用机械能守恒定律解连接体问题

合集下载

机械能守恒定律-连接体问题)

机械能守恒定律-连接体问题)
H A. 5
(mA+mB ) v 2 + mAg(H−h)= 2 mAgh = mB =
所以:
1 2 1 2

2H 4H B. 5 C. 5 1H DFra bibliotek3vh
mA v
2 5
2
mA
H
h =
机械能守恒定律应用
机械能守恒定律的表达形式:
1、E1=E2 ( E1、E2初末态机械能)
2、ΔEP减=ΔEK增 (减少等于增加量)
3、ΔEA减=ΔEB增(A机械能减少等于B增量)
例1 在光滑的水平桌面上有一质量为 M的小车,小车与绳的一端相连,绳子 的另一端通过光滑滑轮与一个质量为m 的砝码相连,砝码到地面的高度为h, 由静止释放砝码,则当其着地前的一 瞬间(小车未离开桌子)小车的速度 为多大?
L · 2
=
gL 2
1 2
mv 2
L 2
v
∴ v=

例3 一粗细均匀的U形管内装有同种液 体竖直放置,右管口用盖板A密闭一部 分气体,左管口开口,两液面高度差为 h,U形管中液柱总长为4h,现拿去盖板, 液柱开始流动,当两侧液面恰好相齐时, 右侧液面下降的速度大小为多少?A
h
解:根据机械能守恒定律得:
Mgh−mgh = 1 (M+m)v2 2
解得:
v=
1 2

2(M−m)gh M+m
(2)M触地,m做竖直上抛运动,机械能守恒:
mv2 = mgh´
∴ m上升的总高度: H = h+h´ = 2Mh M+m
练习:固定的三角形木块,倾角θ=30°, 一细线两端分别与物块A和B连接,A的质 量为4m,B的质量为m。开始时将B按在地 面上不动,然后放开手,让A沿斜面下滑而 B上升。物块A与斜面间无摩擦。设当A沿 斜面下滑S距离后,细线突然断了。求物块 B上升的最大高度H。

用机械能守恒定律解决连接体问题

用机械能守恒定律解决连接体问题

用机械能守恒定律解决连接体问题1.首先分析多个物体组成的系统所受的外力是否只有重力或弹力做功,内力是否造成了机械能与其他形式能的转化,从而判断系统机械能是否守恒.2.若系统机械能守恒,则机械能从一个物体转移到另一个物体,ΔE 1=-ΔE 2,一个物体机械能增加,则一定有另一个物体机械能减少.例1 如图1所示,左侧为一个半径为R 的半球形的碗固定在水平桌面上,碗口水平,O 点为球心,碗的内表面及碗口光滑.右侧是一个固定光滑斜面,斜面足够长,倾角θ=30°.一根不可伸长的不计质量的细绳跨在碗口及光滑斜面顶端的光滑定滑轮两端上,绳的两端分别系有可视为质点的小球m 1和m 2,且m 1>m 2.开始时m 1恰在碗口水平直径右端A 处,m 2在斜面上且距离斜面顶端足够远,此时连接两球的细绳与斜面平行且恰好伸直.当m 1由静止释放运动到圆心O 的正下方B 点时细绳突然断开,不计细绳断开瞬间的能量损失.图1(1)求小球m 2沿斜面上升的最大距离s ;(2)若已知细绳断开后小球m 1沿碗的内侧上升的最大高度为R 2,求m 1m 2.(结果保留两位有效数字) 当m 1由静止释放运动到圆心O 的正下方B 点时细绳突然断开.答案 (1)2(2+1)m 12m 1+m 2R (2)1.9 解析 (1)设重力加速度为g ,小球m 1到达最低点B 时,m 1、m 2速度大小分别为v 1、v 2 如图所示,由运动的合成与分解得v 1=2v 2对m 1、m 2组成的系统由机械能守恒定律得m 1gR -m 2gh =12m 1v 12+12m 2v 22 h =2R sin 30°联立以上三式得v 1= 22m 1-2m 22m 1+m 2gR ,v 2= 2m 1-2m 22m 1+m 2gR 设细绳断开后m 2沿斜面上升的距离为s ′,对m 2由机械能守恒定律得m 2gs ′sin 30°=12m 2v 22 小球m 2沿斜面上升的最大距离s =2R +s ′ 联立以上两式并代入v 2得s =⎝⎛⎭⎪⎫2+2m 1-2m 22m 1+m 2R =2(2+1)m 12m 1+m 2R (2)对m 1由机械能守恒定律得: 12m 1v 12=m 1g R 2代入v 1得m 1m 2=22+12≈1.9.。

机械能守恒定律在连接体问题中的应用

机械能守恒定律在连接体问题中的应用

H = h+h´ = 2Mh M+m
m M
机械能守恒定律及其应用
例思考 2. 1:M下降的高度和m上升的高度是否相等?
•如图,两物体的质量分别为M和m(M>m),用细绳 连接后跨接在半径为 R的固定光滑半圆柱上(离地面有 思考2: m对圆柱体顶端的压力为零条件是什 足够高的距离),两物体刚好位于其水平直径的两端 么? ,释放后它们由静止开始运动, 思考 3:若v满足上问条件,且m在最高点时绳 ( 1) m在最高点时的速度大小? 子刚好断裂,则 m运动情况如何? (2)当 m和M的比值为多大时, m对圆柱体顶端的压力为零? 思考4:若m在最高点时绳子刚好断裂,且m的速 度不足以使m做平抛运动,则m运动情况如何?
机械能守恒定律及其应用
机械能
动能和势能统称为机械能
机械能守恒条件
在只有 重力 或 弹力 做 功的物体系统内, 动能 与 势能 可 以相互转化,而 总的机械能 保持不变
弹力
重力
机械能守恒定律及其应用
热身训练1:
• 如图所示,刚性小球从高处下落到竖直放置的轻弹 簧上。在将弹簧压缩到最短的整个过程中, 下列关 C ) 于能量的叙述中正确的是(CD D A.重力势能和动能之和总保持不变 B.重力势能和弹性势能之和总保持不变 C.动能和弹性势能之和不断增加 D.重力势能、弹性势能和动能之和总保 持不变
2013届高三一轮复习
机械能守恒定律 在连接体问题中的运用
机械能守恒定律及其应用
【高考要求】
内容 要求 说明 机械能守恒定 机械能守恒定律的应用常综合牛顿运动 Ⅱ 律及其应用 定律、曲线运动知识等,题目综合性强
【学习目标】 1. 2. 掌握机械能守恒定律在解决连接体问题中巩固 机械能解题的规范和一般方法 的运用,学会选择研究对象,分析研究过程

机械能守恒定律——连接体问题PPT课件 人教课标版

机械能守恒定律——连接体问题PPT课件 人教课标版

方向竖直向上。
小结:
45
V垂
V V
VM
Vm
Vm
1、这类问题通常利用系统减少的重力势能等 于系统增加的动能列式比较简洁 2 、不可伸长是重要的隐含条件,任何绷紧 的绳相连的两物体沿绳方向速度大小相等
(三)连续媒质的流动问题
例3.一条长为L的均匀链条,放在 光滑水平桌面上,链条的一半垂于 桌边,如图所示 现由静止开始使 链条自由滑落,当它全部脱离桌面 时的速度为多大?
R O
M
m
根据运动效果,将VM沿绳方向 和垂直于绳的方向分解,则有:
45
VM cos45 Vm
0
V垂
VM
Vm
由机械能守恒定律得:
Vm
1 1 2 2 MgR 2mgR MV M mV m 2 2
解两式得:
4 gR(M 2m ) vM 2M m
方向水平向左
2 gR(M 2m ) vm 2M m
V0
R
O
解析:当列车进入轨道后,动能逐渐 向势能转化,车速逐渐减小,当车厢 占满环时的速度最小。
设运行过程中列车的最小速度为V, 列车质量为m m 则轨道上的那部分车的质量为: 2R
由机械能守恒定律得:
1 1 2 2Rm 2 mv 0 mv gR ………….(1) 2 2 L
L
由圆周运动规律可知,列车的最小速率为:
v gR
………….(2)
解①②得:
4gR v0 gR L
2
小结:此类问题特别要注意势能
和动能表达式中的质量是否相等
97年高考. 质量为m的钢板与直立轻弹簧的上端连接, 弹簧下端固定在地上。平衡时,弹簧的压缩量为x0, 如图所示。一物块从钢板正上方距离为 3x0的A处自由 落下,打在钢板上并立刻与钢板一起向下运动,但不 粘连。它们到达最低点后又向上运动。 A 已知物块质量也为m时,它们恰能回到 3x0 O x0 O点。若物块质量为2m,仍从A处自由 m 落下,则物块与钢板回到O点时,还具 有向上的速度。求物块向上运动到达 的最高点与O点的距离。

专题三圆周运动_机械能守恒中的连接体问题

专题三圆周运动_机械能守恒中的连接体问题

机械能守恒中的连接体问题【解题步骤】1.准确选择研究对象2.判定机械能是否守恒3.应用机械能守恒处理连接体问题例1:如图,在光滑的水平桌面上有一质量为M的小车,小车与绳的一端相连,绳子的另一端通过光滑滑轮与一个质量为m 的砝码相连,砝码到地面的高度为h,由静止释放砝码,则当其着地前的一瞬间(小车未离开桌子)小车的速度为多大?练习Word文档1、一根细绳绕过光滑的定滑轮,两端分别系住质量为M和m的长方形物块,且M>m,开始时用手握住M,使系统处于如图示状态。

求Array(1)当M由静止释放下落h高时的速度(2)如果M下降h刚好触地,那么m上升的总高度是多少?2、如图所示,一固定的三角形木块,其斜面的倾角θ=30°,另一边与地面垂直,顶上有一定滑轮。

一柔软的细线跨过定滑轮,两端分别与物块A和B连接,A的质量为4m,B的质量为m。

开始时将B按在地面上不动,然后放开手,让A沿斜面下滑而B上升。

物块A与斜面间无摩擦。

设当A沿斜面下滑S距离后,细线突然断了。

Word文档求物块B上升的最大高度H。

3、如图光滑圆柱被固定在水平平台上,质量为m1的小球甲用轻绳跨过圆柱与质量为m2的小球乙相连,开始时让小球甲放在平台上,两边绳竖直,两球均从静止开始运动,求当甲上升到圆柱最高点时甲的速度。

Word文档例2.长为L质量分布均匀的绳子,对称地悬挂在轻小的定滑轮上,如图所示.轻轻地推动一下,让绳子滑下,那么当绳子离开滑轮的瞬间,求绳子的速度?练习Word文档1、如图所示,一粗细均匀的U形管装有同种液体竖直放置,右管口用盖板A密闭一部分气体,左管口开口,两液面高度差为h,U形管中液柱总长为4h,现拿去盖板,液柱开始流动,当两侧液面恰好相齐时,右侧液面下降的速度大小为多少?Ah2.如图所示,把小车放在光滑的水平桌面上,用轻绳跨过定滑轮使之与盛有沙子的小桶相连,已知小车的质量为M,小桶与沙子的总质量为m,把小车从静止状态释放后,在小桶下落竖直高度为h的过程中,若不计滑轮及空气的阻力,下列说法中正确的是A.绳拉车的力始终为mgB.当M远远大于m时,才可以认为绳拉车的力为mgC.小车获得的动能为mghD.小车获得的动能为Word文档Word 文档例题3.如图所示,质量分别为2m 和3m 的两个小球固定在一根直角尺的两端A 、B ,直角尺的顶点O 处有光滑的固定转动轴.AO 、BO 的长分别为2L 和L .开始时直角尺的AO 部分处于水平位置而B 在O 的正下方.让该系统由静止开始自由转动,求:当A 到达最低点时,A 小球的速度大小v ;匀速圆周运动一、物理量之间的转换例1、如图所示的皮带传动装置中,右边两轮是连在一起同轴转动,图中三轮半径的关系为:,,A 、B 、C 三点为三个轮边缘上的点,皮带不打滑,则A 、B 、C 三点的线速度之比为__________,角速度之比为__________,周期之比为__________。

用机械能守恒定律解连接体问题

用机械能守恒定律解连接体问题

用机械能守恒定律解连接体问题在用机械能守恒定律解连接体问题时,一定要注意下面几个问题一、何选取系统应用机械能守恒定律必须准确的选择系统.系统选择得当,机械能守恒;系统选择不得当,机械能不守恒。

对机械能不守恒的系统应用机械能守恒定律必然得出错误的结果。

例1、如图1所示,长为2L 的轻杆OB ,O 端装有转轴,B 端固定一个质量为m 的小球B ,OB 中点A 固定一个质量为m 的小球A ,若OB 杆从水平位置静止开始释放转到竖直位置的过程中,求(1)A 、B 球摆到最低点的速度大小各是多少?(2)轻杆对A 、B 球各做功多少?(3)轻杆对A 、B 球所做的总功为多少?析与解:有学生分别选A 、B 球及地球为一系统,有机械能守恒定律得到:221A mv mgl = 2212B mv l mg = 由上两式得:gl v gl v B A 4,2==上述解法其实是不对的,错在何处呢?是系统选择错误。

事实上,小球A (B )与地球单独组成的系统机械能并不守恒,这是因为轻杆往下摆的过程中,轻杆分别对A 、B 球做了功(注意轻杆可以产生切向力,不象轻绳,只能产生法向力)。

对机械能不守恒的系统应用守恒定律求解,当然出错。

那么,应该选择什么系统呢?应选A 、B 球及地球所组成的系统,机械能是守恒的。

(1) 选A 、B 及地球为一系统,此系统中只有动能和重力势能发生转化,系统机械能守恒,有:l mg mgl mv mv B A 221212,2,+=+ ① A B v v 2= ② 由①②式可得:gl v gl v B A 8.4,2.1,,== (2)由上不难得到:A A v v <, B B v v >,即A 、B 间的轻杆对B 球做正功,对A 球做负功。

轻杆对A 球做功为:mgl mv mv W A A A 4.0212122,-=-= 同理可得,轻杆对B 球做功为:mgl W B 4.0=(3)轻杆对A 、B 所做总功为0。

专题动能定理和机械能守恒定律综合应用连接体问题和链条问题(原卷版)

专题动能定理和机械能守恒定律综合应用连接体问题和链条问题(原卷版)

9 专题:动能定理和机械能守恒定律综合应用连接体和链条问题[学习目标]1.知道动能定理与机械能守恒定律的区别,体会二者在解题时的方法异同2.能灵活运用动能定理和机械能守恒定律解决综合题目.3.会分析多个物体组成系统的机械能守恒问题.4.会分析处理链条类机械能守恒问题一、机械能的变化量ΔE与其他力做功的关系质量为m的物块在竖直向上的恒力F的作用下由静止向上加速运动了h,此过程恒力F做功多少,物块机械能变化了多少?(空气阻力不计,重力加速度为g)二、多物体组成的系统机械能守恒问题1.当动能、势能仅在系统内相互转化或转移,则系统的机械能守恒.2.机械能守恒定律表达式的选取技巧①当研究对象为单个物体时,可优先考虑应用表达式E k1+E p1=E k2+E p2或ΔE k=-ΔE p来求解.②当研究对象为两个物体组成的系统时:a.若两个物体的重力势能都在减小(或增加),动能都在增加(或减小),可优先考虑应用表达式ΔE k=-ΔE p来求解.b.若A物体的机械能增加,B物体的机械能减少,可优先考虑用表达式ΔE A=-ΔE B来求解.c.从机械能的转化角度来看,系统中一个物体某一类型机械能的减少量等于系统中其他类型机械能的增加量,可用ΔE减=ΔE增来列式.d.注意寻找连接各物体间的速度关系的连接物,如绳子、杆或者其他物体,然后在寻找几个物体间的速度关系和位移关系。

3.对于关联物体的机械能守恒问题,应注意寻找用绳或杆相连接的物体间的速度关系、位移与高度变化量Δh 的关系.三、连接体问题解题思路与技巧1.不含弹簧的系统机械能守恒问题①对多个物体组成的系统,要注意判断物体运动过程中系统的机械能是否守恒.一般情况为:不计空气阻力和一切摩擦,系统的机械能守恒.②注意寻找用绳或杆相连接的物体间的速度关系和位移关系.③多个物体组成的系统,应用机械能守恒时,先确定系统中哪些能量增加、哪些能量减少,再用ΔE增=ΔE减(系统内一部分增加的机械能和另一部分减少的机械能相等)解决问题.2.含弹簧的系统机械能守恒问题①通过其他能量求弹性势能,根据机械能守恒,列出方程,代入其他能量的数值求解.②对同一弹簧,弹性势能的大小由弹簧的形变量决定,弹簧伸长量和压缩量相等时,弹簧弹性势能相等.③物体运动的位移与弹簧的形变量或形变量的变化量有关.知识点一:动能定理和机械能守恒定律的比较动能定理和机械能守恒定律,都可以用来求能量或速度,但侧重不同,动能定理解决物体运动,尤其计算对该物体的做功时较简单,机械能守恒定律解决系统问题往往较简单,两者的灵活选择可以简化运算过程.【探究重点】【例题精讲】1.(2022届·河北省唐山市高三上学期期末)如图所示,一劲度系数为k的轻弹簧左端固定在竖直墙壁上,右端连接置于粗糙水平面的物块。

用机械能解决连接体问题

用机械能解决连接体问题
A S
v
30º S B
h
v
组成的系统只有它们的重力做功, 解:该题A、B组成的系统只有它们的重力做功,故系 该题 、 组成的系统只有它们的重力做功 统机械能守恒。 统机械能守恒。 设物块A沿斜面下滑 距离时的速度为v,则有: 沿斜面下滑S距离时的速度为 设物块 沿斜面下滑 距离时的速度为 ,则有:
则B球上升最大高度h=L(1+sinθ)=32L/25
例5、如图所示,一根轻弹簧下端固定,竖立 、如图所示,一根轻弹簧下端固定, 在水平面上.其正上方 位置有一只小球。 其正上方A位置有一只小球 在水平面上 其正上方 位置有一只小球。小 球从静止开始下落, 球从静止开始下落,在B位置接触弹簧的上 位置接触弹簧的上 位置小球所受弹力大小等于重力, 端,在C位置小球所受弹力大小等于重力, 位置小球所受弹力大小等于重力 位置小球速度减小到零, 在D位置小球速度减小到零,在小球下降阶 位置小球速度减小到零 段中, 段中,下列说法正确的是 ( )
v
为研究对象, 解:以M 、m为研究对象,在 m开始下落到刚要着地的过程 中机械能守恒, 中机械能守恒,则: 1 mgh = 2 (M+m)v2
M
m
hபைடு நூலகம்
∴ v=

2mgh M+m
v
一、轻绳连接模型
1、与绳子连接的物体沿绳子方向速度 、 大小相等。 大小相等。 2、轻绳内张力处处相等,且与运动状 、轻绳内张力处处相等, 态无关 3、此模型中单个物体一般机械能不守 、 二系统机械能守恒。 恒,二系统机械能守恒。
三、轻弹簧连接问题
1、需认清弹簧状态及不同能量的转化关系。 、需认清弹簧状态及不同能量的转化关系。 2、由两个及两个以上物体组成的系统应注意 、 弹簧伸长或压缩最大程度时, 弹簧伸长或压缩最大程度时,弹簧连接的物 体的速度问题。 体的速度问题。 3、弹簧处于自然长度时弹性势能最小为隐含 、 条件。 条件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用机械能守恒定律解连接体问题
在用机械能守恒定律解连接体问题时,一定要注意下面几个问题
一、何选取系统
应用机械能守恒定律必须准确的选择系统.系统选择得当,机械能守恒;系统选择不得当,机械能不守恒。

对机械能不守恒的系统应用机械能守恒定律必然得出错误的结果。

例1、如图1所示,长为2L 的轻杆OB ,O 端装有转轴,B 端固定
一个质量为m 的小球B ,OB 中点A 固定一个质量为m 的小球A ,
若OB 杆从水平位置静止开始释放转到竖直位置的过程中,求(1)
A 、
B 球摆到最低点的速度大小各是多少?(2)轻杆对A 、B 球各
做功多少?(3)轻杆对A 、B 球所做的总功为多少?
析与解:有学生分别选A 、B 球及地球为一系统,有机械能守恒定
律得到:
221A mv mgl = 2212B mv l mg = 由上两式得:gl v gl v B A 4,2==
上述解法其实是不对的,错在何处呢?是系统选择错误。

事实上,小球A (B )与地球单独组成的系统机械能并不守恒,这是因为轻杆往下摆的过程中,轻杆分别对A 、B 球做了功(注意轻杆可以产生切向力,不象轻绳,只能产生法向力)。

对机械能不守恒的系统应用守恒定律求解,当然出错。

那么,应该选择什么系统呢?应选A 、B 球及地球所组成的系统,机械能是守恒的。

(1) 选A 、B 及地球为一系统,此系统中只有动能和重力势能发生转化,系统机械能守恒,有:
l mg mgl mv mv B A 22
1212,2,+=+ ① A B v v 2= ②
由①②式可得:gl v gl v B A 8.4,2.1,,=
= (2)由上不难得到:A A v v <, B B v v >,
即A 、B 间的轻杆对B 球做正功,对A 球做负功。

轻杆对A 球做功为:mgl mv mv W A A A 4.02
12122,-=-= 同理可得,轻杆对B 球做功为:mgl W B 4.0=
(3)轻杆对A 、B 所做总功为0。

体会:从(2)不难看出轻杆对小球B 做了正功,对A 球做了负功。

从(3)可得到,A 、B 两球及轻杆这一系统,并没有机械能与其他形式能量的转化,故机械能守恒。

A 、B 间轻杆的作用之一是实现了A 球与B 球之间机械能的传递。

二、如何选取物理过程
机械能守恒定律也是一条过程规律,在使用时必须选取具体的物理过程,确定初、末状态。

选取物理过程必须遵循两个基本原则,一要符合求解要求,二要尽量使求解过程简化。

有时可选全过程,而有时则必须将全过程分解成几个阶段,然后再分别应用机械能守恒定律求解。

例2:如图2所示,质量均为m 的小球A 、B 、C ,用两条长均为L 的细线相连,置于高为h 的光滑水平桌面上。

h L >,A 球刚跨过桌面。

若A 球、B 球下落着地后均不再反弹,则C 球离开桌边缘时的速度大小是多少?
析与解:本题描述的物理过程是:A 球下落带动B 、
C 球运动。

A 球着地前瞬间,A 、B 、C 三球速率
相等,且B 、C 球均在桌面上。

因A 球着地后不
反弹,故A 、B 两球间线松弛,B 球继续运动并
下落,带动小球C ,在B 球着地前瞬间,B 、C 两
球速率相等。

故本题的物理过程应划分为两个阶
段:从A 球开始下落到A 球着地瞬间;第二个阶
段,从A 求着地后到B 球着地瞬间。

在第一个阶段,选三个球及地球为系统,机械能守恒,则有:21)3(21v m mgh =
① 第二个阶段,选B 、C 两球及地球为系统,机械能守恒,则有: 2122)2(21)2(21v m v m mgh -=
② 由①②解得:gh v 3
52= 三、利用机械能守恒定律的另一表达式0=∆+∆P K E E 解题。

在运用机械能守恒定律2211p k p k E E E E +=+时,必须选取零势能参考面,而且在同一问题中必须选取同一零势能参考面。

但在某些机械能守恒的问题中,运用2211p k p k E E E E +=+求解不太方便,而运用0=∆+∆P K E E 较为简单。

运用0=∆+∆P K E E 的一个最大优点是不必选取零势能参考面,只要弄清楚过程中物体重力势能的变化即可。

例3:如图3所示,一固定的斜面,0
30=θ,另一边与地面垂直,顶上有一定滑轮,一软弱的细线跨过定滑轮,两边分别与A\B 连接,A 的质量为4m,B 的质量为m,开始时将B 按在地面上
不动,然后放开手,让A 沿斜面下滑而B 上升,物块A 与斜面间无摩擦,设当A 沿斜面下滑s 距离后,细线突然断了,求物块B 上升的最大距离H 。

析与解:取A 、B 及地球为系统:P K E E ∆-=∆
mgs s mg v m m -⋅⋅=+0230sin 4)4(2
1① 对B :h g v )(202
-=-② h S H +=③
由①②③得:s H 2.1=。

相关文档
最新文档