第三章时域分析法.ppt
自控第三章 时域分析法

欠阻尼二阶系统的性能指标
第一次峰值 : n=1 所以: tp=Л / wd 峰值时间定性分析 wn↗→wd= wn(1-ζ 2)1/2 ↗→tp ↘ ζ ↘→wd= wn(1-ζ 2)1/2 ↗→tp ↘
峰值时间越小, 快速性越好.
欠阻尼二阶系统的性能指标
3. 超调量σ % h(tp)- h(∞) σ % = ————————— *100% h(∞) 由h(t)求出h(tp)和h(∞), 代入定义式即得.
三、一阶系统的单位脉冲响应
K(S)= G(S)R(S) = 1 /(TS+1) k(t)= L
-1
[ K(S)]
= e-t/T/T
T越小 → 响应的持续时间越短 → 快速性越好。
四、三种响应之间的关系
δ (t) = d/dt [u(t)] = d2/dt2 [r(t)] k(t) = d/dt [h(t)] = d2/dt2 [Ct(t)]
欠阻尼二阶系统的性能指标
h(tp)=1-(1-ζ 2)-1/2e–ζ =1-(1-ζ 2)-1/2e–ζ =1+(1-ζ =1+(1-ζ =1+ h(∞) = 1 σ% = e
2 1/2
Wntp Wntp
sin(wdtp+θ ) sin(Л +θ )
2
)-1/2e–ζ Wntp sinθ 2 )-1/2e–ζ Wntp w (1-ζ 2)1/2/w n n
eSS= 1 - h(∞)= 0
一阶系统在单位阶跃输入下的稳态误差为0。
二、一阶系统的单位斜坡响应
Ct(S)= G(S)R(S)
= 1/[(TS+1)S2] Ct(t)= L-1[Ct(S)] = t - T + e-t/T 稳态误差 : eSS= T 一阶系统在单位斜坡输入下的稳态误差为T。它只能通过 减小时间常数T来减小,而不能最终消除。
时域分析法

§ 3.2 一阶系统的时间响应
一、一阶系统的数学模型 数学模型
其中时间常数T=1 / K
二、一阶系统的单位阶跃响应
对于单位阶跃输入
xi
(t )
1(t ),
Xi
(s)
1 s
故系统单位阶跃响应象函数为
1
1 s
s
T
1
A s
s
B 1
1 s
s
1
1
T
T
T
取拉氏反变换得系统单位阶跃响应为
1t
xo (t) 1 e T
,为闭环极点的实部; ,为闭环极点的虚部;
欠阻尼二阶系统的单位阶跃响应的象函数为
。
将上式进行拉氏反变换,单位阶跃响应为
(3.33)
x0 (t) 1
e n t
1 2
(n
1 2 n
cosdt sin dt)
1
ent
1 2
(sin
c osd t
cos
sin d t )
1
e nt
1
2
sin(
则
Xo
s
Xo Xi
s s
X
i
s
1 1 Ts 1
1
T
s
1 T
进行拉氏反变换
x0
(t
)
1 T
t
eT
四、响应之间的关系 对线性定常系统,输入之间存在微积分关系,其响
应间也存在相应微积分关系。
作用:在测试系统时,可由一种信号推断几种信号的相应响应。
§ 3.3 二阶系统的时间响应
一、典型二阶系统的数学模型
决定。
在稳态下,输出 x0 (t) 和输入 xi (t) 之间不存在误差,即系统
第三章_时域分析方法

第3章时域分析法基本要求3-1 时域分析基础3-2 一、二阶系统分析与计算3-3 系统稳定性分析3-4 稳态误差分析计算返回主目录基本要求1熟练掌握一、二阶系统的数学模型和阶跃响应的特点。
熟练计算性能指标和结构参数,特别是一阶系统和典型欠阻尼二阶系统动态性能的计算方法。
2了解一阶系统的脉冲响应和斜坡响应的特点。
3正确理解系统稳定性的概念,能熟练运用稳定性判据判定系统的稳定性并进行有关的参数计算、分析。
4正确理解稳态误差的概念,明确终值定理的应用条件。
5熟练掌握计算稳态误差的方法。
6掌握系统的型次和静态误差系数的概念。
控制系统的数学模型是分析、研究和设计控制系统的基础,经典控制论中三种分析(时域,根轨迹,频域)、研究和设计控制系统的方法,都是建立在这个基础上的。
3-1 时域分析基础一、时域分析法的特点它根据系统微分方程,通过拉氏变换,直接求出系统的时间响应。
依据响应的表达式及时间响应曲线来分析系统控制性能,并找出系统结构、参数与这些性能之间的关系。
这是一种直接方法,而且比较准确,可以提供系统时间响应的全部信息。
二、典型初始状态,典型外作用1. 典型初始状态通常规定控制系统的初始状态为零状态。
即在外作用加于系统之前,被控量及其各阶导数相对于平衡工作点的增量为零,系统处于相对平衡状态。
2. 典型外作用①单位阶跃函数1(t)tf(t)⎩⎨⎧<≥==0t 00t 1)t (1)t (f 其拉氏变换为:s 1dt e 1)s (F )]t (f [L 0st===⎰∞-其数学表达式为:t②单位斜坡函数0t 0t 0t)t (1t )t (f <≥⎩⎨⎧=.=其拉氏变换为:2sts 1dt e t )s (F )]t (f [L ===⎰∞-f(t)其数学表达式为:③单位脉冲函数000)()(=≠⎩⎨⎧∞==t t t t f d 其数学表达式为:其拉氏变换为:1)()]([==s F t f L ⎰+∞∞-=1)(dt t d 定义:图中1代表了脉冲强度。
线性系统的时域分析法

三、动态性Leabharlann 和稳态性能动态性能:通常在阶跃函数作用下,测定或计算系统的动
态性能。一般认为阶跃输入对系统来说是最严峻的工作状态。
描述稳定的系统在阶跃函数作用下,动态过程随时间的
变化状况的指标称为动态性能指标。通常包括:
延迟时间 td :指响应曲线第一次到达稳态值一半所需的时间。
上升时间 tr :指响应第一次 h(t) % 误差带
洛比特法则
lim lim
(s pi )N (s)
(s pi )N (s) N (s) N ( pi )
s pi
D(s)
s pi
D(s)
D( pi )
f (t) L1
F (s)
L1
n i1
Ai s pi
n i 1
Aie pi t
② 具有多重极点的有理函数的反变换
F (s)
误差平方积分(ISE,Integral of Square Error)
ISE e2 (t)dt 0
( e(t)是输入输出之间存在的误差)
时间乘误差平方积分(ITSE,Integral of Timed Square Error)
ITSE te2 (t)dt 0
误差绝对值积分(IAE,Integral of Absoluted Error)
(s a
j)F (s) sa j
N (s) D(s)
sa j
k1
e j
思考:为何 k1,k2 必为共轭复数?
f
(t)
L1 F (s)
L1
s
A1 p1
k1 sa
j
k2 sa
j
A1e p1t
k1e(a j)t
自动控制原理-第3章-时域分析法

调节时间
系统响应从峰值回到稳态值所需的时间。
振荡频率
系统阻尼振荡的频率,反映系统的动态性能。
系统的阶跃响应与脉冲响应
阶跃响应
系统对阶跃输入信号的响应,反映系 统的动态性能和稳态性能。
脉冲响应
系统对脉冲输入信号的响应,用于衡 量系统的冲激响应能力和动态性能。
03
一阶系统时域分析
01
单位阶跃响应是指系统在单位阶跃函数作为输入时的
输出响应。
计算方法
02 通过将单位阶跃函数作为输入,代入一阶系统的传递
函数中,求出系统的输出。
特点
03
一阶系统的单位阶跃响应是等值振荡的,其最大值为1,
达到最大值的时间为T,且在时间T后逐渐趋于0。
一阶系统的单位脉冲响应
定义
单位脉冲响应是指系统在单 位脉冲函数作为输入时的输
无法揭示系统结构特性
时域分析法主要关注系统的动态行为和响应,难以揭示系统的结构特 性和稳定性。
对初值条件敏感
时域分析法的结果对系统的初值条件较为敏感,初值条件的微小变化 可能导致计算结果的较大偏差。
感谢您的观看
THANKS
计算简便
时域分析法通常采用数值积分方法进 行计算,计算过程相对简单,易于实 现。
时域分析法的缺点
数值稳定性问题
对于某些系统,时域分析法可能存在数值稳定性问题,例如数值积分 方法的误差累积可能导致计算结果失真。
计算量大
对于高阶系统和复杂系统,时域分析法需要进行大量的数值积分计算, 计算量较大,效率较低。
自动控制原理-第3章-时域 分析法
目录
• 时域分析法概述 • 时域分析的基本概念 • 一阶系统时域分析 • 二阶系统时域分析 • 高阶系统时域分析 • 时域分析法的优缺点
语音信号处理课件__第03章时域分析

x
xmax
)
(3-11)
3.1 语音信号的短时处理方法 脉冲编码调制
若是xmax取为4倍方差(δx)
SNRdB 6.02B 7.27
取样之位数 8 16 24
(3-12)
数字信号的信噪比 41 dB 89 dB 137 dB
3.1 语音信号的短时处理方法 脉冲编码调制
一个数字信号取样之后,变成离散时间信号,接下来就是要用数字 方式来表示这个离散时间信号上的每个取样值。 一个电位波形会有固定的电压范围,一个取样值可以是在此电压范 围内的任何电位。如果只能用固定数目的位来表示这些取样值,那 么这些二进数字就只能代表固定的几个电位值,这个转换就是量化 (quantization),而转换之后只允许存在的几个电位值就是量化阶 数(quantization level)。 执行量化转换的硬件电路,就是量化器(quantizer)。以二进数字 表示的信号就是数字信号(digital signal),而这种将信号波形转 变成二进数字的方法,就叫脉冲编码调制(pulse code modulation, PCM)。
3.1 语音信号的短时处理方法
预处理 平滑滤波器:D/A后面的低通滤波器是平滑滤 波器,对重构的语音波形的高次谐波起平滑 作用,以去除高次谐波失真。 预加重:
现象:由于语音信号的平均功率谱受声门激励和口 鼻辐射的影响,高频端大约在800 Hz以上按6dB/ 倍频程跌落,为此要在预处理中进行预加重。 目的:提升高频部分,使信号的频谱变得平坦,以 便于进行频谱分析或声道参数分析。 位置:预加重可在A/D变换前的反混叠滤波之前进行, 这样不仅能够进行预加重,而且可以压缩信号的动 态范围,有效地提高信噪比。
自动控制原理-第3章

响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法
第3章 时域分析法

6.稳态误差 在图3-6所示单位阶跃响应曲线中,对单位阶跃响应的稳态误差可以用ess来表 示,通常用ess反映系统跟踪输入时的稳态精度。
稳态误差ess:对单位负反馈系统,当t→∞时,系统单位阶跃响应的实际稳态 值与给定值之差,即
ess1= 1 − c(∞) 如果c(∞)为1, 则系统的稳态误差为零。
函数的图形如图3-5所示。
t 0
图3-5 正弦函数图形
3.2 阶跃响应的性能指标
(1)动态过程。动态过程也称过渡过程或瞬态过程,指系统在典型输入信 号作用下,其输出量从初始状态到最终状态的过程。根据系统结构和参数 选择的情况,动态过程表现为衰减、发散和等幅振荡几种形式。显然,一 个可以正常运行的控制系统,其动态过程必须是衰减的,即系统必须是稳 定的,动态过程除提供系统稳定的信息外,还可以提供其响应速度和阻尼 情况等信息,这些信息是用系统动态性能描述的 。
(2)稳态过程。稳态过程也称系统的稳态响应,指系统在典型输入信号 作用下,当t→∞时,其输出量的表现形式。稳态过程表征系统输出量最终复 现输入量的程度,提供系统稳态误差的信息,用系统的稳态性能描述。在分 析系统性能时,认为当系统的输出对其输入的复现进入允许的误差范围以后, 系统进入稳态。
由此可见,控制系统在典型输入信号作用下的性能指标由动态性能指标和稳 态性能指标两部分组成,一般认为阶跃输入对系统来说是最为严峻的工作状 态,如果系统在阶跃函数作用下的动态性能满足要求,那么在其他输入形式 作用下的动态性能也能满足要求。
时间ts。稳态值称为误差带,可以是5%或2%,前者称为5%误差带, 后者称为2%误差带。
5.峰值时间
在图3-6所示单位阶跃响应曲线中,对单位阶跃响应的峰值时间可以用tp来 表示,通常用tp评价系统的响应速度,也反映系统的局部快速性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ts
ln ln
n
1 2
求极 小值
0.707
0.02 0.05
ts
ln
n
简化
3 ln 4
0 0.7
0 ln 1 2 0.34
第3章 时域分析法
3.3 二阶系统时间响应
振荡次数
N ts Td
ts n
i1
zi
r
d n
1 2 tan
第3章 时域分析法
3.3 二阶系统时间响应
dtp k , k 0, 1, 2, …
tp
d
n
1 2
k 1
tp
Td 2
Td
2 d
n
2 1 2
tp
n
tp
第3章 时域分析法
3.3 二阶系统时间响应
M e 1 2 p
超调量只与系统的阻
尼比有关,而与固有
频率无关
Mp
第3章 时域分析法
3.3 二阶系统时间响应
Mp
1
0.8
0.6
0.4
0.2
0
0
0.2
0.4
0.6
0.8
1
damping ratio
第3章 时域分析法 调整时间
第3章 时域分析法
1 ents 1
1 2
tp
d
n
2s 1 2
m K 77.3kg
2 n
B 2nm 181.8 N s m
0.6 n 1.96 rad s
第3章 时域分析法
3.4 高阶系统时间响应
高阶系统传递函数的一般形式
Fs
X o s X i s
b0s m a0 s n
调整时间
第3章 时域分析法
3.3 二阶系统时间响应
上升时间 响应曲线从零时刻出发首次到达稳定 值所需的时间;对于没有超调的系统,定义为响 应曲线从稳态值的10%上升到稳态值的90%所需 的时间
第3章 时域分析法
3.3 二阶系统时间响应
峰值时间 响应曲线从零时刻出发首次到达第一
个峰值所需的时间
最大超调量 响应曲线的最大峰值与稳态值的
b1s m1 a1s n1
… …
bm1s bm an1s an
m
K
Ps
i1
zi
q
r
P
j 1
s
pj
P
k 1
s2
2
kk
s
2 k
第3章 时域分析法
3.4 高阶系统时间响应
单位阶跃响应
m
Xo s q
K
Ps
第3章 时域分析法
3.3 二阶系统时间响应
二阶系统的时域性能指标
性能指标是评价系统动态品质(稳定性、准 确性和快速性)的定量指标,是定量分析的 基础。
性能指标用几个特征量来表示;时域性能指 标用系统对单位阶跃输入信号的时间响应形 式给出的。
第3章 时域分析法
最大超调量
3.3 二阶系统时间响应
上升时间 峰值时间
1 2 2
Байду номын сангаас
振荡次数只与系统的阻尼比有关,阻尼比越
大,振荡次数越小,系统的平稳性越好
解决快速性和稳定性的矛盾,综合考虑方法。 通常根据所允许的最大超调量来选择阻尼比,一般
在 0.4 0.8 之间,然后再调整固有频率的值以
改变瞬态响应时间
第3章 时域分析法 例题
8.9N
3.3 二阶系统时间响应
arctan 1 2
tr
d
n 1 2
tr
n
tr
第3章 时域分析法
3.3 二阶系统时间响应
tr
5
4.5
4
3.5
3
n 2
2.5
2
1.5
n 4
1
0.5
0
0.2
0.4
0.6
0.8
1
damping ratio
第3章 时域分析法
3.3 二阶系统时间响应
峰值时间
tp
4 3.5
3 2.5
2 1.5
1 0.5
0
n 2
n 4
0.2
0.4
0.6
0.8
1
damping ratio
第3章 时域分析法
3.3 二阶系统时间响应
最大超调量
xo t 1
e t n
1
2
sindt
tp
d
M p xo tp 1
第3章 时域分析法
3.3 二阶系统时间响应
控制方程
m d 2xo t
dt 2
fi
t
Kxo
t
B
dxo t
dt
K
2 n
Gs
X o s Fi s
ms2
1 Bs
K
1 K
m s2 B s K
mm
2 n
第3章 时域分析法
3.3 二阶系统时间响应
根据定义
11
e t nr
1
2
sin
td r
即
e t nr
1
2
sin td r
0
第3章 时域分析法
3.3 二阶系统时间响应
0 1
e 0 t nr
sin dtr 0
dtr k k 0, 1, 2, … k 1
xo t 1
ent
1
2
sindt
t 0
dxo t 0
dt tt p
n
1
2
entp sin
dt p
d 1
2
entp cos
dt p
0
0 1
e 0 t np
tan dtp
Fi
s
8.9 s
lim
t
xo
t
0.03
lim
t
xo
t
lim
s0
sX
o
s
lim
s0
sG
s
Fi
s
lim s
1
8.9 0.03
s0 ms2 Bs K s
K 297 N m
第3章 时域分析法
Mp
e
1 2
0.0029 0.03
差与稳态值之比,称为最大超调量
M
p
xo
t
p
xo
xo
100%
调整时间 在响应曲线的稳态之上,用稳态值
的 作为允许误差范围,响应曲线到达并将
永远保持在这一允许误差范围内所需的时间,
一般 5%或 2%
第3章 时域分析法
3.3 二阶系统时间响应
振荡次数N 在调整时间内,响应曲线穿越稳态
值的次数的一半
上升时间 峰值时间 调整时间
快速性
最大超调量 振荡次数
结论
平稳性
第3章 时域分析法
3.3 二阶系统时间响应
二阶系统的时域性能指标(欠阻尼系统)
上升时间
xo t 1
ent
1
2
sindt
t 0
其中 d n 1 2
arctan 1 2