206数理统计期末练习题

合集下载

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

数理统计期末复习题答案

数理统计期末复习题答案

数理统计期末复习题答案一、选择题1. 以下哪项不是描述统计学的特点?A. 描述性B. 推断性C. 数量化D. 客观性答案:B2. 正态分布的均值和方差之间的关系是:A. 均值是方差的两倍B. 均值是方差的平方根C. 均值和方差无关D. 均值是方差的平方答案:C3. 以下哪个选项不是参数估计的目的?A. 估计总体参数B. 估计样本参数C. 估计总体分布D. 估计总体特征答案:B4. 点估计与区间估计的区别在于:A. 点估计给出一个值,区间估计给出一个范围B. 点估计给出一个范围,区间估计给出一个值C. 点估计和区间估计都给出一个值D. 点估计和区间估计都给出一个范围答案:A5. 以下哪个不是假设检验的基本步骤?A. 建立假设B. 选择检验统计量C. 确定显著性水平D. 计算样本均值答案:D二、填空题1. 样本均值的期望等于总体均值,这是_______的性质。

答案:无偏性2. 总体方差的估计量是样本方差乘以_______。

答案:n/(n-1)3. 假设检验中的两类错误是_______和_______。

答案:第一类错误;第二类错误4. 置信度为95%的置信区间意味着,如果重复抽样,大约有95%的置信区间会包含总体参数。

5. 相关系数的取值范围是[-1, 1],其中1表示_______,-1表示_______。

答案:完全正相关;完全负相关三、简答题1. 请简述中心极限定理的内容。

答案:中心极限定理指出,无论总体分布如何,只要样本量足够大,样本均值的分布将趋近于正态分布。

2. 什么是独立同分布的随机变量序列?答案:独立同分布的随机变量序列指的是一系列随机变量,它们相互独立,且每个随机变量都服从相同的分布。

3. 请解释什么是总体和样本,并给出它们在统计分析中的作用。

答案:总体是指研究对象的全体,样本是从总体中抽取的一部分个体。

在统计分析中,由于直接研究总体往往不现实或成本过高,我们通过研究样本来推断总体的特征。

数理统计期末考试试题

数理统计期末考试试题

2014—2015 学年度概率论与数理统计期末考核试卷一、填空题(每小题3分,共15分)1,设(1000,0.7)X B ,用中心极限定理计算(650750)P X <≤= ((3.5)0.99977Φ=)2,设总体X 和Y 相互独立,且都服从正态分布2(0,3)N ,而1210(,,)X X X 和1210(,,)Y Y Y 是分别来自X 和Y 的样本,则U =服从的分布是_______ .3,设1ˆθ与2ˆθ都是总体未知参数θ的估计,且1ˆθ比2ˆθ有效,则1ˆθ与2ˆθ的期望与方差满足_______ .4,设大学生男生身高的总体(,16)X N μ (单位:cm),若要使其平均身高置信度为0.95的置信区间长度小于1.2,问应抽查多少名学生的身高? (0.975 1.96U =)_______ . 5,单因素试验方差分析的数学模型含有的三个基本假定是_______ .二、单项选择题(每小题3分,共15分)1,设12(,,,)(2)n X X X n ≥ 为来自总体(0,1)N 的一个样本,X为样本均值,2s为样本方差,则() (A )(0,1)nX N ;(B )223(2)/(1,2)nni i n X X F n =--∑ ;(C )(1)/()n X s t n - ;(D )22()ns n χ . 2,若总体2(,)X N μσ ,其中2σ已知,当置信度1α-保持不变时,如果减少样本容量n ,则μ的置信区间长度(). (A )变大;(B )变小;(C )不变;(D )前述都有可能. 3,在假设检验中,分别用α,β表示犯第一类错误和第二类错误的概率,则当样本容量n 一定时,下列说法中正确的是().(A )α减小时β也减小; (B )α增大时β也增大;(C ),αβ其中一个减小,另一个会增大; (D )(A )和(B )同时成立.4,设单因素试验方差分析的总离差平方和T S ,误差平方和e S ,效应平方和A S ,则总有().(A )T e A S S S =+;(B )22/(1)A Sr σχ- ;(C )/(1)//()(1,)A e S r S n r F r n r ---- ;(D )A S 与e S 相互独立.命题教师 张学新 院系负责人5,在一元回归分析中,判定系数定义为2TS R S =R,则回归效果显著在哪种情形显著(). (A )2R 接近0时;(B )2R 接近1时;(C )2R 接近∞时; D )前述都不对.三、(本题15分)已知总体X 的概率密度函数为, 0(),0, x e x f x λλ-⎧>=⎨⎩others其中未知参数0λ>, 12(,,,)n X X X 为取自总体的一个样本,(1)求λ的矩估计量,估计量是否为无偏估计量?(2)证明X 是1λ的一个UMVUE .四、(本题10分)设总体X 的概率密度函数为(;)(1),01f x x x θθθ=+<<,其中未知参数1θ>-,12(,,)n X X X 是来自总体X 的一个样本,试求参数θ的极大似然估计.五、计算题(本题15分)合格核桃的重量标准差应小于0.005kg .在一批核桃中随机取10个核桃称重, 得其样本标准差为0.0075s =kg, 试问:(1)在显著性水平05.0=α下, 可否认为该批核桃重量标准差达到要求? (2)如果调整显著性水平0.025α=,结果会怎样?参考数据:20.025(10)20.483χ=, 20.05(10)18.307χ=, 20.025(9)19.023χ=,20.05(9)16.919χ=.六、应用题(本题30分)(1)(本题20分)对一种溶剂在不同的温度x 下,研究其在一定量的水中的溶解度y ,进行了9次试验。

最新概率论与数理统计期末考题(附解析)-中国科技大学-01

最新概率论与数理统计期末考题(附解析)-中国科技大学-01

概率论与数理统计期末考题(附解析)-中国科技大学-01中国科学技术大学2006—2007学年第二学期考试试卷考试科目:概率论与数理统计 得 分: 学生所在系: 姓 名 学 号:(考期:2007年7月13日,闭卷,可用计算器) 一、(18分)(1) 举例说明:一般而言,1)|)|(=+A B P A B P (和1)|)|(=+A B P A B P (不成立;(2) 举例说明:随机变量X 与Y 不独立,但2X 和2Y 独立; (3) 设4321,A ,A ,A A 相互独立,且)4,3,2,1(,)(31==i A P i 则==)(41 i i A P ( );(4)设随机变量X 与Y 独立,且1)()(,0)()(====Y Var X Var Y E X E 。

若命Y X W -=,则Y 与W 的相关系数是( ); (5)判断正误:设X 与Y 都是正态随机变量,则X 与Y 的联合分布由X与Y 的边缘分布唯一确定( );(6)判断正误:在假设检验中,我们要检验两个正态总体均值差δμμ=-21是否为零,则δ--Y X 是统计量( )。

二、(10分)有100个零件,其中90个为一等品,10个为二等品。

从中随机取出2个,安装在一台设备上。

若2个零件中恰有k 个二等品)2,1,0(=k ,则该设备的使用寿命服从参数为1+=k λ的指数分布。

若已知该设备寿命超过1,试求安装的2个零件均为一等品的概率。

三、(20分)设~..X v r )10(),1(6)(≤≤-=x x x x f (1)验证)(x f 是概率密度函数并画出其图形; (2)求出X 的概率分布函数;(3)确定满足)2/3()(b X P b X P >=<的数b ,(10<<b ); (4)计算}|{323121<<≤X X P 。

四、(7分)设),(Y X 服从}10,11|),{(≤≤≤≤-=y x y x D 上的均匀分布,试求X YZ 3=的概率密度函数)(z f Z 。

数理统计期末复习题

数理统计期末复习题

期末复习题 一、填空题(每空2分,共30分)1.已知随机变量X 的分布列如下,则常数a =_______。

X 1 2 3 4 5Pa 2a 0.3 0.3 0.12. 方差分析的前提条件是_________、__________和独立性。

3. 设随机变量X 与Y 相互独立,且D(X)=3,D(Y)=6,则D (3X -Y )= ________。

4. 设随机变量),(~p n B X ,()2,E X =() 1.2,D X = 则n = ______ ,p = ______。

5.正交试验中,若选用正交表)2(1516L ,共需要进行 次实验,最多可以安排 个因素 水平的试验。

6. 用P 值法进行检验时,若P 值α>,则结论应当是________0H 。

7.设总体X 服从正态分布N (μ,2σ),其中μ未知,X 1,X 2,…,X n 为其样本。

若假设检验问题为2201H 1; H 1σσ≠:=:,则应采用 检验。

8. 估计量优劣的主要评判标准是________、________和一致性。

9. 设随机变量2~(1.5,)XN σ,且(1.5 2.5)0.19P X <<=,则(2)P X <=_______ (参考值:(0.5)0.69,(0.6)0.73,(1.25)0.89,(0.25)0.60φφφφ====)10.2S 可作为_______的点估计。

二、单选题(每题3分,共45分)1.某人连续向同一目标射击,每次命中目标的概率为3/5,他连续射击直到命中为止,则射击次数为4的概率是( )(A )453)( , (B )52533⨯)(, (C )53523⨯)(, (D )4115)53(52C )( 2.设~(0,1)X N ,()x φ为X 的分布函数,则(|2|3)P X ->是( )(A ))1()5(φφ+, (B ))1()5(1φφ+- , (C ))1(1)5(φφ-+, (D ))1()5(2φφ-- 3. 某药物治愈率为0.4,现有5个病人服用该药,则5个人中有3个治愈的概率为( )(A )236.04.0⨯ , (B )34.0 , (C )34.053⨯, (D )23356.04.0⨯⨯C4. 设125,,...x x x 是来自(5,2)N 的简单样本,则()E x 和()D x 分别为( )(A )5,2 (B )5(C )1,0.4 (D )5,0.45. 在假设检验中,用α和β分别表示犯第一类错误和第二类错误的概率,则当样本容量一定时,下列说法正确的是( )(A )减少α,增加β (B )增大α,β往往增大(C )减少α,β往往增大 (D )无法确定 6. 设n X X X ,,,21 为总体)3,1(2N 的一个样本,X 为样本均值,则下列结论中正确的是( )(A ) )(~/31n t nX -; (B ) )1,(~)1(3112n F X ni i ∑=-;(C ) )1,0(~/31N nX -; (D ) )1(~)1(31221--∑=n X ni i χ7. 设总体2~(,)X N μσ,n x x x ,...,21是来自总体X 的简单样本,则下列估计量中,不是总体参数μ的无偏估计的是( )(A )10.40.6n X X +(B )i X (C )123X X X +-(D )12...n X X X +++ 8. 对正态总体),(2σμN 的假设检验问题中,使用u 统计量解决的问题是( ). (A) 已知方差,检验均值 (B) 未知均值,检验方差 (C) 已知均值,检验方差 (D) 未知方差,小样本,检验均值 9.单因素方差分析中,当F 值(1,)F k n k <--时,可以认为( )(A) 各样本均值都不相等 (B) 各总体均值不等或不全相等 (C) 各总体均值都不相等 (D) 各总体均值相等10.方差分析时使用的F 统计量是( )(A) 组间平方和除以组内平方和 (B) 组内平方和除以组间平方和 (C) 组间均方除以组内均方 (D) 组内均方除以组间均方 11.设事件A 与B 相互独立,则( )(A) A 与B 不能同时发生 (B) A 与B 一定能同时发生 (C) A 与B 相互独立 (D) A 与B 不独立 12. 甲、乙两人进行射击,A ,B 分别表示甲、乙射中目标,则A B ⋂( ) (A)两人都没射中目标 (B) 甲没射中,乙射中 (C)至少有一人没射中目标 (D) 至少有一人射中目标13. 对因素A 、B 、C 、D 用49(3)L 正交表安排试验,用直观分析法对试验结果进行正交分析和计算,所得因素A 、B 、C 、D 的极差分别为A R =25, B R =16,C R =23,D R =8,则各因素对试验结果的影响从大到小的次序为( )(A )A 、B 、C 、D ; (B )D 、B 、A 、C ; (C )A 、C 、B 、D ; (D )B 、D 、A 、C 14. 若两事件A 和B 相互独立,且满足()( ),()0.3,P AB P A B P A ==则()P B =( ) (A )0.4 (B )0.5 (C )0.6 (D )0.715. 设A ,B 为随机事件,P (B )>0,P (A|B )=1,则必有( )(A )P(A ∪B)=P (A ), (B )B A ⊂, (C )P (A )=P (B ), (D )P (AB )=P (A )三、解答题(共25分)(保留两位小数)(参考值:0.0250.051.961.65u u == 0.0250.05(24)2.06(24) 1.71t t ==)1. (5分)某厂生产的化纤强度服从正态分布,长期以来其标准差稳定在0.85σ=,现抽取了一个容量为25n =的样本,测定其强度,算得样本均值为 2.25x =,试求这批化纤平均强度μ的置信水平为0.95的置信区间。

数理统计期末测试题

数理统计期末测试题

数理统计一、填空题1、设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。

不含任何未知参数2、设母体σσμ),,(~2N X 已知,则在求均值μ的区间估计时,使用的随机变量为nX σμ-3、设母体X 服从修正方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。

025.01015u ⨯±4、假设检验的统计思想是 。

小概率事件在一次试验中不会发生5、某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。

0H :05.0≤p6、某地区的年降雨量),(~2σμN X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2σ的矩估计值为 。

1430.87、设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2N 与)1,2(N , 2*22*1,S S 分别是两个子样的方差,令2*2222*121)(,S b a aS +==χχ,已知)4(~),20(~222221χχχχ,则__________,==b a 。

用)1(~)1(222*--n S n χσ,1,5-==b a8、假设随机变量)(~n t X ,则21X 服从分布 。

)1,(n F 9、假设随机变量),10(~t X 已知05.0)(2=≤λX P ,则____=λ 。

用),1(~2n F X 得),1(95.0n F =λ10、设子样1621,,,X X X 来自标准正态分布母体)1,0(N ,X为子样均值,而01.0)(=>λX P , 则____=λ01.04)1,0(~1z N nX=⇒λ 11、假设子样1621,,,X X X 来自正态母体),(2σμN ,令∑∑==-=161110143i i i iX XY ,则Y 的分布 )170,10(2σμN12、设子样1021,,,X X X 来自标准正态分布母体)1,0(N ,X 与2S 分别是子样均值和子样方差,令2*210S X Y =,若已知01.0)(=≥λY P ,则____=λ 。

数理统计期末练习题

数理统计期末练习题

数理统计期末练习题1. 在总体)4,6.7(N 中抽取容量为n 的样本,如果要求样本均值落在)6.9,6.5(内的概率不小于,则n 至少为多少2.设n x x ,,1 是来自)25,( N 的样本,问n 多大时才能使得95.0)1|(| x P 成立 3. 由正态总体)4,100(N 抽取两个独立样本,样本均值分别为y x ,,样本容量分别15,20,试求)2.0|(| y x P .5.设161,,x x 是来自),(2 N 的样本,经计算32.5,92 s x ,试求)6.0|(| x P . 6.设n x x ,,1 是来自)1,( 的样本,试确定最小的常数c,使得对任意的0 ,有)|(|c x .7. 设随机变量 X~F(n,n),证明 )1(X9.设21,x x 是来自),0(2 N 的样本,试求22121x x x x Y 服从 分布.10.设总体为N(0,1),21,x x 为样本,试求常数k ,使得.05.0)()()(221221221 k x x x x x x11.设n x x ,,1 是来自),(21N 的样本,m y y ,,1 是来自),(22 N 的样本,c,d 是任意两个不为0的常数,证明),2(~)()(2221m n t s y d x c t md nc 其中22222,2)1()1(y x yx s s m n s m s n s 与分别是两个样本方差.12.设121,,, n n x x x x 是来自),(2N 的样本,11,n n i i x x n _2211(),1n n i n i s x x n 试求常数c 使得1n nc nx x t cs 服从t 分布,并指出分布的自由度 。

13.设从两个方差相等的正态总体中分别抽取容量为15,20的样本,其样本方差分别为,,2221s s 试求).2(2221 S S p14. 某厂生产的灯泡使用寿命)250,2250(~2N X ,现进行质量检查,方法如下:随机抽取若干个灯泡,如果这些灯泡的平均寿命超过2200h,就认为该厂生产的灯泡质量合格,若要使检查能通过的概率不低于,问至少应检查多少只灯泡?15.设 )(171x x 是来自正态分布),(2N 的一个样本,_x 与 2s 分别是样本均值与样本方差。

数理统计期末考试试题

数理统计期末考试试题

一、X 服从),(2σμN ,2σ为已知,原假设和备择假设为0:0:10>↔=μμH H 用U 检验法进行检验,求该检验的势函数及犯第二类错误的概率. 96.1,65.1,05.0025.005.0===U U α (12分)二、X 的分布密度函数为⎪⎩⎪⎨⎧≤>=-000),(11x x e x f x θθθ (1)求θ的最大似然估计量; (7分)(2)该估计量是否为θ的有效估计 (7分)三、n X X X ,...,21为来自),0(θ上均匀分布的样本,证明i n x n X X ≤≤=1)(max 是θ的充分统计量,并证明其为θ的无偏估计。

四、121,,...,+n n X X X X 为来自),(2σμN 的样本,2,n S X 分别为的样本均值和样本方差,求111+-+-n n n n S XX 的概率分布五、在某橡胶产品的配方中,考虑3种不同的促进剂和4种不同分量的氧化锌,各配方作2次实验.设在各水平的搭配下胶品的定强指标服从正态分布且方差相同, 已知5.17,75.4,13.82,58.38====E AXB B A Q Q Q Q 问促进剂、氧化锌分量以及它们的交互作用对定强指标有无显著影响.29.3)15,3(,49.3)12,3(,89.3)12,2(,3)12,6(,05.005.005.005.005.0=====F F F F α六.某电话交换台在一小时内接到电话用户呼叫次数按每分钟统计得到记录如下: 呼叫次数 0 1 2 3 4 5 6 >7频 数 8 16 17 10 6 2 1 0问电话交换台每分钟接到呼叫次数X 是否服从泊松分布. (14分)七、),(~2σμN X ,2σ未知,求μ的置信度为α-1的置信区间。

(8分) 八、n θ是θ的一个估计量,当∞→n 时有0ˆ,0ˆ→→n n D E θθ.证明nθˆ是θ的相合估计量,即0}ˆ{lim =≥-∞→εθθn n P 九、X 服从两点分布B(1.p).n X X X ,...,21为其样本,参数p 的先验分布为),(γαβ.求p 的后验分布. (10分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数理统计期末练习题1. 在总体)4,6.7(N 中抽取容量为n 的样本,如果要求样本均值落在)6.9,6.5(内的概率不小于0.95,则n 至少为多少2.设n x x ,,1 是来自)25,(μN 的样本,问n 多大时才能使得95.0)1|(|≥<-μx P 成立3. 由正态总体)4,100(N 抽取两个独立样本,样本均值分别为y x ,,样本容量分别15,20,试求)2.0|(|>-y x P .5.设161,,x x 是来自),(2δμN 的样本,经计算32.5,92==s x ,试求)6.0|(|<-μx P .6.设n x x ,,1 是来自)1,(μN 的样本,试确定最小的常数c,使得对任意的0≥μ,有α≤<P )|(|c x .7. 设随机变量 X~F(n,n),证明 =<P )1(X9.设21,x x 是来自),0(2σN 的样本,试求22121⎪⎪⎭⎫ ⎝⎛-+=x x x x Y 服从 分布.10.设总体为N(0,1),21,x x 为样本,试求常数k ,使得.05.0)()()(221221221=⎪⎪⎭⎫ ⎝⎛>++-+P k x x x x x x11.设n x x ,,1 是来自),(21σμN 的样本,m y y ,,1 是来自),(22σμN 的样本,c,d 是任意两个不为0的常数,证明),2(~)()(2221-+-+-=+m n t s y d x c t md n c ωμμ其中22222,2)1()1(y x y x s s m n s m s n s 与-+-+-=ω分别是两个样本方差.12.设121,,,+n n x x x x 是来自),(2σμN 的样本,11,n n i i x x n ==∑_2211(),1n n i n i s x x n ==--∑试求常数c 使得1n nc nx x t cs +-=服从t 分布,并指出分布的自由度 。

13.设从两个方差相等的正态总体中分别抽取容量为15,20的样本,其样本方差分别为,,2221s s 试求).2(2221>S S p14. 某厂生产的灯泡使用寿命)250,2250(~2N X ,现进行质量检查,方法如下:随机抽取若干个灯泡,如果这些灯泡的平均寿命超过2200h,就认为该厂生产的灯泡质量合格,若要使检查能通过的概率不低于0.997,问至少应检查多少只灯泡?15.设 )(171x x 是来自正态分布),(2σμN 的一个样本,_x 与 2s 分别是样本均值与样本方差。

求k,使得95.0)(_=+>ks x p μ ,21.设1,,n x x 是来自正态分布总体()2,σμN 的一个样本。

()2111nni i s x x n ==--∑是样本方差,试求满足95.05.122≥⎪⎪⎭⎫⎝⎛≤σn s P 的最小n 值 。

1. 设(X 1, X 2, …,X n )为来自正态总体 N(μ, σ2)的样本, σ2未知, 现要检验假设H 0: μ = μ0, 则应选取的统计量是______; 当H 0成立时, 该统计量服从______分布.2. 在显著性检验中,若要使犯两类错误的概率同时变小, 则只有增加______.1. 设总体X ~ N(μ, σ2) , σ2已知, x 1, x 2, …, x n 为取自X 的样本观察值, 现在显著水平α = 0.05下接受了H 0: μ = μ0. 若将α 改为0.01时, 下面结论中正确的是(A) 必拒绝H 0 (B) 必接受H 0 (C) 犯第一类错误概率变大 (D) 犯第一类错误概率变小 2. 在假设检验中, H 0表示原假设, H 1为备选假设, 则称为犯第二类错误的是 (A) H 1不真, 接受H 1 (B) H 0不真, 接受H 1 (C) H 0不真, 接受H 0 (D) H 0为真, 接受H 13. 设(X 1, X 2, …,X n )为来自正态总体 N(μ, σ2)的样本, μ, σ2未知参数, 且∑==n i i X n X 11, ∑=-=ni i X X Q 122)(则检验假设H 0: μ = 0时, 应选取统计量为 (A) Q X n n )1(- (B) Q X n (C) Q X n 1- (D) 2QXn 4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有T e A S S S =+1、设来自总体X 的样本值为(3,2,1,2,0)-,则总体X 的经验分布函数5()F x 在0.8x =处的值为_____________。

2、设来自总体(1,)B θ的一个样本为12,,,n X X X ,X 为样本均值。

则()Var X =___________。

3、设112,,,,...,m m m X X X X +是来自总体2(0,)N σ的简单随机样本,则统计量miXT =∑服从的分布为__________。

4、设1,,n X X 为来自总体(0,)U θ的样本,θ为未知参数,则θ的矩法估计量为____________________。

5、设12,,,n X X X 为来指数分布()Exp λ的简单随机样本,λ为未知参数,则12ni i X λ=∑服从自由度为_________的卡方分布。

6、12,,,n X X X 设为来自正态分布2(,)N μσ的简单随机样本,2,μσ均未知,2,X S 分别为样本均值和样本无偏方差,则检验假设0010::H VS H μμμμ=≠的检验统计量为0)X t Sμ-=,在显著性水平α下的拒绝域为_______________________。

1、设1,,n X X 是来自总体2(,)N μσ的简单随机样本, 统计量1211()n i i i T c X X -+==-∑为2σ的无偏估计。

则常数c 为12(1)n -3、设1234,,,X X X X 是来自总体(1,)B p 样本容量为4的样本,若对假设检验问题0H :0.5p =,1H :0.75p =的拒绝域为413i i W x =⎧⎫=≥⎨⎬⎩⎭∑,该检验犯第一类错误的概率为( )。

(A )1/2 (B )3/4 (C )5/16 (D )11/16 4、设12,,,n X X X 为来自总体X 的简单随机样本,总体X 的方差2σ未知,2,X S 分别为样本均值和样本无偏方差,则下述结论正确的是( )。

(A )S 是σ的无偏估计量 (B )S 是σ的最大似然估计量 (C )S 是σ的相合估计量 (D )S 与X 相互独立1、某种产品以往的废品率为5%,采取某种技术革新措施后,对产品的样本进行检验,这种产品的废品率是否有所降低,取显著水平%5=α,则此,设题的原假设0H :______备择假设1H :______.犯第一类错误的概率为_______。

2、设总体),(~2σμN x ,方差2σ未知,对假设0H :0μμ=,1H :0μμ≠,进行假设检验,通常采取的统计量是________,服从_______分布,自由度是________。

3、设总体),(~2σμN x ,μ和2σ均未知。

统计假设取为0H :0μμ= 1H :0μμ≠ 若用t 检验法进行假设检验,则在显著水平α之下,拒绝域是(B )A 、)1(||21-<-n tt αB 、)1(||21-≥-n tt αC 、)1(||1-≥-n t t αD 、)1(||1--<-n t t α4、在假设检验中,原假设0H ,备择选择1H ,则称( B )为犯第二类错误A 、0H 为真,接受0HB 、0H 不真,接受0HC 、0H 为真,拒绝0HD 、0H 不真,拒绝0H 2、设n X X X ,...,,21为取自总体),(~2σμN X 的样本,X 为样本均值,212)(1X X n S i ni n-=∑=,则服从自由度为1-n 的t 分布的统计量为3、若总体X ~),(2σμN ,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的置信区间 .4、在假设检验中,分别用α,β表示犯第一类错误和第二类错误的概率,则当样本容量n 一定时,下列说法中正确的是( ).(A )α减小时β也减小; (B )α增大时β也增大; (C ),αβ其中一个减小,另一个会增大; (D )(A )和(B )同时成立. 6、设总体X 和Y 相互独立,且都服从正态分布2(0,3)N ,而129(,,)X X X 和129(,,)Y Y Y 是分别来自X 和Y的样本,则U =服从的分布是_______ .7、设1ˆθ与2ˆθ都是总体未知参数θ的估计,且1ˆθ比2ˆθ有效,则1ˆθ与2ˆθ的期望与方差满足_______ ______________.8、设总体),(~2σμN X ,2σ已知,n 为样本容量,总体均值μ的置信水平为α-1的置信区间为),(λλ+-X X ,则λ的值为________.9、设n X X X ,...,,21为取自总体),(~2σμN X 的一个样本,对于给定的显著性水平α,已知关于2σ检验的拒绝域为χ2≤)1(21--n αχ,则相应的备择假设1H 为________;一、填空题1. 若X 是离散型随机变量,分布律是{}(;)P X x P x θ==,(θ是待估计参数),则似然函数 ,X 是连续型随机变量,概率密度是(;)f x θ,则似然函数是 。

2. 若未知参数θ的估计量是θ,若 称θ是θ的无偏估计量。

设12,θθ是未知参数θ的两个无偏估计量,若 则称1θ较2θ有效。

3. 对任意分布的总体,样本均值X 是 的无偏估计量。

样本方差2S 是 的无偏估计量。

4. 设总体~()X P λ,其中0λ>是未知参数,1,,n X X 是X 的一个样本,则λ的矩估计量为 ,极大似然估计为 。

一、选择题1.设随机变量X 服从n 个自由度的t 分布,定义t α满足P(X ≤t α)=1-α,0<α<1。

若已知 P(|X|>x)=b ,b>0,则x 等于(A )t 1-b (B ) t 1-b/2 (C )t b (D )t b/22.设n X X X ,...,,21是来自标准正态总体的简单随机样本,X 和S 2为样本均值和样本方差,则(A )X 服从标准正态分布 (B )∑=ni iX12服从自由度为n-1的χ2分布(C )X n 服从标准正态分布 (D )2)1(S n -服从自由度为n-1的χ2分布 3.设n X X X ,...,,21是来自正态总体N(μ,σ2) 的简单随机样本,X 为其均值,记∑=-=n i i X n S 1221)(1μ,∑=-=n i i X X n S 1222)(1,∑=--=n i i X n S 1223)(11μ, ∑=--=ni i X X n S 1224)(11,服从自由度为n-1的t 分布的随机变量是 (A )1/1--=n S X T μ (B )1/2--=n S X T μ(C )1/3--=n S X T μ (D )1/4--=n S X T μ4.设21,X X 是来自正态总体N(μ,σ2) 的简单随机样本,则21X X +与21X X -必 (A )不相关 (B )线性相关 (C )相关但非线性相关 (D )不独立 5.设n X X X ,...,,21是来自正态总体N(μ,σ2) 的简单随机样本,统计量2⎪⎪⎭⎫ ⎝⎛-=S X n Y μ,则 (A )Y~χ2(n-1) (B )Y~t(n-1) (C )Y~F(n-1,1) (D )Y~F(1,n-1) 6.设随机变量X~N(0,1),Y~N(0,2),且X 与Y 相互独立,则(A )223231Y X +服从χ2分布 (B )2)(31Y X +服从χ2分布 (C )222121Y X +服从χ2分布 (D )2)(21Y X +服从χ2分布7.设X , 1021,...,,X X X 是来自正态总体N(0,σ2) 的简单随机样本,∑==ni i X Y 122101,则 (A )X 2~χ2(1) (B )Y 2~χ2(10) (C )X/Y~t(10) (D )X 2/Y 2 ~F(10,1)8.设总体X 与Y 相互独立且都服从正态分布N(μ,σ2) ,X ,Y 分别为来自总体X,Y 的容量为n 的样本均值,则当n 固定时,概率)|(|σ>-Y X P 的值随σ的增大而(A )单调增大 (B )单调减小 (C )保持不变 (D )增减不定 9设随机变量X 和Y 都服从标准正态分布,则 (A )X+Y 服从正态分布 (B )22Y X+服从χ2分布(C )X 2和Y 2都服从χ2分布 (D )22/Y X 服从F 分布填空题1.已知随机变量 X ,Y 的联合概率密度为)}4849(721exp{121),(22+-+-=y y x y x f π, 则22)1(49-Y X 服从参数为 的 分布。

相关文档
最新文档