所以是直角三角形;D、因为1+2=3,所以是直角三角形.故选B.5. 一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为( )A. 6013B. 13C. 6D. 25[答案]A[解析]试题分析:∵直角三角形的两条直角边的长分别为5,12,=13,∵S△ABC=12×5×12=12×13h(h为斜边上的高),∴h=60 13.故选A.6. 在下列条件中,不能确定四边形ABCD为平行四边形的是( ).A. ∠A=∠C,∠B=∠DB. ∠A+∠B=180°,∠C+∠D=180°C. ∠A+∠B=180°,∠B+∠C=180°D. ∠A=∠B=∠C=90°[答案]B[解析]分析]根据平行四边形的多种判定方法,分别分析A、B、C、D选项是否可以证明四边形ABCD为平行四边形,即可解题.[详解]A.∠A=∠C,∠B=∠D,根据四边形的内角和为360°,可推出∠A+∠B=180°,所以AD∥BC,同理可得AB∥CD,所以四边形ABCD为平行四边形,故A选项正确;B.∠A+∠B=180°,∠C+∠D=180°即可证明AD∥BC,条件不足,不足以证明四边形ABCD为平行四边形,故B 选项错误.C.∠A+∠B=180°,∠B+∠C=180°即可证明AB∥CD,AD∥BC,根据平行四边形的定义可以证明四边形ABCD 为平行四边形,故C选项正确;D.∠A=∠B=∠C=90°,则∠D=90°,四个内角均为90°可以证明四边形ABCD为矩形,故D选项正确;故选B.7. 如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为()A. 2B. 6C. 236223D. 23225[答案]D[解析][分析]将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.[详解]将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积=()()222323⨯-+⨯-=222233-+-=23225+-故选D[点睛]本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.8. 如图,在ABC ∆中,90C ∠=︒,2AC =,点在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )5151 31 31[答案]B[解析][分析] 根据ADC 2B ∠=∠,可得∠B=∠DAB ,即5BD AD ==,在Rt △ADC 中根据勾股定理可得DC=1,则51.[详解]解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB∴5BD AD ==在Rt△ADC中,由勾股定理得:22DC541AD AC=-=-=∴BC=BD+DC=51+故选B[点睛]本题考查勾股定理的应用以及等角对等边,关键抓住ADC2B∠=∠这个特殊条件.9. 下列说法不能判断是正方形的是()A. 对角线互相垂直且相等的平行四边形B. 对角线互相垂直的矩形C. 对角线相等的菱形D. 对角线互相垂直平分的四边形[答案]D[解析][分析]正方形是特殊的矩形和菱形,要判断是正方形,选项中必须要有1个矩形的特殊条件和1个菱形的特殊条件. [详解]A中,对角线相互垂直的平行四边形可判断为菱形,又有对角线相等,可得正方形;B中对角线相互垂直的矩形,可得正方形;C中对角线相等的菱形,可得正方形;D中,对角线相互垂直平分,仅可推导出菱形,不正确故选:D[点睛]本题考查证正方形的条件,常见思路为:(1)先证四边形是平行四边形;(2)再添加一个菱形特有的条件;(3)再添加一个矩形特有的条件10. 如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC于E,AB=3,AC=2,BD=4,则AE 的长为( )A.32B.32C.217D.217[答案]D[解析][分析]由勾股定理的逆定理可判定△BAC是直角三角形,继而根据求出平行四边形ABCD的面积即可求解.[详解]解:∵AC=2,BD=4,四边形ABCD是平行四边形,∴AO=12AC=1,BO=12BD=2,∵AB∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC==S△BAC=12×AB×AC=12×BC×AE,2AE,∴AE=7,故选:D.[点睛]本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.二、填空题(每题3 分,共21 分)11. 若直角三角形斜边上的中线等于3,则这个直角三角形的斜边长为_____[答案]6.[解析][分析]根据直角三角形斜边中线的性质即可得.[详解]已知直角三角形斜边上的中线等于3,根据直角三角形斜边上的中线等于斜边的一半可得这个直角三角形的斜边长为6.故答案为:6.12. 已知 114x x y -+-=+,则 y x 的值为_____.[答案]-4[解析][分析] 根据二次根式的被开方数为非负数列不等式组解得x 值,将x 代入原式解得y 值,即可求解.[详解]要使114x x y -+-=+有意义,则:1010x x -≥⎧⎨-≥⎩,解得:x=1,代入原式中, 得:y=﹣4,∴y x =(-4)1=-4,故答案为:-4.[点睛]本题考查二次根式有意义的条件、解一元一次不等式组、幂的乘方,熟练掌握二次根式的被开方数为非负数是解答的关键.13. 将一个矩形纸片沿BC 折叠成如图所示的图形,若27ABC ∠=︒,则ACD ∠的度数为________.[答案]126°[解析][分析]直接利用翻折变换的性质以及平行线的性质分析得出答案.[详解]解:如图,由题意可得:∠ABC=∠BCE=∠BCA=27°,则∠ACD=180°-27°-27°=126°.故答案为:126°.[点睛]本题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.14. 若45a 是整数,则最小的正整数a 的值是_________.[答案]5.[解析][分析]由于45a=5×3×3×a ,要使其为整数,则必能被开得尽方,所以满足条件的最小正整数a 为5. [详解]解: 45a=5×3×3×a , 若为整数,则必能被开方,所以满足条件的最小正整数a 为5.故答案为:5.[点睛]本题考查二次根式的化简.15. 实数a ,b 在数轴上对应点的位置如图所示,化简2()a a b +-的结果是_________________[答案]2a b -+[解析][分析]先根据数轴的定义得出0,0a a b <-<,再根据绝对值运算、算术平方根进行化简,然后计算整式的加减即可得.[详解]由数轴的定义得:0,0a a b <-<,则2()a a b +-,()a b a =-+-,a b a =-+-,2a b =-+,故答案为:2a b -+.[点睛]本题考查了数轴的定义、绝对值运算、算术平方根、整式的加减,根据数轴的定义判断出0,0a a b <-<是解题关键.16. 如图,在矩形ABCD 中,2AB =,3BC =.若点是边CD 的中点,连接AE ,过点作BF AE ⊥交AE 于点,则BF 的长为______.[答案]3105[解析][分析]根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. [详解]解:如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,22223110AD DE +=+= ∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=310. 310[点睛]本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题关键是灵活运用所学知识解决问题,用面积法解决有关线段问题是常用方法.17. 如图,在□ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG =2BG ,S △BPG =1,则S □AEPH =______.[答案]4[解析][分析]由条件可证明四边形HPFD、BEPG为平行四边形,可证明S四边形AEPH=S四边形PFCG.,再利用面积的和差可得出四边形AEPH和四边形PFCG的面积相等,由已知条件即可得出答案.[详解]解:∵EF∥BC,GH∥AB,∴四边形HPFD、BEPG、AEPH、CFPG平行四边形,∴S△PEB=S△BGP,同理可得S△PHD=S△DFP,S△ABD=S△CDB,∴S△ABD-S△PEB-S△PHD=S△CDB-S△BGP-S△DFP,即S四边形AEPH=S四边形PFCG.∵CG=2BG,S△BPG=1,∴S四边形AEPH=S四边形PFCG=4×1=4;故答案为:4.[点睛]本题主要考查平行四边形的判定和性质,掌握平行四边形的判定和性质是解题的关键,即①两组对边分别平行⇔四边形为平行四边形,②两组对边分别相等⇔四边形为平行四边形,③一组对边平行且相等⇔四边形为平行四边形,④两组对角分别相等⇔四边形为平行四边形,⑤对角线互相平分⇔四边形为平行四边形.三.解答题18. 计算:(1)32)(23)(2)1 (83)62[答案](1)1(2)432 [解析][分析](1)根据平方差公式即可求解;(2)根据二次根式的混合运算法则即可求解.[详解](1)(32)(23)-+ =3-2 =1 (2)1(83)642+⨯- =48188+- =433222+- =432+.[点睛]此题主要考查二次根式的运算,解题的关键是熟知其运算法则.19. 如图,△ABC 中,∠ACB=Rt ∠,AB=8,BC=2,求斜边AB 上的高CD .[答案]6[解析][分析] 先根据勾股定理求出AC ,再根据等面积法即可求得结果.[详解]解:由题意得226AC AB BC =-=1122ABC S AB CD AC BC =⋅=⋅, 1186222CD =解得6[点睛]本题考查的是二次根式的应用,勾股定理的应用,解答本题的关键是掌握好利用等面积法求直角三角形的斜边上的高.20. 先化简,再求值:31254y x xy x y xy x y y+--,其中15x =,4y = [答案]255 [解析][分析]先利用二次根式的性质化简,合并后再把已知条件代入求值.[详解]原式=54xy xy xy xy xy +--=当15x =,y= 4时 原式=255[点睛]本题主要考查了二次根式的化简求值,注意先化简代数式,再进一步代入求得数值.21. 如图,四边形 ABCD 是正方形,点 E 是 BC 边上任意一点, ∠AEF = 90°,且EF 交正方形外角的平分线 CF 于点 F .求证:AE=EF .[答案]见解析[解析][分析]截取BE =BM ,连接EM ,求出AM =EC ,得出∠BME =45°,求出∠AME =∠ECF =135°,求出∠MAE =∠FEC ,根据ASA 推出△AME 和△ECF 全等即可.[详解]证明:在AB 上截取BM =BE ,连接ME ,∵∠B =90°,∴∠BME =∠BEM =45°,∴∠AME =135°∵CF 是正方形ABCD 的外角的角平分线,∴∠ECF=90°+∠DCF=90°+1902⨯︒=135°=∠ECF , ∵∠AEF = 90°∴∠AEB+CEF ∠=90°又∠AEB+MAE ∠=90°,∴MAE CEF ∠=∠∵AB =BC ,BM =BE ,∴AM =EC ,在△AME 和△ECF 中MAE CEF AM ECAME ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AME ≌△ECF (ASA ),∴AE =EF .[点睛]本题考查了正方形的性质,全等三角形的性质和判定,角平分线的定义,关键是推出△AME ≌△ECF . 22. 如图,正方形网格中的每个小正方形边长都是 1,每个小格的顶点叫做格点, 以格点为顶点分别按下列要求画三角形.(1)在图 1 中,画一个三角形,使它的三边长都是有理数;(2)在图 2 中,画一个直角三角形,使它们的直角边都是无理数;(3)在图 3 中,画一个正方形,使它的面积是 10.[答案](1)见解析(2)见解析(3)见解析[解析][分析](1)根据题意可画出三边长分别为3,4,5的三角形即可;(2)根据题意及勾股定理即可画出边长为5、5、10的直角三角形;(3)根据题意及正方形面积的特点即可画出边长为10的正方形.[详解](1)如图1,三角形所求;(2)如图2,三角形为所求;(3)如图3,正方形为所求.[点睛]此题主要考查网格与图形,解题的关键是熟知勾股定理的运用.23. 已知a、b、c满足(a﹣3)24b-|c﹣5|=0.求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.[答案](1)a=3,b=4,c=5;(2)能构成三角形,且它的周长=12.[解析][分析](1)根据平方、算术平方根及绝对值的非负性即可得到答案;(2)根据勾股定理的逆定理即可证明三角形是直角三角形,再计算周长即可.[详解](1)∵2---=,a b c(3)450又∵(a ﹣3)2≥0,40-≥b ,|c ﹣5|≥0,∴a ﹣3=0,b ﹣4=0,c ﹣5=0,∴a =3,b =4,c =5;(2)∵32+42=52,∴此△是直角三角形,∴能构成三角形,且它的周长l =3+4+5=12.[点睛]此题考查平方、算术平方根及绝对值的非负性,勾股定理的逆定理.24. 如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =OC ,BO =OD ,且∠AOB =2∠OAD.(1)求证:四边形ABCD 是矩形;(2)若∠AOB ∶∠ODC =4∶3,求∠ADO 的度数.[答案](1)证明见解析;(2)∠ADO==36°. [解析][分析](1)先判断四边形ABCD 是平行四边形,继而根据已知条件推导出AC=BD ,然后根据对角线相等的平行四边形是矩形即可;(2)设∠AOB=4x ,∠ODC=3x ,则∠OCD=∠ODC=3x.,在△ODC 中,利用三角形内角和定理求出x 的值,继而求得∠ODC 的度数,由此即可求得答案.[详解](1)∵AO =OC ,BO =OD ,∴四边形ABCD 是平行四边形,又∵∠AOB =2∠OAD ,∠AOB 是△AOD 的外角,∴∠AOB =∠OAD +∠ADO.∴∠OAD =∠ADO.∴AO =OD.又∵AC =AO +OC =2AO ,BD =BO +OD =2OD ,∴AC =BD.∴四边形ABCD矩形.(2)设∠AOB=4x,∠ODC=3x,则∠ODC=∠OCD=3x,在△ODC中,∠DOC+∠OCD+∠CDO=180°∴4x+3x+3x=180°,解得x=18°,∴∠ODC=3×18°=54°,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO=∠ADC-∠ODC=90°-54°=36°.[点睛]本题考查了矩形的判定与性质,三角形内角和定理等知识,熟练掌握和灵活运用相关知识是解题的关键.25. 在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.[答案](1)证明详见解析;(2)证明详见解析;(3)10.[解析][分析](1)利用平行线的性质及中点的定义,可利用AAS证得结论;(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.[详解](1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE =DE ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF =DB . ∵AD 为BC 边上的中线∴DB =DC ,∴AF =CD .∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,E 是AD 的中点, ∴AD =DC =12BC , ∴四边形ADCF 是菱形;(3)连接DF ,∵AF ∥BD ,AF =BD ,∴四边形ABDF 是平行四边形,∴DF =AB =5,∵四边形ADCF 是菱形,∴S 菱形ADCF =12AC ▪DF =12×4×5=10. [点睛]本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD 是解题的关键,注意菱形面积公式的应用.。
人教版八年级下册数学《期中检测试题》(含答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题,每小题3分,计30分每小题只有一个选项是符合题意的)1. 下列式子中,是分式的是()A.12a-B.3xπ-C. ﹣3xD.2xy+2. 我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3. 若a<b,则下列不等式变形正确的是()A. ﹣3a<﹣3bB. a﹣3>b﹣3C. am<bmD. 2a<2b4. 如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD 的度数为()A. 65°B. 35°C. 30°D. 25°5. 已知点A(x+3,2﹣x)在第四象限,则x的取值范围是()A. x>2B. x>﹣3C. ﹣3<x<2D. x<26. 下列说法正确的是()A. 对角线相等四边形是平行四边形B. 一组对边平行,另一组对边相等的四边形是平行四边形C. 一组对边相等,一组对角相等的四边形是平行四边形D. 一组对边平行且相等的四边形是平行四边形7. 如图,平行四边形ABCD的周长为52,对角线AC,BD相交于点O,点E是CD的中点,BD=18,则△DOE的周长是( )A. 22B. 26C. 31D. 358. △ABC与△DBC如图放置,已知,∠ABC=∠BDC=90°,∠A=60°,BD=CD=22,将△ABC沿BC方向平移至△A'B'C'位置,使得A'C边恰好经过点D,则平移的距离是()A. 1B. 22﹣2C. 23﹣2D. 26﹣49. 若关于x方程333x m mx x++--=3的解为正数,则m的取值范围是()A. m<92B. m<92且m≠32C. m>﹣94D. m>﹣94且m≠﹣3410. 如图,△ABC中,∠ACB=90°,点D,E分别在BC,AC边上,且AE=4,BD=6,分别连接AD,BF,点M,N 分别是AD,BE的中点,连接MN,则线段MN的长()5 B. 3 C. 213二、填空题(共4小题,每小题3分,计12分)11. 已知a﹣b=2,则222a bab+-值_____.12. 若凸n 边形的内角和为1440°,则从一个顶点出发引的对角线条数是_____ 13. 若分式2||123x x x ---值为0,则x 的值为_____. 14. 如图,点D 是等边△ABC 外部一点,∠ADC =30°,BD =8,则四边形ABCD 面积的最小值为_____.三、解答题(共9小题,计58分)15. 因式分解:(1)x 3﹣8x 2+16x ;(2)x (x 2﹣5)﹣4x .16. 解不等式组253(2)123x x x x +≤+⎧⎪-⎨≤⎪⎩,并把解集在数轴上表示出来. 17. 先化简,再求值:(m +252m +-)324m m -÷-,其中m =﹣1. 18. 如图,四边形ABCD 中,∠A =∠C =90°,若AB =BC .求证:BD 平分∠ABC .19. 已知在平面直角坐标系中,A (﹣2,0)、B (3,﹣1)、C (2,2),格中每一格表示一个单位长度,请解答以下问题:(1)求作出△ABC ;(2)将△ABC 平移,使得平移后点C 的对应点为原点,A 、B 的对应点分别为A 1,B 1,请作出平移后的△A 1B 1O ,并直接写出平移的距离为 ;(3)将△ABC 绕点A 逆时针旋转90°,得到△AB 2C 2,B 、C 的对应点分别为B 2、C 2,请作出△AB 2C 2,并求出B 2、C 2点的坐标.20. 如图,平行四边形ABCD中,延长BC至E,使得CE=12BC,连接DE,F是AD的中点,连接CF.(1)求证:四边形CEDF是平行四边形:(2)若AB=8,AD=10,∠B=60°,求四边形ABCF的面积.21. “抗击疫情,八方支援”截至2020年2月19日,全国已有278支医疗队、32395名医务人员从各地驰援湖北,小明和爸爸经过商量打算用自己的压岁钱购买A、B两种品牌消毒酒精捐赠当地医院,已知A品牌消毒酒精每桶的价格比B品牌消毒酒精每桶的价格多20元,用3000元购进A品牌消毒酒精和用1800元购进B 品牌消毒酒精数量相同.(1)A品牌消毒酒精每桶的价格和B品牌消毒酒精每桶的价格各是多少元?(2)小明计划用不超过1560元的压岁钱购进A,B两种品牌消毒酒精共40桶,其中A品牌消毒酒精的数量不低于B品牌消毒酒精数量的一半,小明有几种购买方案?22. 如图,两个一次函数y=kx+b与y=mx+n的图象分别为直线l1和l2,l1与l2交于点A(1,p),l1与x轴交于点B(﹣2,0),l2与x轴交于点C(4,0)(1)填空:不等式组0<mx+n<kx+b解集为;(2)若点D和点E分别是y轴和直线l2上的动点,当p=32时,是否存在以点A、B、D、E为顶点的四边形是平行四边形?若存在,请求出点E的坐标;若不存在,请说明理由.23. 已知:在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针旋转,得到△A1B1C,旋转角为α(0°≤α≤360°).(1)如图①,当α=60°时,连接A1B交B1C于点D,则A1B的长是;(2)如图②,当点B1在线段BA的延长线上时,求线段AB1的长;(3)如图③,点E是BC上的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,线段EF1的长是否存在最大值和最小值?若存在请求出线段EF1长度的最大值与最小值的差;若不存在,请说明理由.答案与解析一、选择题(共10小题,每小题3分,计30分每小题只有一个选项是符合题意的) 1. 下列式子中,是分式的是( ) A. 12a - B. 3x π- C. ﹣3x D. 2x y + [答案]A[解析][分析]利用分式定义可得答案.[详解]解:A 、12a -的分母含字母,是分式,故此选项符合题意; B 、3x π-的分母不含字母,不是分式,是整式,故此选项不合题意; C 、﹣3x 的分母不含字母,不是分式,是整式,故此选项不合题意; D 、2x y +的分母不含字母,不是分式,是整式,故此选项不合题意; 故选:A .[点睛]本题考查分式的定义,熟练掌握分式的定义是解答本题的关键.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.注意π不是字母,是常数,所以分母中含π的代数式不是分式,是整式.2. 我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.[答案]B[解析]试题分析:根据轴对称图形与中心对称图形的概念求解.解:A 、不是轴对称图形,也不是中心对称图形.故错误;B 、轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3. 若a<b,则下列不等式变形正确的是()A. ﹣3a<﹣3bB. a﹣3>b﹣3C. am<bmD. 2a<2b[答案]D[解析][分析]根据不等式的性质逐一进行判断即可.[详解]解:∵a<b,∴﹣3a>﹣3b,故A错误;∵a<b,∴a﹣3<b﹣3,故B错误;∵a<b,当m>0时,am<bm,故C错误;∵a<b,∴2a<2b,故D正确.故选:D.[点睛]本题考查了不等式的性质,掌握知识点是解题关键.4. 如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD 的度数为()A. 65°B. 35°C. 30°D. 25°[答案]C[解析][分析]根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.[详解]解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=35°,∵∠B=80°,∠C=35°,∴∠BAC=65°,∴∠BAD=∠BAC﹣∠DAC=65°﹣35°=30°,故选:C.[点睛]本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5. 已知点A(x+3,2﹣x)在第四象限,则x的取值范围是()A. x>2B. x>﹣3C. ﹣3<x<2D. x<2[答案]A[解析][分析]根据第四象限内点的坐标特征得到3020xx+>⎧⎨-<⎩,然后解不等式组即可.[详解]解:∵点A(x+3,2﹣x)在第四象限,∴30 20 xx+>⎧⎨-<⎩,解得x>2. 故选:A.[点睛]本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6. 下列说法正确的是()A. 对角线相等的四边形是平行四边形B. 一组对边平行,另一组对边相等的四边形是平行四边形C. 一组对边相等,一组对角相等的四边形是平行四边形D. 一组对边平行且相等的四边形是平行四边形[答案]D[解析][分析]根据平行四边形的判定方法分别对各个选项进行判断即可.[详解]解:∵对角线互相平分的四边形是平行四边形,∴选项A不符合题意;∵一组对边平行,另一组对边相等的四边形不一定是平行四边形,∴选项B不符合题意;C、∵一组对边相等,一组对角相等的四边形不一定是平行四边形,∴选项C不符合题意;∵一组对边平行且相等的四边形是平行四边形,∴选项D符合题意;故选:D.[点睛]本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键.7. 如图,平行四边形ABCD的周长为52,对角线AC,BD相交于点O,点E是CD的中点,BD=18,则△DOE的周长是( )A. 22B. 26C. 31D. 35[答案]A[解析][分析]利用平行四边形的性质,三角形中位线定理即可解决问题.[详解]解:∵平行四边形ABCD的周长为52,∴BC+CD=26,∵OD=OB,DE=EC,∴OE+DE=12(BC+CD)=13,∵BD=18,∴OD=12BD=9,∴△DOE的周长为13+9=22.故选:A.[点睛]本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.8. △ABC与△DBC如图放置,已知,∠ABC=∠BDC=90°,∠A=60°,BD=CD=22,将△ABC沿BC方向平移至△A'B'C'位置,使得A'C边恰好经过点D,则平移的距离是()A. 1B. 2﹣2C. 3﹣2D. 6﹣4[答案]C[解析][分析]过点D作DJ⊥BC于J,根据勾股定理求出BC,利用等腰直角三角形的性质求出DJ、BJ、JC,利用平行线分线段成比例定理求出JC′即可解决问题.[详解]解:过点D作DJ⊥BC于J.∵DB =DC =2∠BDC =90°,∴BC ()()222222+4,DJ =BJ =JC =2,∵∠ABC =90°,∠A =60°,∴∠ACB =30°,∴AC=2AB ,∵AB 2+42=(2AB)2,∴A′B′=AB 43, ∵DJ//A′B′, ∴DJ A B ''=C J C B''', 434C J ', ∴C′J =3∴JB′=4﹣3,∴BB′=2﹣(4﹣3=3 2.故选:C .[点睛]本题考查了平移的性质,直角三角形的性质,等腰三角形的性质,勾股定理,以及平行线分线段成比例定理.9. 若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A. m <92B. m <92且m≠32C. m >﹣94 D. m >﹣94且m≠﹣34 [答案]B[解析][详解]解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.10. 如图,△ABC中,∠ACB=90°,点D,E分别在BC,AC边上,且AE=4,BD=6,分别连接AD,BF,点M,N 分别是AD,BE的中点,连接MN,则线段MN的长()A. 5B. 3C. 32D. 13[答案]D[解析][分析]取AB的中点F,连接NF、MF,根据直角三角形的性质得到∠CAB+∠CBA=90°,根据三角形中位线定理分别求出MF、NF,以及∠MFN=90°,根据勾股定理计算,得到答案.[详解]解:取AB的中点F,连接NF、MF,△ABC中,∵∠ACB=90°,∴∠CAB+∠CBA=90°, ∵AM=MD,AF=FB,∴MF是△ABD的中位线,∴MF=12BD=3,MF//BC,∴∠AFM=∠CBA,同理,NF=12AE=2,NF//AC,∴∠BFN=∠CAB,∴∠AFM+∠BFN=∠CAB+∠CBA=90°,∴∠MFN=90°,∴MN故选:D.[点睛]本题考查了三角形的中位线,平行线的性质,以及勾股定理等知识,三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题(共4小题,每小题3分,计12分)11. 已知a﹣b=2,则222a bab+-的值_____.[答案]2[解析][分析]根据完全平方公式解答即可.[详解]解:∵a﹣b=2,∴222a bab +-=2222a ab b-+=2 ()2a b -=222=2,故答案为:2.[点睛]本题主要考查了完全平方公式,熟记公式是解答本题的关键.12. 若凸n 边形的内角和为1440°,则从一个顶点出发引的对角线条数是_____ [答案]7[解析][分析]根据凸n 边形的内角和为1440°,求出凸n 边形的边数,即可得出从一个顶点出发可引出(n ﹣3)条对角线.[详解]解:∵凸n 边形的内角和为1440°, ∴(n ﹣2)×180°=1440°,解得:n =10,∴:10﹣3=7.故答案为:7.[点睛]本题考查多边形内角和定理,解题关键是根据多边形内角和定理求出凸n 边形的边数.13. 若分式2||123x x x ---的值为0,则x 的值为_____. [答案]1[解析][分析]根据分子为零列出方程求解,然后验证分母是否为0可得答案.[详解]解:∵分式2||123x x x ---的值为0, ∴|x|﹣1=0,∴x=±1,当x=1时,x 2﹣2x ﹣3=-4≠0,当x=-1时,x 2﹣2x ﹣3=0,∴x =1,故答案为:1.[点睛]本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.14. 如图,点D是等边△ABC外部一点,∠ADC=30°,BD=8,则四边形ABCD面积的最小值为_____.[答案]163﹣16[解析][分析]过点D作DE⊥DC,且使得DE=DA,连接AE;过点A作AM⊥CD于点M,根据全等三角形的判定得△ABD≌△ACE,设等边三角形ABC的边长为a,等边三角形ADE的边长为b,根据等边三角形的性质、全等三角形的性质,得到四边形ABCD面积的表达式,进而即可求解.[详解]解:过点D作DE⊥DC,且使得DE=DA,连接AE;过点A作AM⊥CD于点M,如下图所示:∵DE⊥DC,∴∠EDC=90°,∵∠ADC=30°,∴∠EDA=60°,∵DE=DA,∴三角形ADE是等边三角形,∴AD =AE ,∠DAE =60°,∴∠CAE =∠CAD +∠DAE =∠CAD +60°,∵△ABC 是等边三角形,∴AB =AC ,∠BAC =60°,∴∠BAD =∠BAC +∠CAD =60°+∠CAD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴CE =BD ,∵BD =8,∴CE =8,设等边三角形ABC 的边长为a ,等边三角形ADE 的边长为b ,直角三角形DEC 中,CE =8,DE =b ,∴2264DC b =-,在直角三角形AMD 中,∠ADC =30°,AD =b ,∴AM =12b , ∴DM =32b , ∴CM =264b -﹣32b , 在直角三角形ACM 中,222AC AM CM =+,∴222213()(64)22a b b b =+--, ∵ABCD S 四边形=S △ABC +S △ACD =12×a×32 a +12DC·AM=12×a×32a +12×12b×264b -, =222313()(64)422b b b ⎡⎤+--⎢⎥⎣⎦ +14b 264b -==∴当b²=32时,即b=,ABCDS四边形最小值1322⨯16,故答案为:16.[点睛]本题主要考查全等三角形的判定与性质、等边三角形的性质、旋转的性质,解题关键是根据题意求出边之间的关系.三、解答题(共9小题,计58分)15. 因式分解:(1)x3﹣8x2+16x;(2)x(x2﹣5)﹣4x.[答案](1)x(x﹣4)2;(2)x(x+3)(x﹣3).[解析][分析](1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可.[详解]解:(1)原式=x(x2﹣8x+16)=x(x﹣4)2;(2)原式=x(x2﹣5﹣4)=x(x+3)(x﹣3).[点睛]此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16. 解不等式组253(2)123x xx x+≤+⎧⎪-⎨≤⎪⎩,并把解集在数轴上表示出来.[答案]﹣1≤x≤3,数轴见解析[解析][分析]先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集,然后画数轴表示即可.[详解]解:253(2)123x x x x +≤+⎧⎪⎨-≤⎪⎩①②, 由①式得x≥﹣1,由②得x≤3,所以﹣1≤x≤3, .[点睛]本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.17. 先化简,再求值:(m +252m +-)324m m -÷-,其中m =﹣1. [答案]﹣2m ﹣6,﹣4.[解析][分析] 把m +2看成21m +,先计算括号里面的,再算乘法,化简后代入求值. [详解]解:(m +252m +-)324m m -÷- =(2512m m +--)()223m m-⋅-, ()2224523m m m m---=⋅--, ()()()332223m m m m m-+-=⋅-- =﹣2(m +3)=﹣2m ﹣6,当m=﹣1时,原式=﹣2×(﹣1)﹣6=2﹣6=﹣4.[点睛]本题考查了分式的化简求值.掌握分式的加减乘除运算是关键.18. 如图,四边形ABCD中,∠A=∠C=90°,若AB=BC.求证:BD平分∠ABC.[答案]详见解析[解析][分析]利用HL证明Rt△ABD≌Rt△CBD可得∠ADB=∠CDB,进而证明结论.[详解]证明:∵∠A=∠C=90°,在Rt△ABD和Rt△CBD中,AB=BC,BD=BD,∴Rt△ABD≌Rt△CBD(HL),∴∠ADB=∠CDB,∴BD平分∠ABC.[点睛]本题主要考查全等三角形的判定与性质,证明Rt△ABD≌Rt△CBD是解题的关键.19. 已知在平面直角坐标系中,A(﹣2,0)、B(3,﹣1)、C(2,2),格中每一格表示一个单位长度,请解答以下问题:(1)求作出△ABC;(2)将△ABC平移,使得平移后点C的对应点为原点,A、B的对应点分别为A1,B1,请作出平移后的△A1B1O,并直接写出平移的距离为;(3)将△ABC绕点A逆时针旋转90°,得到△AB2C2,B、C的对应点分别为B2、C2,请作出△AB2C2,并求出B2、C2点的坐标.[答案](1)作图见解析;(2)22;(3)作图见解析;B2(﹣4,4),C2(﹣1,5)[解析][分析](1)根据点的坐标作出三角形即可;(2)分别作出A,B的对应点A1,B1即可;(3)分别作出B,C的对应点B2、C2即可.[详解]解:(1)如图,△ABC即为所求;(2)如图△A1B1O即为所求,平移的距离为22;故答案22.(3)如图△A B2C2即为所求B2、C2点的坐标分别为(﹣4,4),(﹣1,5)[点睛]本题考查了作图-旋转变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20. 如图,平行四边形ABCD中,延长BC至E,使得CE=1BC,连接DE,F是AD的中点,连接CF.2(1)求证:四边形CEDF是平行四边形:(2)若AB=8,AD=10,∠B=60°,求四边形ABCF的面积.[答案](1)证明见解析;(2)3[解析][分析](1)由平行四边形的性质得AD//BC,且AD=BC,证出DF=CE,即可得出四边形CEDF是平行四边形;(2)过点D作DH⊥BE于点H,由直角三角形的性质得CH=12CD=4,DH3CH=3由梯形面积公式即可得出答案.[详解](1)证明:在ABCD中,AD//BC,且AD=BC.∵F是AD的中点,∴AF=DF=12 AD.又∵CE=12 BC,∴DF=CE,∵DF//CE,∴四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H.在ABCD中,∵∠B=60°,AD//BC,∴∠B=∠DCE=60°,CD=AB=8,BC=AD=10, ∴∠CDH=30°,∴CH=12CD=4,DH22843由(1)得:AF=12AD=5,∴四边形ABCF的面积=12(AF+BC)×DH=12(5+10)×33.[点睛]本题考查了平行四边形的判定与性质、勾股定理、含30°角的直角三角形的性质、梯形面积公式等知识;熟练掌握平行四边形的判定与性质是解题的关键.21. “抗击疫情,八方支援”截至2020年2月19日,全国已有278支医疗队、32395名医务人员从各地驰援湖北,小明和爸爸经过商量打算用自己的压岁钱购买A 、B 两种品牌消毒酒精捐赠当地医院,已知A 品牌消毒酒精每桶的价格比B 品牌消毒酒精每桶的价格多20元,用3000元购进A 品牌消毒酒精和用1800元购进B 品牌消毒酒精数量相同.(1)A 品牌消毒酒精每桶的价格和B 品牌消毒酒精每桶的价格各是多少元?(2)小明计划用不超过1560元的压岁钱购进A ,B 两种品牌消毒酒精共40桶,其中A 品牌消毒酒精的数量不低于B 品牌消毒酒精数量的一半,小明有几种购买方案?[答案](1)A 品牌消毒酒精每桶的价格是50元,B 品牌消毒酒精每桶的价格是30元;(2)5种[解析][分析](1)设B 品牌消毒酒精每桶价格为x 元,A 品牌消毒酒精每桶的价格为(x +20)元,根据“用3000元购进A 品牌消毒酒精和用1800元购进B 品牌消毒酒精数量相同”列出方程求解即可;(2)设购买A 品牌消毒酒精m 桶,根据“用不超过1560元的压岁钱购进A ,B 两种品牌消毒酒精共40桶,其中A 品牌消毒酒精的数量不低于B 品牌消毒酒精数量的一半”列出一元一次不等式组,求解即可.[详解]解:(1)设B 品牌消毒酒精每桶的价格为x 元,A 品牌消毒酒精每桶的价格为(x +20)元,根据题意得, 3000180020x x=+, 解得,x =30,经检验:x =30是原分式方程的解,且符合题意,∴x +20=30+20=50,答:A 品牌消毒酒精每桶的价格是50元,B 品牌消毒酒精每桶的价格是30元;(2)设购买A 品牌消毒酒精m 桶,则购买B 品牌消毒酒精(40﹣m )桶,根据题意得,5030(40)15601(40)2m m m m +-≤⎧⎪⎨≥-⎪⎩, 解得,40183m ≤≤ , ∵m 为正整数,∴m =14或m =15或m =16或m =17或m =18,∴共有5种购买方案.[点睛]本题考查了分式方程的应用和一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,列出方程和不等式组是解题的关键.22. 如图,两个一次函数y =kx +b 与y =mx +n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (﹣2,0),l 2与x 轴交于点C (4,0)(1)填空:不等式组0<mx +n <kx +b 的解集为 ;(2)若点D 和点E 分别是y 轴和直线l 2上的动点,当p =32时,是否存在以点A 、B 、D 、E 为顶点的四边形是平行四边形?若存在,请求出点E 的坐标;若不存在,请说明理由.[答案](1)1<x <4;(2)E 点为(3,12),(﹣1,52),(﹣3,72). [解析][分析](1)观察图象即可求解; (2)已知点A 、B 、C 时,用待定系数法分别求出直线AB 与AC 的解析式;点A 、B 、D 、E 为顶点的四边形是平行四边形,有三种情况:①四边形ABDE 为平行四边形;②四边形EBDA 是平行四边形;③四边形EBAD 为平行四边形.[详解]解:(1)由图象可知满足0<mx +n <kx +b 的部分为A 点与C 点之间的部分,∴1<x <4;(2)∵p =32, ∴A (1, 32), 将点A 与B 代入y =kx +b ,得3220k b k b ⎧=+⎪⎨⎪-+=⎩,∴121k b ⎧=⎪⎨⎪=⎩,∴y =12x +1, 将点A 与点C 代入y =mx +n ,得3240m n m n ⎧+=⎪⎨⎪+=⎩, ∴122m n ⎧=-⎪⎨⎪=⎩,∴y =﹣12x +2, ①如图1:当四边形ABDE 为平行四边形时,∵E 在直线l 2上,此时,BD ∥AC ,∴BD 所在直线解析式为y =﹣12x ﹣1, ∴D (0,﹣1),∵DE∥AB,∴DE所在直线解析式为y=12x﹣1,∵﹣12x+2=12x﹣1,可得x=3,∴E(3,12);②如图2:当四边形EBDA是平行四边形时, 则有BD∥AC,∴BD所在直线解析式为y=﹣12x﹣1,∴D(0,﹣1),∴AD的直线解析为y=52x+1,∵AD∥BE,∴BE所在直线解析为y=52x+5,∵﹣12x+2=52x+5,解得x=﹣1,∴E(﹣1,52 );③如图3:当四边形EBAD为平行四边形时,设D(0,a),E(m,﹣12m+2),此时AE的中点M的横坐标为12m +,BD中点M的横坐标为﹣1,∴﹣1=12m +,∴m=﹣3,∴E(﹣3,72 );综上所述:满足条件的E点为(3,12),(﹣1,52),(﹣3,72).[点睛]本题考查一次函数的综合应用;熟练掌握代入法求函数解析式,平行四边形的性质与直线平行的关系灵活结合是解题的关键.23. 已知:在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针旋转,得到△A1B1C,旋转角为α(0°≤α≤360°).(1)如图①,当α=60°时,连接A1B交B1C于点D,则A1B的长是;(2)如图②,当点B1在线段BA的延长线上时,求线段AB1的长;(3)如图③,点E是BC上的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,线段EF1的长是否存在最大值和最小值?若存在请求出线段EF1长度的最大值与最小值的差;若不存在,请说明理由.[答案](1)4+33;(2)115;(3)存在;365.[解析][分析](1)根据旋转的性质可知△BCB1是等边三角形,根据线段的垂直平分线的判定得A1B垂直平分线段CB1,利用勾股定理求出BD、A1D即可解决问题;(2)过A作AF⊥BC于F,过C作CE⊥AB于E,利用面积法求出CE的长,根据勾股定理求出BE的长,进而可求线段AB1的长;(3)过C作CF⊥AB于F,以C为圆心CF为半径画圆交BC于F1,和以C为圆心BC为半径画圆交BC的延长线于F1,得出最大和最小值解答即可.[详解]解:(1)如图1中,∵CB=CB1,∠BCB1=60°,∴△BCB1是等边三角形,∴BC=BB1,∵A1C=A1B1,∴A1B垂直平分线段CB1,∴A1B⊥B1C,B1D=DC.∵△BCB1是等边三角形,BD是高,BC=6,∴∠CBD=30°,∴CD=12BC=3,∴BD =2263-=33, 在Rt △A 1DC 中,A 1D =221AC CD -=2254-=4, ∴A 1B =A 1D +BD =4+33,故答案为4+33;(2)过A 作AF ⊥BC 于F ,过C 作CE ⊥AB 于E ,如图2:∵AB =AC ,AF ⊥BC ,BC =6,∴BF =CF =3,∴AF=2253=4-,∴S △ABC =12BC ×AF=12. ∵B 1C =BC =6, ,CE ⊥AB ,∴B 1B =2BE ,∵EC =2ABC S AB ∆=245, ∴BE=2224186=55⎛⎫- ⎪⎝⎭,则BB 1=365, 故AB 1=365﹣5=115; (3)如图3,过C 作CF ⊥AB 于F ,此时在Rt △BFC 中,∵112 2ABCAB CF S⋅==,∴CF=245,∴CF1=245,如图,以C为圆心CF为半径画圆交BC于F1,EF1有最小值,此时EF1的最小值为245﹣3=95;如图,以C为圆心BC为半径画圆交BC的延长线于F1,EF1有最大值;此时EF1=EC+CF1=3+6=9,∴线段EF1最大值与最小值的差为9﹣95=365.[点睛]此题考查了旋转的性质、等边三角形的判定、等腰三角形的性质、线段的垂直平分线的判定和性质、勾股定理、三角形的面积等知识,关键是根据旋转的性质和三角形的面积公式进行解答.。
人教版数学八年级下册《期中检测卷》附答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、我能选(每小题3分,共计24分)1.直角三角形的斜边长为13,则斜边上的中线长为( )A. 6.5B. 26C. 8.5D. 132.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3.如果点Q (m+2,m-1)在直角坐标系的x 轴上,则Q 点的坐标是( )A. (0,3)B. (1,0)C. (3,0)D. (0,1)4.在△ABC 中,∠A:∠B:∠C=1:2:3,且CD⊥AB ,垂足为D,若AB=,则BD 等于( ) A. 2a B. 3a C. 4a D. 无法确定.5.调查50名学生的年龄,列频数分布表时,学生的年龄落在5个小组中,第一,二,三,五的数据分别是2,8,15,5,则第四组的频数是( )A. 20B. 30C. 40D. 0.66.下列图形中,既是轴对称图形又是中心对称图形是( )A. 等边三角形B. 等腰梯形C. 正方形D. 平行四边形 7.下列函数中是一次函数是( )A. y=-3x 2B. y=1xC. y=-3x+5D. y= 1x+x 8.已知一次函数y kx k =-,若随的增大而减小,则该函数的图像经过( )A. 第一、二、三象限B. 第二、三、四象限C. 第一、二、四象限D. 第一、三、四象限二、我会填(每小题3分,共计24分)9.若一次函数(1)y kx k =+-的图象经过第一、二、三象限,则的取值范围是_______.10.当m=___,n=___时,点A (2m+n ,2)与点B (1,n -m )关于y 轴对称.11.在△ABC 中,BC=1,AC=2,当AB=___时,∠B=90︒.12.三边长分别是6,8,10的三角形中最长边上的高是___.13.一个样本有50个数据,分成三个组.已知第一、二组数据频率和为a ,第二、三组数据频率和为b ,则第二组的频率为_____.14.直角三角形斜边上高和中线分别是5和6,则它的面积是___. 15.已知两点E(x 1,y 1),F(x 2,y 2),如果x 1+x 2=2x 1,y 1+y 2=0,那么E,F 两点关于_______对称.16.已知函数y=(m -1)x ︳m ︳+1是一次函数,则m=___.三、我知道解17.如图,在△ABC 中,∠C=90°,AC=BC ,AD 是∠BAC 的平分线且交BC 与点D ,DE ⊥AB ,垂足为点E ,若AB=13cm ,求△DEB 的周长.18.已知一次函数的图象经过两点()1,3A -,()2,5B -,则这个函数的表达式为__________.19.如图,△ABC 的顶点坐标分别是A (6,6),B (-3,3),C (3,3),求△ABC 的面积.20.△ABC 的三个顶点的坐标分别是A(-4,2),B(-5,-4),C(0,-4),作一平移:先向左平移5个单位,再向上平移4个单位,求新三角形顶点坐标.21.已知:如图,在矩形ABCD 中,AF ,BH ,CH ,DF 分别是各内角平分线,AF 和BH 交于E ,CH 和DF 交于G . 求证:四边形EFGH 是正方形.四、我会应用22.某班学生参加公民道德知识竞赛,将竞赛所取得的成绩(得分取整数)•进行整理后分成5组,并绘制成频率分布直方图,如下图所示,请结合直方图提供的信息,•回答下列问题.(1)该班共有多少名学生?(2)60.5~70.5这一分数段频数、频率分别是多少?(3)根据统计图,提出一个问题,并回答你所提出的问题?23.已知一次函数的图像交x 轴于点A (-6,0),交正比例函数的图像于点B ,且B 在第三象限,它的横坐标是-2,△AOB 的面积是6,求正比例函数和一次函数的解析式.24.已知一次函数14y k x =-与正比例函数2y k x =的图像都经过点()2,1-(1)分别求出这两个函数的解析式;(2)求一次函数图像与轴和轴围成三角形面积.25.安仁县思源实验学校商店购进果汁饮料和碳酸饮料共50件,两种饮料的进价和售价如下所示.设购进果汁饮料x 箱(x 为正整数),且所购的两种饮料能全部卖出,获得的总利润为W 元, 饮料果汁饮料 碳酸饮料 进价(元/箱) 55 36售价(元/箱) 63 42(1)设购进碳酸饮料为y箱,直接写出y与x的函数关系式;(2)求出总利润W关于x的函数表达式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最大,求出最大利润.26.如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点C在x轴的正半轴上,AB边交y 轴于点H、OC=4, ∠BCO=600.(1)求点A的坐标;(2)动点P从点A出发,沿折线A—B—C的方向以2个单位长度/秒的速度向终点C匀速运动,设∆POC的面积为S,点P的运动时间为ts求出S与t之间的函数表达式(写出自变量t的取值范围).答案与解析一、我能选(每小题3分,共计24分)1.直角三角形的斜边长为13,则斜边上的中线长为()A. 6.5B. 26C. 8.5D. 13 [答案]A[解析][分析]根据直角三角形斜边上的中线等于斜边的一半解答即可.[详解]解:∵直角三角形斜边长是13,∴斜边上的中线长113 6.5 2=⨯=故选A.[点睛]本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.2.在平面直角坐标系中,点P(-2,2x+1)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]B[解析][详解]∵-20,2x+10,∴点P (-2,2x+1)在第二象限,故选B.3.如果点Q(m+2,m-1)在直角坐标系的x轴上,则Q点的坐标是()A. (0,3)B. (1,0)C. (3,0)D. (0,1) [答案]C[解析][分析]根据坐标的位置特点,当点位于x轴上时,纵坐标为0可求得m的值,即可得点Q的坐标.[详解]解:∵点Q (m+2,m-1)在直角坐标系的x 轴上,∴m-1=0;∴m=1,∴m+2=3,∴Q 的坐标为(3,0).故选:C .[点睛]考查了点在坐标轴上的坐标特点,当点位于x 轴上时,纵坐标为0;当位于y 轴上时,横坐标为0. 4.在△ABC 中,∠A:∠B:∠C=1:2:3,且CD⊥AB ,垂足为D,若AB=,则BD 等于( ) A. 2a B. 3a C. 4a D. 无法确定.[答案]C[解析][详解]∵∠A :∠B :∠C =1:2:3,∠A +∠B +∠C =180°, ∴∠A =180°×16=30°, ∠B =2∠A =60°,∠C =2∠A =90°, ∵AB =a ,∴BC =12a , ∵CD ⊥AB ,∴∠BDC =90°,∴∠BCD =90°-∠B =30°,∴BD =12BC =12×12a =14a故选C.5.调查50名学生的年龄,列频数分布表时,学生的年龄落在5个小组中,第一,二,三,五的数据分别是2,8,15,5,则第四组的频数是( )A. 20B. 30C. 40D. 0.6[答案]A[解析][分析]根据频数的定义:频数表是数理统计中由于所观测的数据较多,为简化计算,将这些数据按等间隔分组,然后按选举唱票法数出落在每个组内观测值的个数,称为(组)频数.一共5个频数,已知总频数为50,四个频数已知,即可求出其余的一个频数.[详解]一共5个频数,已知总频数为50,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是50-2-8-15-5=20,故选:A.[点睛]此题主要考查对频数定义的理解,熟练掌握即可得解.6.下列图形中,既是轴对称图形又是中心对称图形的是( )A. 等边三角形B. 等腰梯形C. 正方形D. 平行四边形[答案]C[解析][分析]根据轴对称图形和中心对称图形的概念,即可求解.[详解]解:A、B都只是轴对称图形;C、既是轴对称图形,又是中心对称图形;D、只是中心对称图形.故选:C.[点睛]掌握好中心对称图形与轴对称图形的概念是解题的关键.7.下列函数中是一次函数的是()A. y=-3x2B. y=1xC. y=-3x+5D. y=1x+x[答案]C [解析][分析]根据一次函数的定义对各选项进行逐一分析即可.[详解]解:A. y=-3x 2,二次函数,故本选项错误; B. y=1x,反比例函数,故本选项错误; C. y=-3x+5,是一次函数,故本选项正确; D. y=1x +x ,不是一次函数,故本选项错误; 故选:C[点睛]本题考查的是一次函数的定义,即一般地,形如y=kx+b (k ≠0,k 、b 是常数)的函数,叫做一次函数. 8.已知一次函数y kx k =-,若随的增大而减小,则该函数的图像经过( )A. 第一、二、三象限B. 第二、三、四象限C. 第一、二、四象限D. 第一、三、四象限[答案]C[解析][分析]根据题意判断k 的取值,再根据k ,b 的符号正确判断直线所经过的象限.[详解]解:若y 随x 的增大而减小,则k <0,即-k >0,故图象经过第一,二,四象限.故选C .[点睛]本题考查的是一次函数的性质,在直线y=kx+b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.能够根据k ,b 的符号正确判断直线所经过的象限. 二、我会填(每小题3分,共计24分)9.若一次函数(1)y kx k =+-的图象经过第一、二、三象限,则的取值范围是_______.[答案]k >1.[解析][分析]根据一次函数的性质求解.[详解]解: 一次函数y=kx+(k -1)的图象经过第一、二、三象限,那么k >0且k -1>0,解得k >1.故答案为:k >1.[点睛]本题考查一次函数的性质.10.当m=___,n=___时,点A (2m+n ,2)与点B (1,n -m )关于y 轴对称.[答案] (1). -1 (2). 1[解析][分析]根据关于y 轴对称的点的坐标特点可知,对应点横坐标互为相反数,纵坐标不变.[详解]因为点A (2m+n ,2)与点B (1,n -m )关于y 轴对称所以212m n n m +=-⎧⎨-=⎩解得11n m =⎧⎨=-⎩故答案为:-1;1[点睛]考核知识点:轴对称与点的坐标.理解轴对称与点的坐标对应关系是关键.11.在△ABC 中,BC=1,AC=2,当AB=___时,∠B=90︒.[答案[解析][分析]先由90B ∠=︒可以判断出AC 是直角三角形的斜边,而BC 和AB 是两条直角边,然后利用勾股定理即可求出AB .[详解]解:90,1,2B BC AC ∠=︒==AB ∴===[点睛]本题考查了勾股定理的应用,熟练掌握定理的内容是解题的关键.在直角三角形中,已知任意两条边的长度,利用勾股定理可求出第三边的长度.12.三边长分别是6,8,10的三角形中最长边上的高是___.[答案]4.8[解析][分析]根据已知先判定其形状,再根据三角形的面积公式求得其高.[详解]∵三角形的三边长分别为6,8,10,符合勾股定理的逆定理62+82=102,∴此三角形为直角三角形,则10为直角三角形的斜边,设三角形最长边上的高是h,根据三角形的面积公式得:1 2×6×8=12×10h,解得h=4.8.故答案为:4.8[点睛]解答此题的关键是先判断出三角形的形状,再根据三角形的面积公式解答.13.一个样本有50个数据,分成三个组.已知第一、二组数据频率和为a,第二、三组数据频率和为b,则第二组的频率为_____.[答案]a+b﹣1[解析][分析]根据频率之和=1可得第二组的频率为a+b﹣1.[详解]由题意得:第二组的频率为a+b﹣1.故答案为a+b﹣1.[点睛]本题考查了频率,频率是指每个对象出现的次数与总次数的比值(或者百分比).14.直角三角形斜边上高和中线分别是5和6,则它的面积是___.[答案]30.[解析][分析]根据直角三角形斜边中线等于斜边的一半即可求出斜边,再根据三角形面积公式即可得出答案.[详解]直角三角形斜边上中线是6,斜边是121512302S ∴=⨯⨯= 它的面积是30故答案为:30.[点睛]本题考查了直角三角形斜边与斜边中线的关系,解题的关键是在于知道直角三角形斜边中线为斜边的一半.15.已知两点E(x 1,y 1),F(x 2,y 2),如果x 1+x 2=2x 1,y 1+y 2=0,那么E,F 两点关于_______对称.[答案]x 轴[解析][分析]先根据已知条件得出x 1与x 2,y 1与y 2的关系,继而根据这一关系判断即可.[详解]∵x 1+x 2=2x 1,y 1+y 2=0,∴x 1=x 2,y 1=-y 2,∴E ,F 两点关于x 轴对称,故答案为x 轴.[点睛]本题考查了关于x 轴、y 轴对称的点的坐标,比较容易,熟记平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系是解题的关键.16.已知函数y=(m -1)x ︳m ︳+1是一次函数,则m=___.[答案]-1[解析][分析]根据一次函数的定义条件:次数最高项是一次项,且一次项系数不等于0即可求解.[详解]解:根据题意得:m-1≠0且|m|=1,则m=-1.故答案是:-1.[点睛]本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.三、我知道解17.如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线且交BC与点D,DE⊥AB,垂足为点E,若AB=13cm,求△DEB的周长.[答案]13cm.[解析][分析]根据角平分线的性质可得DC=DE,进而可得Rt△DCA≌Rt△DEA(HL),于是可得AC=AE=BC,然后即可求得△DEB的周长.[详解]解:∵AD是∠BAC的平分线,∠C=90°,DE⊥AB,∴DC=DE,在Rt△DCA和Rt△DEA中,AD AD DC DE=⎧⎨=⎩,∴Rt△DCA≌Rt△DEA(HL),∴AC=AE,∵DE=DC,AC=BC=AE,∴DE+DB+BE=DC+DB+BE= BC+BE=AE+BE=AB=13cm, 即△DEB的周长是13cm.[点睛]本题考查了角平分线的性质、全等三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.18.已知一次函数的图象经过两点()1,3A -,()2,5B -,则这个函数的表达式为__________.[答案]8133y x =-+ [解析][分析]设一次函数的解析式是:y=kx+b ,然后把点()1,3A -,()2,5B -代入得到一个关于k 和b 的方程组,从而求得k 、b 的值,进而求得函数解析式.[详解]解:设一次函数的解析式是:y=kx+b , 根据题意得:-32-5k b k b +⎧⎨+⎩==, 解得:8-313k b ⎧⎪⎪⎨⎪⎪⎩==, 则一次函数的解析式是:8133y x =-+. 故答案是:8133y x =-+. [点睛]本题考查了待定系数法求函数的解析式,先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.19.如图,△ABC 的顶点坐标分别是A (6,6),B (-3,3),C (3,3),求△ABC 的面积.[答案]9.[解析][分析]已知各点坐标,即可分别求出BC和△ABC中BC边上高的长度,再利用三角形面积公式即可求解.[详解]解:过A作AH垂直BC的延长线于点H.由题可知B(-3,3),C(3,3)∴BC=3-(-3)=6又∵AH⊥BC,A(6,6),B(-3,3)∴H点坐标为(6,3)∴AH=6-3=3S△ABC=12AH·BC=12×3×6=9∴△ABC的面积为9.[点睛]本题考查平面直角坐标系中图形面积问题,确定各点坐标进而通过已知的相关图形面积公式求解是解题关键.20.△ABC的三个顶点的坐标分别是A(-4,2),B(-5,-4),C(0,-4),作一平移:先向左平移5个单位,再向上平移4个单位,求新三角形顶点坐标.[答案](-9,6),(-10,0),(-5,0)[解析][分析]根据平移的特点,每一个点的横坐标都减5,纵坐标都加4就可以得出结果.[详解]解:△ABC的三个顶点的坐标分别是A(-4,2),B(-5,-4),C(0,-4),先向左平移5个单位,再向上平移4个单位,根据平移的特点,新三角形顶点坐标分别是:A′(-9,6),B′(-10,0),C′(-5,0).[点睛]考核知识点:点的平移与坐标.理解点的平移与坐标的变化关系是关键.21.已知:如图,在矩形ABCD中,AF,BH,CH,DF分别是各内角平分线,AF和BH交于E,CH和DF交于G.求证:四边形EFGH是正方形.[答案]见解析[解析][分析]由矩形的性质和角平分线的性质可得△ADF、△ABE、△DCG都是等腰直角三角形,于是可得四边形EFGH 的三个角都是直角,进而可得四边形EFGH是矩形,由等腰直角三角形的性质可得AF=DF,2,2DG,进一步即得EF=GF,从而可得结论.[详解]证明:∵四边形ABCD矩形,∴∠DAB=∠ADC=90°,AB=CD,∵AF、DF是∠DAB、∠ADC的平分线,∴∠DAF=∠ADF=45°,∴∠AFD=90°,AF=DF,∴△ADF是等腰直角三角形,同理可得:△ABE和△DCG都是等腰直角三角形,∴∠AEB=∠DGC=90°,2AE,2DG,∴∠HEF=∠HGF=90°,AE=DG,∴四边形EFGH是矩形,FE=FG,∴矩形EFGH是正方形.[点睛]本题考查了矩形的性质、正方形的判定和等腰直角三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.四、我会应用22.某班学生参加公民道德知识竞赛,将竞赛所取得的成绩(得分取整数)•进行整理后分成5组,并绘制成频率分布直方图,如下图所示,请结合直方图提供的信息,•回答下列问题.(1)该班共有多少名学生?(2)60.5~70.5这一分数段的频数、频率分别是多少?(3)根据统计图,提出一个问题,并回答你所提出的问题?[答案](1)该班共有48名学生;(2)60.5~70.5这一分数段的频数12,频率为0.25;(3)优秀率为31.25%(80分以上为优秀).[解析]试题分析:(1)从图中得到频数相加即为该班共有学生数;(2)观察可知60.5~70.5这一分数段的频数为12,频率=12÷总数;(3)答案不唯一.如你能求出该班优秀率吗?80分以上为优秀,用80分以上的人数之和除以总数即可得.试题解析:(1)3+6+9+12+18=48(人),即该班共有48名学生;(2)60.5~70.5这一分数段的频数12,频率为12÷48=0.25;(3)你能求出该班的优秀率吗?优秀率为1548×100%=31.25%(80分以上为优秀).[点睛]本题考查搜集信息的能力(读图,表),分析问题和解决问题的能力,正确解答本题的关键在于准确读图表.23.已知一次函数的图像交x轴于点A(-6,0),交正比例函数的图像于点B,且B在第三象限,它的横坐标是-2,△AOB 的面积是6,求正比例函数和一次函数的解析式.[答案]正比例函数的解析式为y=x ,一次函数的解析式为132y x =--. [解析][分析]点B 在第三象限,横坐标为-2,设B (-2,y B ),其中y B <0,利用三角形面积公式得到12AO•|y B |=6,即12×6×|y B |=6,可解得y B =-2,然后利用待定系数法求两个函数解析式. [详解]解:设正比例函数y=kx ,一次函数y=ax+b ,∵点B 在第三象限,横坐标为-2,设B (-2,y B ),其中y B <0,∵S △AOB =6, ∴12AO•|y B |=6,即12×6×|y B |=6, ∴y B =-2,∴B 点坐标为(-2,-2),把点B (-2,-2)代入正比例函数y=kx ,得-2k=-2,解得k=1;故正比例函数的解析式为y=x ;把点A (-6,0)、B (-2,-2)代入y=ax+b ,得6a b 02a b 2,解得1a 2b 3, 故正比例函数的解析式为y=x ,一次函数的解析式为y=12-x-3. [点睛]本题考查了两条直线相交或平行问题:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;若直线y=k 1x+b 1与直线y=k 2x+b 2相交,则由两解析式所组成的方程组的解为交点坐标.也考查了待定系数法求函数解析式.24.已知一次函数14y k x =-与正比例函数2y k x =的图像都经过点()2,1-(1)分别求出这两个函数的解析式;(2)求一次函数图像与轴和轴围成的三角形面积. [答案](1)342y x =-,12y x =-;(2)163 [解析][分析](1)利用待定系数法即可解决问题;(2)求出一次函数y =k 1x ﹣4与x 轴和y 轴的交点坐标即可解决问题.[详解]解:(1)把点()2,1-代入函数14y k x =-得,1124k -=-,132k = 则函数解析式为:342y x =-; 把点()2,1-代入函数2y k x =得,212k =- 则函数解析式为:12y x =-; (2)令342y x =-中的y =0,则x =83, ∴与轴的交点为8,03⎛⎫ ⎪⎝⎭, 令342y x =-中的x =0,则y =-4, ∴与轴的交点为()0,4-, ∴三角形面积为:18164233S =⨯⨯=. [点睛]本题考查了求两直线的交点坐标,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.安仁县思源实验学校商店购进果汁饮料和碳酸饮料共50件,两种饮料的进价和售价如下所示.设购进果汁饮料x 箱(x 为正整数),且所购的两种饮料能全部卖出,获得的总利润为W 元,(1)设购进碳酸饮料为y 箱,直接写出y 与x 的函数关系式;(2)求出总利润W 关于x 的函数表达式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最大,求出最大利润.[答案](1)y=50-x ;(2)W=2x+300;(3)该商场购进果汁饮料和碳酸饮料分别为15箱、35箱时,能获得最大利润330元.[解析][分析](1)根据购进果汁饮料和碳酸饮料共50箱即可求解;(2)根据总利润=每个的利润×数量就可以表示出w 与x 之间的关系式;(3)由题意得55x+36(50-x )≤2100,解得x 的值,然后可求w 值,根据一次函数的性质可以求出进货方案及最大利润.[详解]解:(1)y 与x 函数关系式为:y=50-x ;(2)总利润W 关于x 的函数关系式为:W=(63-55)x+(42-36)(50-x )=2x+300;(3)由题意,得55x+36(50-x )≤2100,解得151519x , ∵W=2x+300,w 随x 的增大而增大,∴当x=15时,w 最大值=2×15+300=330元,此时购进B 品牌的饮料50-15=35箱,∴该商场购进果汁饮料和碳酸饮料分别为15箱、35箱时,能获得最大利润330元.[点睛]本题考查了一次函数的实际应用,由销售问题的数量关系求出函数的解析式,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出函数的解析式是关键.26.如图,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点C 在x 轴的正半轴上,AB 边交y 轴于点H 、OC=4, ∠BCO=600.(1)求点A 的坐标;(2)动点P 从点A 出发,沿折线A —B —C 的方向以2个单位长度/秒的速度向终点C 匀速运动,设∆POC 的面积为S ,点P 的运动时间为ts 求出S 与t 之间的函数表达式(写出自变量t 的取值范围).[答案](1)(2,3)-;(2)43(02)2383(24)t S t t ⎧⎪=⎨-+<⎪⎩[解析][分析](1)由菱形的性质得出∠A=60°,AO=4,∠AHO=∠HOC=90°,在Rt △AHO 中,∠HOA=90°-∠A=30°,则含30°角直角三角形的性质和勾股定理得出2AH =, 23OH =,从而确定点A 的坐标 (2)①当点P 在AB 上运动时,△POC 的高不变,始终为23从而确定其面积②当点P 在BC 上运动时,即2<t ≤4时,过点P 作PE ⊥OC 于E ,在Rt △PCE 中,∠PCE=60°,PC=8-2t ,解直角三角形得出PE=PCsin60°=(4)3-t ,从而确定∆POC 的面积[详解]解:(1)∵四边形ABCO 是菱形,OC=4,∠BCO=60°,∴∠A=60°,AO=4,AB//OC,∴∠AHO=∠HOC=90°,在Rt △AHO 中,∠HOA=90°-∠A=30°,12,2∴==AH AO 2223=-=OH AO AH ∴点A 的坐标为:(2,23)-(2)①当点P 在AB 上运动时,即0≤t ≤2时,△POC 的高不变,始终为23;1423432∴=⨯⨯=S ②当点P 在BC 上运动时,即2<t ≤4时,过点P 作PE ⊥OC 于E ,如图所示:在Rt △PCE 中,∠PCE=60°,PC=8-2t ,sin 60=(43,∴=︒-PE PC t114(4)3238322∴=⋅=⨯⨯-=-+S OC PE t t 3(02)383(24)t S t t ⎧⎪∴=⎨-+<⎪⎩[点睛]本题是四边形综合题目,考查了图形与点的坐标、菱形的性质、直角三角形的性质、勾股定理、三角函数、三角形面积的计算等知识,熟练掌握菱形的性质和含30°角直角三角形的性质是解题的关键.。
人教版八年级数学下册期中考试卷附答案

人教版八年级数学下册期中考试卷附答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.6的相反数为()A.-6 B.6 C.16-D.162.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.03.成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.74610-⨯B.74.610-⨯C.64.610-⨯D.50.4610-⨯4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()A.0个B.1个C.2个D.3个5.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.91.210⨯个B.91210⨯个C.101.210⨯个D.111.210⨯个6.若关于x的不等式组255332xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a的取值范围()A.1162a-<-B.116a2-<<-C.1162a-<-D .1162a--7.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为()A.14B.16C.90α-D.44α-8.如图,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为().A.1 B.31-C.2 D.222-9.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.14二、填空题(本大题共6小题,每小题3分,共18分)1.计算:123-=________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______. 3.9的算术平方根是________.4.如图所示的网格是正方形网格,则PAB PBA ∠∠+=________°(点A ,B ,P 是网格线交点).5.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=________度.6.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC ∠的度数是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2216124x x x --=+-2.先化简,再求值:(x+y )(x ﹣y )+y (x+2y )﹣(x ﹣y )2,其中3,y=23.3.解不等式组3(2)2513212x xxx+≥+⎧⎪⎨+-<⎪⎩,并把不等式组的解集在数轴上表示出来.4.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.5.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.(1)求证:BG DE=;(2)若E为AD中点,2FH=,求菱形ABCD的周长.6.随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了A,B两种型号家用净水器.已知购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元,(1)求A,B两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进A,B两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价50%后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进A,B两种型号家用净水器各多少台?(注:毛利润=售价-进价)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、D5、C6、A7、A8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)12、03、3.4、45.5、30°6、45三、解答题(本大题共6小题,共72分)1、原方程无解2、3xy,33、–1≤x<34、(1)略(2)略5、(1)略;(2)8.6、(1)A型号家用净水器每台进价为1000元,B型号家用净水器每台进价为1800元;(2)则商家购进A型号家用净水器12台,购进B型号家用净水器8台;购进A型号家用净水器13台,购进B型号家用净水器7台;购进A型号家用净水器14台,购进B型号家用净水器6台;购进A型号家用净水器15台,购进B型号家用净水器5台.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学下册期中测试题附答案
八年级数学下册期中测试题A (人教新课标八年级下)
一、选择题 1. 在式子a
1
,
π
xy 2,
2334
a b c ,
x
+ 65, 7x
+8
y ,9 x +y 10 ,
x
x 2 中,分式的个数是( ) A .5
B .4
C .3
D .2 2. 下列各式,正确的是( )
A .
1
)()(2
2
=--a b b a B .
b
a b a b a +=
++1
22
C .b
a b a +=+111 D .x x ÷2=2 3. 下列关于分式的判断,正确的是( )
A .当
x =2
时,
2
1
-+x x 的值为零
B .无论x 为何值,132
+x 的值总为正数
C .无论x 为何值,1
3+x 不可能得整数值 D .当x ≠3时,x
x 3-有意义 4. 把分式)0,0(2
2
≠≠+y x y
x
x
中的分子分母的x 、y 都
同时扩大为原来的2倍,那么分式的值将是原分式值的( )
A .2倍
B .4倍
C .一半
D .不变
5. 下列三角形中是直角三角形的是( )
A .三边之比为5∶6∶7
B .三边满足关系a +b =c
C .三边之长为
9、40、41
D .其中一边等于另一边的一半 6.如果△ABC 的三边分别为12
-m ,m 2,12
+m ,其中m 为大于1的正整数,则( )
A .△ABC 是直角三角形,且斜边为12-m
B .△AB
C 是直角三角形,且斜边为m 2
C .△ABC 是直角三角形,且斜边为12
+m D .△ABC 不是直角三角形
7.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为( )
A. 20 B . 22 C . 24 D . 26
8.已知函数x k y =的图象经过点(2,3),下列说法正确的是( ) A .y 随
x
的增大而增大
B.函数的图象只在第一象限
C .当
x <0
时,必有
y <0
D.点(-2,-3)不在此函数的图象上
9.如图所示,一束光线从y 轴上点A (0,2)出发,
经过x 轴上点C 反射后经过B (6,6),则光线从 A 点到B 点所经过的路线是( )A.10 B.8
第9题图
C.6
D.4
10.为迎接“五一”的到来,同学们左了许多拉花布置教室,
准备召开“五一”联欢晚会,小刚搬来一架高2.5米的木梯,
准备把拉花挂到2.4米高的墙上,则梯脚与墙距离应为( )
A.0.7米
B.0.8米
C.0.9米
D.1.0米 二、填空题
11.不改变分式的值,使分子、分母的第一项系数都是正数,则
________
=--+-y
x y
x .
12.化简:3
286a b a =________; 1
1
11+-
-x x
13.已知a 1 -b
1
=5,则b ab a b ab a ---2232+ 的值是 . 14.正方形的对角线为4,则它的边长AB = .
15.如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是______米. 16.一艘帆船由于风向的原因先向正东方向航行
了160km ,然后向正北方向航行了120km ,这时它离出发点有____________km.
17.如下图,已知OA =OB ,那么数轴上点A 所
第14
表示的数是____________.
18.某食用油生产厂要制造一种容积为5升(1
升=1立方分米)的圆柱形油桶,油桶的底面面积s 与桶高h 的函数关系式为 .
19.如果点(2,3)和(-3,a )都在反比例函数x
k y =的图象 上,则a = .
20.如图所示,设A 为反比例函数x k y =图象上一点,且矩形ABOC
的面积为3,则这个反比例函数解析式为 . 三、解答题 21.化简下列各式:
(1)4
22
-a a +a -21
. (2)1
-30
-1
-2-42
3
1
B A 第20题
)()()(3222a
b a b b a -÷-⋅-.
(3))2
5
2(423--+÷--x x x x . (4)(y x x -
-y
x y
-2 )·y x xy 2- ÷(x
1
+y 1 ).
22.解下列方程:
(1)223-x +x
-11 =3. (2)4
82222
-=-+-+x x x x x .
23.比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下
参加探讨环境保护问题的微型动物首脑会
议.蜗牛神想到“笨鸟先飞”的古训,于是
给蚂蚁王留下一纸便条后提前2小时独自
先行,蚂蚁王按既定时间出发,结果它们同
时到达.已知蚂蚁王的速度是蜗牛神的4
倍,求它们各自的速度.
24.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B相距50
米,结果他在水中实际游的路程比河的宽度
多10米,求该河的宽度AB 为多少米?
25.如图,一个梯子AB 长2.5 米,顶端A 靠
在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置
上,测得BD 长为0.5求
梯子顶端A 下落了多少米?
B C
A
26.某空调厂的装配车间原计划用2个月时间
(每月以30天计算),每天组装150台空调. (1)从组装空调开始,每天组装的台数m (单
位: 台/天)与生产的时间t (单位:
天)之间有怎样的函数关系?
(2)由于气温提前升高、厂家决定这批空调
提前十天上市,那么装配车间每天至少要组装多少空调?
27.(08甘肃省兰州市)已知正比例函数y kx =的
图象与反比例函数5k y x
-=(k 为常数,0k ≠)的图象有一个交点的横坐标是2. (1)求两个函数图象的交点坐标;
(2)若点1
1
()A x y ,,2
2
()B x y ,是反比例函数5k y x
-=图象上的两点,且1
2
x x <,试比较1
2
y y ,的大小.
28.如图,要在河边修建一个水泵站,分别向张
村A 和李庄B 送水,已知张村A 、李庄B
到河边的距离分别为2km 和7km ,且张、李二村庄相距13km .
(1)水泵应建在什么地方,可使所用的水管
最短?请在图中设计出水泵站的位置; (2)如果铺设水管的工程费用为每千米
1500元,为使铺设水管费用最节省,请求出最节省的铺设水管的费用为多少元? 期中综合测试
1.B 2.A 3.B 4.C 5.C 6.C 7.C 8.C 9.C 10.B 11.
y
x y
x +- 12.
a
b 43,
1
22-x
13.1 14.24 15.12 16.200 17.5
-
18.h
s 5= 19.-2 20. x y 3-
= 21.(1)2
1
+a ;(2)3
2
b a ;(3))3(21+-x ;A
B
河l
(4)222
2x y y x - 22.(1)6
7=x ;(2)2-=x 不是原方程的根,原方程无解 23.蜗牛神
的速度是每小时6米,蚂蚁王的速度是每小时
24米 24.1200米 25.先用勾股定
理求出AC=2米,CE=1.5米,所以AE=0.5米
26.(1)m = 9000t
;(2)180 27. 【答案】解:(1)由题意,得522
k k -=,解得1k =.
所以正比例函数的表达式为y x =,反比例函数的表达式为4y x
=. 解4x x
=,得2x =±.由y x =,得2y =±. 所以两函数图象交点的坐标为(2,2),(22)--,.
(2)因为反比例函数4y x
=的图象分别在第一、三象限内,
y 的值随x 值的增大而减小,
所以当120x x
<<时,12y y >.
当120x x <<时,12y y >. 当120x x <<时,因为1140y
x =<,2240y x =>,所以12y y <.
28.(1)作点A关于河边所在直线l的对称点A′,连接A′B交l于P,则点P为水泵站的位置,此时,PA+PB的长度之和最短,即所铺设水管最短;(2)过B点作l的垂线,过A′作l的平行线,设这两线交于点C,则∠C=90°.又过A作AE⊥BC于E,依题意BE=5,AB=13,∴AE2=AB2-BE2=132-52=144.∴AE=12.由平移关系,A′C=AE=12,Rt△B A′C中,∵ BC=7+2=9,A′C=12,∴A′B′=A′C2+BC2=92+122=225 ,∴A′B=15.∵PA=PA′,∴PA+PB=A′B=15.∴1500×15=22500(元)
第28。