华南理工大学线性代数期末试卷及解析 (2)

合集下载

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

06-07线性代数试题及解答

06-07线性代数试题及解答

3.设020200,001A AB A B ⎛⎫ ⎪==- ⎪ ⎪⎝⎭,求矩阵B 。

5、求向量ω=(1,2,1)在基)1,1,1(),1,1,0(),1,1,1(-===γβα下的坐标。

四、(12分)求方程组123451234512345223273251036x x x x x x x x x x x x x x x +-++=⎧⎪-+++=⎨⎪+--+=⎩ 的通解(用基础解系与特解表示)。

五、(12分)用正交变换化下列二次型为标准型,并写出正交变换矩阵22123122313(,,)22f x x x x x x x x x =++-六、证明题(6分)设0β≠,12,,,r ξξξ 是线性方程组AX β=对应的齐次线性方程组一个基础解系, η是线性方程组AX β=的一个解,求证ηηξηξηξ,,,,21+++r 线性无关。

《2006年线性代数A 》参考答案(2) λ12···λn 2 (3) r(A)=r(A,B)< n(4)t=-8(5)1,2,-3二选择题(1) D (2) A (3) D (4) D (5) D 三解答题(1) A·A *=|A|·E, |A|·|A*|=|A3||A *|=|A|2=|A·A’|=|A·A-1|=1(3)由AB=A-B,有AEABABEA1)(,)(-+==+,故{1α,2α,3α}为一个极大无关组令0543===x x x ,求解得:(1,1,0,0,0)=η。

齐次方程组基础解系为:332211321),1,0,0,0,1(),0,1,0,1,2(),0,0,1,2,0(ηηηηηηηa a a +++-=-==通解为。

五.解:当11=λ时,由()03211=⎪⎪⎪⎭⎫ ⎝⎛-x x x A E λ,求得基础解系:⎪⎪⎪⎭⎫⎝⎛110当12λ=时,由()03212=⎪⎪⎪⎭⎫ ⎝⎛-x x x A E λ,求得基础解系:⎪⎪⎪⎭⎫ ⎝⎛-111 当13-=λ时,由()03213=⎪⎪⎪⎭⎫ ⎝⎛-x x x A E λ,求得基础解系:⎪⎪⎪⎭⎫ ⎝⎛-112若,UY =X 则2322212'y y y A -+=X X 。

华南理工大学数分(二)期末考卷

华南理工大学数分(二)期末考卷

《数学分析(二)》试卷(A )一、 写出以下定义1、函数f(x)在[a,b]上可积;(5分)2、函数序列f n (x)在(0,1)上内闭一致收敛于f(x);(5分)二、求不定积分∫x 2+1x +1dx (5分)三、令I n =∫(sin x)n dx π0,求I n 与I n−2之间的递推公式。

(10分)四、 平面上的心脏线参数表达式为r (θ)=a (1+cos (θ)),(0≤θ≤2π),求该曲线所谓区域面积。

(10分)五、 旋轮线的参数表达式由x (t )=r (t −sin (t )),y (t )=r (1−cos (t )),(0≤t ≤2π)给出,把该曲线绕x 轴旋转一周,求所得旋转体体积。

(10分)六、 对不同的值a ,判断反常积分∫ln(1+x)x +∞0dx 的收敛性(条件收敛、绝对收敛)。

(10分)七、 令S =∑k 2+12∞k=11、判断该数项级数收敛性(条件收敛、绝对收敛);(10分)2、求幂级数∑n 2x n ∞k=1的收敛区域;(10分)3、求S 的值;(5分)八、周期函数f(x)={1,(x∈(2kπ,2kπ+π])−1,(x∈(2kπ−π,2kπ])1.求f(x)的傅里叶级数展开a02+∑[a k cos(kx)∞k=1+b k sin(kx)];(10分)2.求部分和函数a02+∑[a k cos(kx)∞k=1+b k sin(kx)]的极限函数f̃(x);(5分)3.判断函数序列{f n(x)}是否一致收敛于f̃(x),并说明理由。

(5分)《数学分析(二)》试卷(B)一、写出以下定义1、函数序列f n(x)一致收敛于函数f(x);(5分)2、数列{a n}的上极限为A;(5分)二、求不定积分∫ln(x 2+1)xdx。

(10分)三、计算定积分∫x sin x1+(cos x)2dxπ。

(5分)四、求椭圆x 24+y2=1内部区域面积。

(10分)五、平面上的心脏线参数表达式为r(θ)=a(1+cos(θ)),(0≤θ≤2π),ba该曲线在x轴以上的部分绕x轴旋转一周,求所得旋转体的体积(5分)六、对反常积分∫[ln(x)]8x a dx+∞1,1、在a取不同的值时判断它的收敛性(条件收敛、绝对收敛);(10分)2、在a=2时计算该反常积分的值(5分)七、令S=1−12+13−14+⋯+(−1)n−11n+⋯=∑[∞n=1(−1)n−11n],1、判断该数项级数收敛性(条件收敛、绝对收敛);(10分)2、写出函数ln(1+x)及11+x在x=0处的幂级数展开,并判断收敛性;(10分)3、求S的值;(5分)八、定义在全部实数上的周期函数f(x)=x,x∈[2kπ−π,2kπ+π),1、求f(x)的傅里叶级数展开a02+∑[a k cos(kx)∞k=1+b k sin(kx)];(10分)2、求部分和函数a02+∑[a k cos(kx)∞k=1+b k sin(kx)]的极限函数f̃(x);(5分)3、判断函数序列{f n(x)}是否一致收敛于f̃(x),并说明理由。

线性代数期末试卷及详细答案

线性代数期末试卷及详细答案

线性代数期末试卷及详细答案⼀、填空题(将正确答案填在题中横线上。

每⼩题2分,共10分)1、设1D =3512, 2D =345510200,则D =12D D OO =_____________。

2、四阶⽅阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。

3、三阶⽅阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。

4、若n 阶⽅阵A 满⾜关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。

5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。

⼆、单项选择题(每⼩题仅有⼀个正确答案,将正确答案的番号填⼊下表内,每⼩题2分,共20分)1、若⽅程13213602214x x x x -+-=---成⽴,则x 是(A )-2或3;(B )-3或2;(C )-2或-3;(D )3或2; 2、设A 、B 均为n 阶⽅阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+;(B )()()22A B A+B =A B --;(C )()()2A E=A E A+E --;(D )()222AB =A B3、设A 为可逆n 阶⽅阵,则()**A=(A )A E ;(B )A ;(C )nA A ;(D )2n A A -;4、下列矩阵中哪⼀个是初等矩阵(A )100002?? ???;(B )100010011??;(C )011101001-?? ?- ? ?;(D )010002100??- ;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++= ,则1,α2α,,m α线性⽆关;(B )向量组1,α2α,,m α若其中有⼀个向量可由向量组线性表⽰,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α的⼀个部分组线性相关,则原向量组本⾝线性相关;(D )向量组1,α2α,,m α线性相关,则每⼀个向量都可由其余向量线性表⽰。

华南理工大学线性代数与解析几何试卷

华南理工大学线性代数与解析几何试卷

(1)n 矩阵,B 是m维列向量,则方程组AX B 无解是(2) 已知可逆矩阵P 使得P 1APcos sinsin cos,则 P 1A 2007P)封 题… 答… 不… 内… 线… 封…密…A, 乘一个m 阶初等矩阵, B, 右乘一个m 阶初等矩阵诚信应考,考试作弊将带来严重后果!华南理工大学期末考试(A 卷)I《2007线性代数》试卷线一、填空题(共20分)(3) 若向量组口= (0 , 4, t ), B = (2, 3, 1), 丫= (t , 2, 3)的秩为 2,则 t= (4)若A 为2n 阶正交矩阵,A *为A 的伴随矩阵,则A * =n(5)设A 为n 阶方阵,1, 2, , n 是A 的n个特征根,则i E A =i 1选择题(共20分)(1 )将矩阵A m n的第i列乘C加到第j列相当于对A :C, 左乘一个n 阶初等矩阵, D ,右乘一个n 阶初等矩阵 (4) 若A 是n 阶正交矩阵, 则以下命题那一个成立: A ,矩阵A 1为正交矩阵, B ,矩阵-A 1为正交矩阵 C ,矩阵A 为正交矩阵,D ,矩阵-A 为正交矩阵(5)4n 阶行列式A , 1, C , n的值B , -1-n三、解下列各题(共30分)511 1 1 .求向量1,在基10 , 21 , 31下的坐标310 1(3) 若n 阶方阵A , B 满足,A 2 B 2 ,则以下命题哪一个成立 A , A B ,B , r(A) r(B)C , det AdetB ,D ,r(A B) r(A B) n(2) 若A 为m x n 矩阵,B 是m 维 非零列向量,r(A) r min{ m, n} M {X : AX B, X R n }则A , M 是m 维向量空间,B ,M 是n-r 维向量空间C , M 是m-r 维向量空间,D , A , B , C 都不对集合3 5 92527 125 816254.计算矩阵A10 3列向量组生成的空间的一个基b 。

大一线性代数期末考试试卷+答案

大一线性代数期末考试试卷+答案

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题2分,共10分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。

每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。

( )2. 零向量一定可以表示成任意一组向量的线性组合。

( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。

( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。

( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。

( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。

① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。

① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ ααα,,, 中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量 3. 下列命题中正确的是( )。

① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。

大学数学线性代数第二学期期末复习测试试卷含答案

大学数学线性代数第二学期期末复习测试试卷含答案

线性代数第二学期期末测试试卷含答案班别_________ 姓名___________ 成绩_____________第一部分 客观题(共30分)一、单项选择题(共 10小题,每小题2分,共20分)1. 若行列式111213212223313233a a a a a a d a a a =,则212223111213313233232323a a a a a a a a a 等于 ( ) (A) 2d (B) 3d (C) 6d (D) 6d -2. 设123010111A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,ij M 是A 中元素ij a 的余子式,则313233M M M -+=( )(A) 0 (B) 1 (C) 2 (D) 3 3. 设A 为n 阶可逆矩阵,则下列各式恒成立的是( ) (A) |2|2||T A A = (B) 11(2)2A A --= (C) *1A A -= (D) 11[()][()]T T T T A A --= 4. 初等矩阵满足( )(A) 任两个之乘积仍是初等矩阵 (B) 任两个之和仍是初等矩阵 (C) 都是可逆矩阵 (D) 所对应的行列式的值为1 5. 下列不是..n 阶矩阵A 可逆的充要条件为( )(A) 0≠A (B) A 可以表示成有限个初等阵的乘积 (C) 伴随矩阵存在 (D) A 的等价标准型为单位矩阵 6. 设A 为m n ⨯矩阵,C 为n 阶可逆矩阵,B AC =,则 ( )。

(A) 秩(A )> 秩(B ) (B) 秩(A )= 秩(B )(C) 秩(A )< 秩(B ) (D) 秩(A )与秩(B )的关系依C 而定 7. 如果向量β可由向量组12,,,s ααα线性表示,则下列结论中正确的是( ) (A) 存在一组不全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立(B) 存在一组全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立(C) 存在一组数12,,s k k k ,使得1122s s k k k βααα=+++ 成立(D) 对β的线性表达式唯一8. 设12,ξξ是齐次线性方程组0AX =的解,12,ηη是非齐次线性方程组AX b =的解,则( )(A) 112ξη+为0AX =的解 (B) 12ηη+为AX b =的解 (C) 12ξξ+为0AX =的解 (D) 12ηη-为AX b =的解9. 设110101011A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A 的特征值是( )。

线性代数a期末考试题及答案

线性代数a期末考试题及答案

线性代数a期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 对角矩阵D. 奇异矩阵答案:B2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中非零行的最大数目D. 矩阵中非零列的最大数目答案:C3. 如果一个矩阵A的行列式为0,则:A. A是可逆的B. A是不可逆的C. A是正定的D. A是负定的答案:B4. 以下哪个选项不是线性方程组解的性质?A. 唯一性B. 存在性C. 零解D. 非零解答案:D二、填空题(每题5分,共20分)1. 矩阵的________是矩阵中所有元素的和。

答案:迹2. 如果一个向量组线性无关,则该向量组的________等于向量的个数。

答案:秩3. 对于一个n阶方阵A,如果存在一个非零向量x使得Ax=0,则称x为矩阵A的________。

答案:零空间4. 一个矩阵的________是指矩阵中所有行向量或列向量的最大线性无关组的个数。

答案:秩三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的行列式。

答案:\[ \text{det}(A) = 1*4 - 2*3 = 4 - 6 = -2 \]2. 设A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],B=\[\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}\],求AB。

答案:\[ AB = \begin{pmatrix} 1*2 + 2*1 & 1*0 + 2*3 \\ 3*2 +4*1 & 3*0 + 4*3 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 10 & 12 \end{pmatrix} \]3. 已知矩阵A=\[\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}\],求A的特征值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南理工大学期末考试(B 卷)
《2010-11(上) 线性代数》试卷
注意事项:1. 考前请将密封线内各项信息填写清楚;
2. 所有答案请直接答在试卷上(或答题纸上);
3.考试形式:闭卷;
一、
1.对一个m 行n 列的矩阵做一个初等行变换相当于在这个矩阵的 边乘上一
个初等矩阵。

2.设E 是单位矩阵。

若30A =则-1
()A E -= 3.设A 是一个秩为r 的m 行n 列矩阵,那么线性方程组0=AX 的基础解系包含
的向量的个数为
4. 若10cos sin 0sin cos a b A θ
θθθ⎛⎫ ⎪= ⎪ ⎪-⎝⎭
是一个正交矩阵, 则-1A = 5.设A 为n 阶可逆方阵,12,,,n λλλ⋅⋅⋅是A 的特征根,则-1A 的特征根为
二、 选择题(共20分)
1.如果将单位矩阵E 的第i 行与第j 行交换得到的矩阵设为),(j i P ,将单位矩阵
E 的第i 行乘以非0常数k 得到的矩阵设为))((k i P ,将单位矩阵E 的第i 行乘以常数k 加到第j 行得到的矩阵设为))(,(k i j P )那么
A , ))((1k i P -=))((k i P ,
B ,))(,(1k i j P -=))(,(k i j P
C ,),(1j i P -=),(j i P ,
D , 上面的结论都不成立
2.若A ,B 为n 阶矩阵,则下面的结论一定成立的是
A , )det()det()det(
B A B A +=+, B ,)det()det()det(B A AB •=
B , )()()(B rank A rank B A rank +=+, D ,)()()(B rank A rank AB rank •=
3.若A ,B , C 是n 阶方阵,则以下命题哪一个成立
A , BA A
B =, B ,
C AB BC A )()(=
C , 若AC AB =,则C B =
D , 若22A B =,则B A =或者B A -=
4.若M 是一个秩为m 的m 行n 列矩阵,则T M M -一定是
A , 正交矩阵,
B , 反对称矩阵
C , 可逆矩阵,
D , 对称矩阵
5.如果M 是m 行n 列矩阵,B 是m 维列向量,线性方程组B MX =的解集为W ,
0=MX 的解集为V ,那么
A , W 的两个向量的和在W 中,
B ,V 的两个向量的和在V 中,
C , W 的向量与V 的向量的和在V 中,
D ,V 的向量都在W 中
三、判断下面的命题是否正确(每小题4分,共12分)(二学分的只需要给出判
断,三学分的要求说明正确的理由或举出不正确的反例)
(1) 设A ,B 是n 阶矩阵,如果对于任意的n 维向量X ,有BX AX =,那么
B A =
(2) 如果A ,B 是正交矩阵,那么AB 也是正交矩阵。

(3) 设A 是n 阶实对称矩阵,如果二次型AX X T
的秩为n 那么对于任意的实n 维非0的列向量X ,AX X T 都不为0。

四、解下列各题(每小题6分)
1. 已知100110111A ⎛⎫ ⎪= ⎪ ⎪⎝⎭
,求从A 的行向量组到A 的列向量组的过渡矩阵。

2.(0,
c,1,1),(1,1,0,1)T T αβαβ==--已知,求c,使得,正交。

五、(8分)实数a 取何值时,方程组23
1232441236351
23+a a a a a a a a a x x x x x x x x x ⎧+=-⎪++=⎨⎪++=⎩ 有无数多个解?用基础解系表示其通解。

六.证明题(6分)设A 是矩阵,证明如果0=T AA ,那么0=A
七.(6分)如果n 阶矩阵A 满足A A =2,证明每一个n 维向量α都可以表示为βγ+,其中βγ,分别是X AX AX ==,0的解。

八、(10分)用正交变换化下列二次型为标准型,并写出该正交变换所对应的正交变换矩阵。

2
2
2
123123121323(,,)2+22f x x x x x x x x x x x x =++--。

相关文档
最新文档