2019-2020学年上海市浦东新区初中毕业生学业模拟数学试题(有标准答案)
上海市浦东新区2019-2020学年中考第二次模拟数学试题含解析

上海市浦东新区2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是()A.∠EGD=58°B.GF=GH C.∠FHG=61°D.FG=FH2.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )A.60°B.65°C.55°D.50°3.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.4.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°5.如图是由4个相同的正方体搭成的几何体,则其俯视图是()A.B.C.D.6.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣14,y1)、C(﹣12,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.57.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减小8.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则CFCD的值是()A.1 B.12C.13D.149.如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO 与∠DCO的度数和是()A.60°B.45°C.35°D.30°10.在△ABC中,∠C=90°,sinA=45,则tanB等于()A.43B.34C.35D.4511.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.2C.3D.2312.下列图案中,是轴对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是_____.14.一个圆的半径为2,弦长是3,求这条弦所对的圆周角是_____.15.如图,6的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.16.方程242x-=的根是__________.17.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB 在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为_____.18.如图,角α的一边在x轴上,另一边为射线OP,点P(2,23),则tanα=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?20.(6分)先化简,再求值:(1x﹣21x-)÷2212x xx x+-+,其中x的值从不等式组11022(1)xx x⎧+⎪⎨⎪-≤⎩>的整数解中选取.21.(6分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.22.(8分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)求乙组加工零件总量a的值.23.(8分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。
上海市浦东新区2019-2020学年中考数学模拟试题(4)含解析

上海市浦东新区2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.3点40分,时钟的时针与分针的夹角为( ) A .140°B .130°C .120°D .110°2.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b -=-+C .222()2a b a ab b +=++D .2()a ab a a b +=+3.如图,A 、B 、C 是⊙O 上的三点,∠BAC =30°,则∠BOC 的大小是( )A .30°B .60°C .90°D .45°4.如图,已知菱形ABCD ,∠B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长为( )A .16B .12C .24D .185.下列计算中,错误的是( ) A .020181=;B .224-=;C .1242=;D .1133-=. 6.甲、乙、丙三家超市为了促销同一种定价为m 元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A .甲B .乙C .丙D .都一样7.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为( )8.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.9.在下列各平面图形中,是圆锥的表面展开图的是( )A.B.C.D.10.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×511.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点H,连接DH,下列结论正确的是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是25﹣2A.①②⑤B.①③④⑤C.①②④⑤D.①②③④12.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正确的结论有()个.A.3 B.4 C.2 D.1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.新定义[a,b]为一次函数(其中a≠0,且a,b为实数)的“关联数”,若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程的解为.14.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为____.15.安全问题大于天,为加大宣传力度,提高学生的安全意识,乐陵某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是_____.16.抛物线y=﹣x2+4x﹣1的顶点坐标为.17.一个正多边形的一个外角为30°,则它的内角和为_____.18.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠时点B落在点F处,连接FC,若∠DAF=18°,则∠DCF=_____度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:2213242xxx x--⎛⎫÷--⎪--⎝⎭,其中x是满足不等式﹣12(x﹣1)≥12的非负整数解.20.(6分)如图,二次函数232(0) 2y ax x a=-+≠的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).求抛物线与直线AC的函数解析式;若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;若点E为抛物线上任意一点,点F为x 轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标.21.(6分)如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高14米,背水坡AB 的坡度为1:3,迎水坡CD的坡度为1:1.求:(1)背水坡AB的长度.(1)坝底BC的长度.22.(8分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?23.(8分)(1)观察猜想如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为______;(2)问题解决如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;(3)拓展延伸如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:x/cm 0 1 2 3 4 5 6y1/cm 0 0.78 1.76 2.85 3.98 4.95 4.47y2/cm 4 4.69 5.26 5.96 5.94 4.47(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;结合函数图象,解决问题:①连接BE,则BE的长约为cm.②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为cm.25.(10分)某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4 月份下调到每平方米6075元的均价开盘销售.(1)求3、4两月平均每月下调的百分率;(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.26.(12分)如图1,在等腰△ABC 中,AB=AC,点D,E 分别为BC,AB 的中点,连接AD.在线段AD 上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P 与点 D 重合时,x 的值为0),PB+PE=y.小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究(1)通过取点、画图、计算,得到了 x 与 y 的几组值,如下表: x 0 1 2 3 4 5 6 y5.24.24.65.97.69.5说明:补全表格时,相关数值保留一位小数.(参考数据:2≈1.414,3≈1.732,5≈2.236) (2)建立平面直角坐标系(图 2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象; (3)求函数 y 的最小值(保留一位小数),此时点 P 在图 1 中的什么位置.27.(128+(﹣13)﹣1+|12|﹣4sin45°. 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】根据时针与分针相距的份数乘以每份的度数,可得答案. 【详解】解:3点40分时针与分针相距4+2060=133份, 30°×133=130,【点睛】本题考查了钟面角,确定时针与分针相距的份数是解题关键. 2.A 【解析】 【分析】由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式. 【详解】解:大正方形的面积-小正方形的面积=22a b -, 矩形的面积=()()a b a b +-, 故22()()a b a b a b +-=-, 故选:A . 【点睛】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键. 3.B 【解析】【分析】欲求∠BOC ,又已知一圆周角∠BAC ,可利用圆周角与圆心角的关系求解. 【详解】∵∠BAC=30°,∴∠BOC=2∠BAC =60°(同弧所对的圆周角是圆心角的一半), 故选B .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 4.A 【解析】 【分析】由菱形ABCD ,∠B=60°,易证得△ABC 是等边三角形,继而可得AC=AB=4,则可求得以AC 为边长的正方形ACEF 的周长. 【详解】解:∵四边形ABCD 是菱形,∴AB=BC .∵∠B=60°,∴△ABC 是等边三角形,∴AC=AB=BC=4,∴以AC 为边长的正方形ACEF 的周长为:4AC=1. 故选A . 【点睛】思想的应用. 5.B 【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.详解:A .020181=,故A 正确; B .224-=-,故B 错误; C .1242=.故C 正确;D .1133-=,故D 正确;故选B .点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错. 6.B 【解析】 【分析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论. 【详解】解:降价后三家超市的售价是: 甲为(1-20%)2m=0.64m , 乙为(1-40%)m=0.6m ,丙为(1-30%)(1-10%)m=0.63m , ∵0.6m <0.63m <0.64m ,∴此时顾客要购买这种商品最划算应到的超市是乙. 故选:B . 【点睛】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小. 7.D 【解析】 【分析】 【详解】试题解析:根据题意得9n=30%,解得n=30, 所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.考点:利用频率估计概率.8.A【解析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选A.点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.9.C【解析】【分析】结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.【详解】解:圆锥的展开图是由一个扇形和一个圆形组成的图形.故选C.【点睛】考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.10.D【解析】试题分析:由题意得;如图知;矩形的长="7+2x" 宽=5+2x ∴矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=3×7×5考点:列方程点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.11.B【解析】【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同理可证:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.取AB的中点O,连接OD、OH.∵正方形的边长为4,∴AO=OH=12×4=1,由勾股定理得,224225+=由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小5.故①③④⑤正确.故选B.【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.12.A【解析】【分析】利用抛物线的对称性可确定A 点坐标为(-3,0),则可对①进行判断;利用判别式的意义和抛物线与x 轴有2个交点可对②进行判断;由抛物线开口向下得到a >0,再利用对称轴方程得到b=2a >0,则可对③进行判断;利用x=-1时,y <0,即a-b+c <0和a >0可对④进行判断.【详解】∵抛物线的对称轴为直线x=-1,点B 的坐标为(1,0),∴A (-3,0),∴AB=1-(-3)=4,所以①正确;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,所以②正确;∵抛物线开口向下,∴a >0,∵抛物线的对称轴为直线x=-2b a=-1, ∴b=2a >0,∴ab >0,所以③错误;∵x=-1时,y <0,∴a-b+c <0,而a >0,∴a (a-b+c )<0,所以④正确.故选A .【点睛】本题考查了抛物线与x 轴的交点:对于二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0),△=b 2-4ac 决定抛物线与x 轴的交点个数:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.也考查了二次函数的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13..【解析】试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,得到y=3x+m+2为正比例函数,即m+2=0,解得:m=-2,则分式方程为,去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=,经检验x=是分式方程的解考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.14.1【解析】试题分析:先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式y=x+b﹣3,再把点A(﹣1,2)关于y轴的对称点(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=1.故答案为1.考点:一次函数图象与几何变换15.2 3【解析】【分析】根据事件的描述可得到描述正确的有①②③⑥,即可得到答案.【详解】∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是42 63 ,故答案为:23.【点睛】此题考查简单事件的概率的计算,正确掌握事件的概率计算公式是解题的关键. 16.(2,3)【解析】试题分析:利用配方法将抛物线的解析式y=﹣x2+4x﹣1转化为顶点式解析式y=﹣(x﹣2)2+3,然后求其顶点坐标为:(2,3).考点:二次函数的性质17.1800°【解析】试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.考点:多边形内角与外角.18.1.【解析】【分析】由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=1°,由直角三角形的性质得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性质求出∠ECF =54°,即可得出∠DCF的度数.【详解】解:∵四边形ABCD是矩形,∴∠BAD=∠B=∠BCD=90°,由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,∵∠DAF=18°,∴∠BAE=∠FAE=12×(90°﹣18°)=1°,∴∠AEF=∠AEB=90°﹣1°=54°,∴∠CEF=180°﹣2×54°=72°,∵E为BC的中点,∴BE=CE,∴FE=CE,∴∠ECF=12×(180°﹣72°)=54°,∴∠DCF=90°﹣∠ECF=1°.故答案为1.【点睛】本题考查了矩形的性质、折叠变换的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理等知识点,求出∠ECF 的度数是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.-12【解析】【分析】先根据分式的运算法则进行化简,然后再求出不等式的非负整数解,最后把符合条件的x 的值代入化简后的结果进行计算即可.【详解】原式=()()()()()()112232222x x x x x x x x ⎡⎤+-+--÷-⎢⎥+---⎣⎦, =()()()()()()112·2211x x x x x x x +--+-+-, =21+-x , ∵﹣12(x ﹣1)≥12, ∴x ﹣1≤﹣1,∴x≤0,非负整数解为0,∴x=0,当x=0时,原式=-12. 【点睛】本题考查了分式的化简求值,解题的关键是熟练掌握分式的运算法则.20.(1)122y x =+(1)S=﹣m 1﹣4m+4(﹣4<m <0)(3)(﹣3,1)、(32-,﹣1)、(32-+,﹣1)【解析】【分析】(1)把点A 的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A ,C 两点的坐标,可求得直线AC 的函数解析式;(1)先过点D 作DH ⊥x 轴于点H ,运用割补法即可得到:四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,据此列式计算化简就可求得S 关于m 的函数关系;(3)由于AC 确定,可分AC 是平行四边形的边和对角线两种情况讨论,得到点E 与点C 的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E 的坐标.【详解】(1)∵A (﹣4,0)在二次函数y=ax 1﹣32x+1(a≠0)的图象上, ∴0=16a+6+1,解得a=﹣12, ∴抛物线的函数解析式为y=﹣12x 1﹣32x+1; ∴点C 的坐标为(0,1),设直线AC 的解析式为y=kx+b ,则04{2k b b=-+=, 解得1{22k b ==,∴直线AC 的函数解析式为:122y x =+; (1)∵点D (m ,n )是抛物线在第二象限的部分上的一动点,∴D (m ,﹣12m 1﹣32m+1), 过点D 作DH ⊥x 轴于点H ,则DH=﹣12m 1﹣32m+1,AH=m+4,HO=﹣m , ∵四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,∴S=12(m+4)×(﹣12m 1﹣32m+1)+12(﹣12m 1﹣32m+1+1)×(﹣m ), 化简,得S=﹣m 1﹣4m+4(﹣4<m <0);(3)①若AC 为平行四边形的一边,则C 、E 到AF 的距离相等,∴|y E |=|y C |=1,∴y E =±1.当y E =1时,解方程﹣12x 1﹣32x+1=1得, x 1=0,x 1=﹣3,∴点E 的坐标为(﹣3,1);当y E =﹣1时,解方程﹣12x 1﹣32x+1=﹣1得, x 1=32--,x 1=32-+,∴点E 的坐标为(3412--,﹣1)或(3412-+,﹣1); ②若AC 为平行四边形的一条对角线,则CE ∥AF ,∴y E =y C =1,∴点E 的坐标为(﹣3,1). 综上所述,满足条件的点E 的坐标为(﹣3,1)、(3412--,﹣1)、(3412-+,﹣1).21.(1)背水坡AB 的长度为2410米;(1)坝底BC 的长度为116米.【解析】【分析】(1)分别过点A 、D 作AM BC ⊥,DN BC ⊥垂足分别为点M 、N ,结合题意求得AM ,MN ,在Rt ΔABM 中,得BM ,再利用勾股定理即可.(1)在Rt ΔDNC 中,求得CN 即可得到BC.【详解】(1)分别过点A 、D 作AM BC ⊥,DN BC ⊥垂足分别为点M 、N ,根据题意,可知24AM DN ==(米),6MN AD ==(米)在Rt ABM ∆中∵13AM BM =,∴72BM =(米), ∵222AB AM BM =+,∴2224722410AB =+=.答:背水坡AB 的长度为10(1)在Rt DNC ∆中,12DN CN =, ∴48CN =(米),∴72648126BC =++=(米)答:坝底BC的长度为116米.【点睛】本题考查的知识点是解直角三角形的应用-坡度坡角问题,解题的关键是熟练的掌握解直角三角形的应用-坡度坡角问题.22.(1)甲种服装最多购进75件,(2)见解析.【解析】【分析】(1)设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.【详解】(1)设购进甲种服装x件,由题意可知:80x+60(100-x)≤7500,解得x≤75答:甲种服装最多购进75件,(2)设总利润为W元,W=(120-80-a)x+(90-60)(100-x)即w=(10-a)x+1.①当0<a<10时,10-a>0,W随x增大而增大,∴当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;②当a=10时,所以按哪种方案进货都可以;③当10<a<20时,10-a<0,W随x增大而减小.当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件.【点睛】本题考查了一元一次方程的应用,不等式的应用,以及一次函数的性质,正确利用x表示出利润是关键.23.(1)BC=BD+CE,(2);(3)【解析】【分析】(1)证明△ADB≌△EAC,根据全等三角形的性质得到BD=AC,EC=AB,即可得到BC、BD、CE之间的数量关系;(2)过D作DE⊥AB,交BA的延长线于E,证明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE 中,BE=6,根据勾股定理即可得到BD的长;(3)过D作DE⊥BC于E,作DF⊥AB于F,证明△CED≌△AFD,根据全等三角形的性质得到CE=AF,ED=DF,设AF=x,DF=y,根据CB=4,AB=2,列出方程组,求出,x y的值,根据勾股定理即可求出BD的长.【详解】解:(1)观察猜想结论:BC=BD+CE,理由是:如图①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)问题解决如图②,过D作DE⊥AB,交BA的延长线于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:2262210BD+=;(3)拓展延伸如图③,过D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,设AF=x,DF=y,则42x yx y+=⎧⎨+=⎩,解得:13,xy=⎧⎨=⎩∴BF=2+1=3,DF=3,由勾股定理得:223332BD+=.【点睛】考查全等三角形的判定与性质,勾股定理,二元一次方程组的应用,熟练掌握全等三角形的判定与性质是解题的关键.24.(1)详见解析;(2)详见解析;(3)①6;②6或4.1.【解析】【分析】(1)由题意得出BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,由勾股定理得出BD=,得出AD=AB+BD=4.9367(cm),再由勾股定理求出AC即可;(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象即可;(3)①∵BC=6时,CD=AC=4.1,即点C与点E重合,CD与AC重合,BC为直径,得出BE=BC =6即可;②分两种情况:当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6;当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6,由图象可得:BC=4.1.【详解】(1)由表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值知:BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,如图1所示:∵CD⊥AB,∴(cm),∴AD=AB+BD=4+0.9367=4.9367(cm),∴(cm);补充完整如下表:(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象如图2所示:(3)①∵BC=6cm时,CD=AC=4.1cm,即点C与点E重合,CD与AC重合,BC为直径,∴BE=BC=6cm,故答案为:6;②以A、B、C为顶点组成的三角形是直角三角形时,分两种情况:当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6cm;当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6cm,由图象可得:BC=4.1cm;综上所述:BC的长度约为6cm或4.1cm;故答案为:6或4.1.【点睛】本题是圆的综合题目,考查了勾股定理、探究试验、函数以及图象、圆的对称性、直角三角形的性质、分类讨论等知识;本题综合性强,理解探究试验、看懂图象是解题的关键.25.(1)10%;(2)方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米,理由见解析【解析】【分析】(1)设3、4两月平均每月下调的百分率为x,根据下降率公式列方程解方程求出答案;(2)分别计算出方案一与方案二的费用相比较即可;(3)根据(1)的答案计算出6月份的价格即可得到答案.【详解】(1)设3、4两月平均每月下调的百分率为x,由题意得:7500(1﹣x)2=6075,解得:x1=0.1=10%,x2=1.9(舍),答:3、4两月平均每月下调的百分率是10%;(2)方案一:6075×100×0.98=595350(元),方案二:6075×100﹣100×1.5×24=603900(元),∵595350<603900,∴方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米因为由(1)知:平均每月下调的百分率是10%,所以:6075(1﹣10%)2=4920.75(元/平方米),∵4920.75>4800,∴6月份该楼盘商品房成交均价不会跌破4800元/平方米.【点睛】此题考查一元二次方程的实际应用,方案比较计算,正确理解题意并列出方程解答问题是解题的关键. 26.(1)4.5(2)根据数据画图见解析;(3)函数y 的最小值为4.2,线段AD上靠近D点三等分点处. 【解析】【分析】(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点P 在图 1 中的位置为.线段AD 上靠近D 点三等分点处.【详解】(1)根据题意,作图得,y=4.5故答案为:4.5(2)根据数据画图得(3)根据图象,函数y 的最小值为 4.2,此时点P 在图 1 中的位置为.线段AD 上靠近 D 点三等分点处.【点睛】本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.2724【解析】【分析】根据绝对值的概念、特殊三角函数值、负整数指数幂、二次根式的化简计算即可得出结论.【详解】(﹣13)﹣1+|1|﹣1sin15°﹣﹣1﹣1×2﹣﹣1﹣=﹣1.【点睛】此题主要考查了实数的运算,负指数,绝对值,特殊角的三角函数,熟练掌握运算法则是解本题的关键.。
上海市浦东新区2019-2020学年中考数学一模考试卷含解析

上海市浦东新区2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,CD 是⊙O 的弦,O 是圆心,把⊙O 的劣弧沿着CD 对折,A 是对折后劣弧上的一点,∠CAD=100°,则∠B 的度数是( )A .100°B .80°C .60°D .50°2.4的平方根是( )A .2B .±2C .8D .±83.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是( )A .2017年第二季度环比有所提高B .2017年第三季度环比有所提高C .2018年第一季度同比有所提高D .2018年第四季度同比有所提高4.一个数和它的倒数相等,则这个数是( )A .1B .0C .±1D .±1和05.下列运算正确的是( )A .(a 2)4=a 6B .a 2•a 3=a 6C 236=D 235=6.下图是某几何体的三视图,则这个几何体是( )A .棱柱B .圆柱C .棱锥D .圆锥7.下列运算结果正确的是( )A .3a 2-a 2 = 2B .a 2·a 3= a 6C .(-a 2)3 = -a 6D .a 2÷a 2 = a8.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为( )A .18×108B .1.8×108C .1.8×109D .0.18×10109.若3x >﹣3y ,则下列不等式中一定成立的是 ( )A .0x y +>B .0x y ->C .0x y +<D .0x y -< 10.若分式有意义,则x 的取值范围是( ) A .x >3 B .x <3 C .x≠3 D .x=311.如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是( )A .17B .27C .37D .4712.如图,在菱形纸片ABCD 中,AB=4,∠A=60°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F 、G 分别在边AB 、AD 上.则sin ∠AFG 的值为( )A .217B .277C .5714D .77二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形ABCD 中,AB =1,BC =2,点P 从点B 出发,沿B -C -D 向终点D 匀速运动,设点P 走过的路程为x ,△ABP 的面积为S ,能正确反映S 与x 之间函数关系的图象是( )A .B .C .D .14.如图,在平行四边形ABCD 中,点E 在边BC 上,将ABE △沿AE 折叠得到AFE △,点F 落在对角线AC 上.若AB AC ⊥,3AB =,5AD =,则CEF △的周长为________.15.如图,将边长为6的正方形ABCD 绕点A 逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.16.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[1.3]=1,(1.3)=3,[1.3)=1.则下列说法正确的是________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x )+[x )=6;②当x=﹣1.1时,[x]+(x )+[x )=﹣7;③方程4[x]+3(x )+[x )=11的解为1<x <1.5;④当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有两个交点.17.如图,在△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B= ______18.在平面直角坐标系中,已知,A (22,0),C (0,﹣1),若P 为线段OA 上一动点,则CP+13AP 的最小值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,矩形ABCD 中,点P 是线段AD 上一动点, O 为BD 的中点, PO 的延长线交BC 于Q .(1)求证: OP OQ =;(2)若=8AD cm ,6AB cm =,P 从点A 出发,以l /cm s 的速度向D 运动(不与D 重合).设点P 运动时间为()t s ,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.20.(6分)如图,ABC △中AB AC =,AD BC ⊥于D ,点E F 、分别是AB CD 、的中点.(1)求证:四边形AEDF 是菱形(2)如果10AB AC BC ===,求四边形AEDF 的面积S21.(6分)如图,抛物线y =12x 2+bx+c 与x 轴交于点A (﹣1,0),B (4,0)与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线1,交抛物线与点Q .求抛物线的解析式;当点P 在线段OB 上运动时,直线1交BD 于点M ,试探究m 为何值时,四边形CQMD 是平行四边形;在点P 运动的过程中,坐标平面内是否存在点Q ,使△BDQ 是以BD 为直角边的直角三角形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.22.(8分)如图,在ABC ∆中,AB =AC ,2A α∠=,点D 是BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F.(1)∠EDB =_____︒(用含α的式子表示)(2)作射线DM 与边AB 交于点M ,射线DM 绕点D 顺时针旋转1802α︒-,与AC 边交于点N. ①根据条件补全图形;②写出DM 与DN 的数量关系并证明;③用等式表示线段BM 、CN 与BC 之间的数量关系,(用含α的锐角三角函数表示)并写出解题思路. 23.(8分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P 处放一水平的平面镜,光线从点A 出发经过平面镜反射后刚好射到古城墙CD 的顶端C 处. 已知AB ⊥BD 、CD ⊥BD ,且测得AB=1.2m ,BP=1.8m.PD=12m ,求该城墙的高度(平面镜的原度忽略不计): 请你设计一个测量这段古城墙高度的方案.要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.24.(10分)解方程:252112x x x+--=1. 25.(10分)观察下列各式:①()()2111x x x -+=-②()()23111x x x x -++=- ③()()324111x x x x x -+++=- 由此归纳出一般规律()()111n n x x x x --++⋅⋅⋅++=__________. 26.(12分)已知函数1y x =的图象与函数()0y kx k =≠的图象交于点()P m n ,. (1)若2m n =,求k 的值和点P 的坐标;(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围.27.(12分)小张同学尝试运用课堂上学到的方法,自主研究函数y=21x 的图象与性质.下面是小张同学在研究过程中遇到的几个问题,现由你来完成:(1)函数y=21x 自变量的取值范围是 ; (2)下表列出了y 与x 的几组对应值:x … ﹣2 ﹣32m ﹣34 ﹣12 12 34 1 32 2 … y … 14 49 1 169 4 4 169 1 49 14 …表中m 的值是 ;(3)如图,在平面直角坐标系xOy 中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图象;(4)结合函数y=21x的图象,写出这个函数的性质: .(只需写一个)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.故选:B2.B【解析】【分析】依据平方根的定义求解即可.【详解】∵(±1)1=4,∴4的平方根是±1.故选B.【点睛】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.3.C【解析】【分析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D故选C.【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.4.C【解析】【分析】根据倒数的定义即可求解.【详解】±1的倒数等于它本身,故C符合题意.故选:C.【点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.5.C【解析】【分析】根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.【详解】A、原式=a8,所以A选项错误;B、原式=a5,所以B选项错误;C、原式= ==C选项正确;D D选项错误.故选:C.【点睛】本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.6.D【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.故选D.本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.7.C【解析】选项A,3a2-a2 = 2 a2;选项B,a2·a3= a5;选项C,(-a2)3 = -a6;选项D,a2÷a2 = 1.正确的只有选项C,故选C.8.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:1800000000=1.8×109,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.A【解析】两边都除以3,得x>﹣y,两边都加y,得:x+y>0,故选A.10.C【解析】【详解】试题分析:∵分式13x有意义,∴x﹣3≠0,∴x≠3;故选C.考点:分式有意义的条件.11.D【解析】【分析】由正方体表面展开图的形状可知,此正方体还缺一个上盖,故应在图中四块相连的空白正方形中选一块,再根据概率公式解答即可.【详解】因为共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,所以剩下7个小正方形.在其余的7个小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的小正方形有4个,因此先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是47.故选D.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比,掌握概率公式是本题的关键.12.B【解析】【分析】如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,NE的长,EF的长,则可求sin∠AFG的值.【详解】解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.∵四边形ABCD是菱形,AB=4,∠DAB=60°,∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB∴∠HDE=∠DAB=60°,∵点E是CD中点∴DE=12CD=1在Rt△DEH中,DE=1,∠HDE=60°∴DH=1,3∴AH=AD+DH=5在Rt△AHE中,22AH HE7∴7,AE⊥GF,AF=EF∵CD=BC,∠DCB=60°∴△BCD是等边三角形,且E是CD中点∴∵CD∥AB∴∠ABE=∠BEC=90°在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.∴EF=7 2由折叠性质可得∠AFG=∠EFG,∴sin∠EFG= sin∠AFG = 772ENEF==,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.C【解析】【分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=1 2 x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态14.6.【解析】【分析】先根据平行线的性质求出BC=AD=5,再根据勾股定理可得AC=4,然后根据折叠的性质可得AF=AB=3,EF=BE,从而可求出CEF△的周长.【详解】解:∵四边形ABCD是平行四边形,∴AC=22BC AB - =2253-=4∵ABE △沿AE 折叠得到AFE △,∴AF=AB=3,EF=BE ,∴CEF △的周长=CE+EF+FC=CE+BE+CF=BC+AC-AF=5+4-3=6故答案为6.【点睛】本题考查了平行四边形的性质,勾股定理,折叠的性质,三角形的周长计算方法,运用转化思想是解题的关键.15.6﹣23【解析】【分析】由旋转角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;设B′C′和CD 的交点是O ,连接OA ,构造全等三角形,用S 阴影部分=S 正方形﹣S 四边形AB′OD ,计算面积即可.【详解】解:设B′C′和CD 的交点是O ,连接OA ,∵AD=AB′,AO=AO ,∠D=∠B′=90°,∴Rt △ADO ≌Rt △AB′O ,∴∠OAD=∠OAB′=30°,∴OD=OB′=2 ,S 四边形AB′OD =2S △AOD =2×122×6=23, ∴S 阴影部分=S 正方形﹣S 四边形AB′OD =6﹣23.【点睛】此题的重点是能够计算出四边形的面积.注意发现全等三角形.16.②③【解析】试题解析:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+1+1=5,故①错误;②当x=﹣1.1时,[x]+(x)+[x)=[﹣1.1]+(﹣1.1)+[﹣1.1)=(﹣3)+(﹣1)+(﹣1)=﹣7,故②正确;③当1<x<1.5时,4[x]+3(x)+[x)=4×1+3×1+1=4+6+1=11,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为②③.考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组.17.【解析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90∘,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD−C′D=−1.故答案为:−1.点睛: 本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.18.2 3【解析】【分析】可以取一点D(0,1),连接AD,作CN⊥AD于点N,PM⊥AD于点M,根据勾股定理可得AD=3,证明△APM∽△ADO得PM APOD AD,PM=13AP.当CP⊥AD时,CP+13AP=CP+PM的值最小,最小值为CN的长.【详解】如图,取一点D (0,1),连接AD ,作CN ⊥AD 于点N ,PM ⊥AD 于点M ,在Rt △AOD 中,∵OA =2,OD =1,∴AD 22OA OD +3,∵∠PAM =∠DAO ,∠AMP =∠AOD =90°,∴△APM ∽△ADO , ∴PM AP OD AD=, 即13PM AP =, ∴PM =13AP , ∴PC+13AP =PC+PM , ∴当CP ⊥AD 时,CP+13AP =CP+PM 的值最小,最小值为CN 的长. ∵△CND ∽△AOD , ∴CN CD AO AD=, 2322= ∴CN =23. 所以CP+13AP 42. 故答案为:423. 【点睛】 此题考查勾股定理,三角形相似的判定及性质,最短路径问题,如何找到13AP 的等量线段与线段CP 相加是解题的关键,由此利用勾股定理、相似三角形做辅助线得到垂线段PM ,使问题得解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)证明见解析;(2) PD=8-t ,运动时间为74秒时,四边形PBQD 是菱形. 【解析】【分析】 (1)先根据四边形ABCD 是矩形,得出AD ∥BC ,∠PDO=∠QBO ,再根据O 为BD 的中点得出△POD ≌△QOB ,即可证得OP=OQ ;(2)根据已知条件得出∠A 的度数,再根据AD=8cm ,AB=6cm ,得出BD 和OD 的长,再根据四边形PBQD 是菱形时,利用勾股定理即可求出t 的值,判断出四边形PBQD 是菱形.【详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠PDO=∠QBO ,又∵O 为BD 的中点,∴OB=OD ,在△POD 与△QOB 中,PDO QBO OD OBPOD QOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△POD ≌△QOB ,∴OP=OQ ;(2)PD=8-t ,∵四边形PBQD 是菱形,∴BP=PD= 8-t ,∵四边形ABCD 是矩形,∴∠A=90°,在Rt △ABP 中,由勾股定理得:AB 2+AP 2=BP 2,即62+t 2=(8-t)2,解得:t=74, 即运动时间为74秒时,四边形PBQD 是菱形. 【点睛】本题考查了矩形的性质,菱形的性质,全等三角形的判定与性质,勾股定理等,熟练掌握相关知识是解题关键.注意数形结合思想的运用.20. (1)证明见解析;.【解析】【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=12AB=AE ,DF=12AC=AF ,再根据AB=AC ,点E 、F 分别是AB 、AC 的中点,即可得到AE=AF=DE=DF ,进而判定四边形AEDF 是菱形;(2)根据等边三角形的性质得出EF=5,AD=53,进而得到菱形AEDF 的面积S .【详解】解:(1)∵AD ⊥BC ,点E 、F 分别是AB 、AC 的中点, ∴Rt △ABD 中,DE=12AB=AE , Rt △ACD 中,DF=12AC=AF , 又∵AB=AC ,点E 、F 分别是AB 、AC 的中点,∴AE=AF ,∴AE=AF=DE=DF ,∴四边形AEDF 是菱形;(2)如图,∵AB=AC=BC=10,∴EF=5,3,∴菱形AEDF 的面积S=12EF•AD =12×5×32532. 【点睛】 本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.21. (1) 213222y x x =--;(2) 当m =2时,四边形CQMD 为平行四边形;(3) Q 1(8,18)、Q 2(﹣1,0)、Q 3(3,﹣2)【解析】【分析】(1)直接将A (-1,0),B (4,0)代入抛物线y=12x 2+bx+c 方程即可;(2)由(1)中的解析式得出点C 的坐标C (0,-2),从而得出点D (0,2),求出直线BD :y =−12x+2,设点M(m ,−12m+2),Q(m ,12m 2−32m−2),可得MQ=−12m 2+m+4,根据平行四边形的性质可得QM=CD=4,即−12m 2+m+4=4可解得m=2; (3)由Q 是以BD 为直角边的直角三角形,所以分两种情况讨论,①当∠BDQ=90°时,则BD 2+DQ 2=BQ 2,列出方程可以求出Q 1(8,18),Q 2(-1,0),②当∠DBQ=90°时,则BD 2+BQ 2=DQ 2,列出方程可以求出Q 3(3,-2).【详解】(1)由题意知,∵点A (﹣1,0),B (4,0)在抛物线y =12x 2+bx+c 上, ∴210214402b c b c ⎧-+=⎪⎪⎨⎪⨯++=⎪⎩解得:322b c ⎧=-⎪⎨⎪=-⎩ ∴所求抛物线的解析式为 213222y x x =-- (2)由(1)知抛物线的解析式为213222y x x =--,令x =0,得y =﹣2 ∴点C 的坐标为C (0,﹣2)∵点D 与点C 关于x 轴对称∴点D 的坐标为D (0,2)设直线BD 的解析式为:y =kx+2且B (4,0)∴0=4k+2,解得:1k 2=- ∴直线BD 的解析式为:122y x =+ ∵点P 的坐标为(m ,0),过点P 作x 轴的垂线1,交BD 于点M ,交抛物线与点Q∴可设点M 1m,22m ⎛⎫-+ ⎪⎝⎭,Q 213,222m m m ⎛⎫-- ⎪⎝⎭ ∴MQ =2142m m -++ ∵四边形CQMD 是平行四边形 ∴QM =CD =4,即2142m m -++=4 解得:m 1=2,m 2=0(舍去)∴当m =2时,四边形CQMD 为平行四边形(3)由题意,可设点Q 213,222m m m ⎛⎫-- ⎪⎝⎭且B (4,0)、D (0,2)∴BQ 2=22213(4)222m m m ⎛⎫-+-- ⎪⎝⎭DQ 2=22213422m m m ⎛⎫+-- ⎪⎝⎭ BD 2=20①当∠BDQ =90°时,则BD 2+DQ 2=BQ 2, ∴2222221313204(4)22222m m m m m m ⎛⎫⎛⎫++--=-+-- ⎪ ⎪⎝⎭⎝⎭ 解得:m 1=8,m 2=﹣1,此时Q 1(8,18),Q 2(﹣1,0)②当∠DBQ =90°时,则BD 2+BQ 2=DQ 2, ∴222222131320(4)242222m m m m m m ⎛⎫⎛⎫+-+--=+-- ⎪ ⎪⎝⎭⎝⎭ 解得:m 3=3,m 4=4,(舍去)此时Q 3(3,﹣2)∴满足条件的点Q 的坐标有三个,分别为:Q 1(8,18)、Q 2(﹣1,0)、Q 3(3,﹣2).【点睛】此题考查了待定系数法求解析式,还考查了平行四边形及直角三角形的定义,要注意第3问分两种情形求解.22.(1)α;(2)(2)①见解析;②DM =DN ,理由见解析;③数量关系:sin BM CN BC α+=⋅【解析】【分析】(1)先利用等腰三角形的性质和三角形内角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α; (2)①如图,利用∠EDF=180°﹣2α画图;②先利用等腰三角形的性质得到DA 平分∠BAC ,再根据角平分线性质得到DE=DF ,根据四边形内角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF ,然后证明△MDE ≌△NDF 得到DM=DN ;③先由△MDE ≌△NDF 可得EM=FN ,再证明△BDE ≌△CDF 得BE=CF ,利用等量代换得到BM+CN=2BE ,然后根据正弦定义得到BE=BDsinα,从而有BM+CN=BC•sinα.【详解】(1)∵AB=AC ,∴∠B=∠C 12=(180°﹣∠A )=90°﹣α. ∵DE ⊥AB ,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α.故答案为:α;(2)①如图:②DM=DN.理由如下:∵AB=AC,BD=DC,∴DA平分∠BAC.∵DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠MED=∠NFD=90°.∵∠A=2α,∴∠EDF=180°﹣2α.∵∠MDN=180°﹣2α,∴∠MDE=∠NDF.在△MDE和△NDF中,∵MED NFDDE DFMDE NDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△MDE≌△NDF,∴DM=DN;③数量关系:BM+CN=BC•sinα.证明思路为:先由△MDE≌△NDF可得EM=FN,再证明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接着在Rt△BDE可得BE=BDsinα,从而有BM+CN=BC•sinα.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.23.(1)8m;(2)答案不唯一【解析】【分析】(1)根据入射角等于反射角可得∠APB=∠CPD ,由AB⊥BD、CD⊥BD 可得到∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴AB CD BP BP=,∴CD=1.212 1.8⨯=8.答:该古城墙的高度为8m(2)解:答案不唯一,如:如图,在距这段古城墙底部am 的E 处,用高h (m )的测角仪DE 测得这段古城墙顶端A 的仰角为α.即可测量这段古城墙AB 的高度,过点D 作DC ⊥AB 于点C.在Rt △ACD 中,∠ACD=90°,tanα=AC CD, ∴AC=α tanα,∴AB=AC+BC=αtanα+h【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.24.12x =- 【解析】【分析】先把分式方程化为整式方程,解整式方程求得x 的值,检验即可得分式方程的解.【详解】 原方程变形为2532121x x x -=--, 方程两边同乘以(2x ﹣1),得2x ﹣5=1(2x ﹣1), 解得12x =- . 检验:把12x =-代入(2x ﹣1),(2x ﹣1)≠0, ∴12x =-是原方程的解, ∴原方程的12x =-. 【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根. 25.x n+1-1【解析】试题分析:观察其右边的结果:第一个是2x ﹣1;第二个是3x ﹣1;…依此类推,则第n 个的结果即可求得.试题解析:(x ﹣1)(n x +1n x -+…x+1)=11n x +-.故答案为11n x +-.考点:平方差公式.26.(1)12k =,222P ⎛⎫ ⎪⎪⎭,,或222P ⎛⎫-- ⎪ ⎪⎝⎭,;(2) 1k ≥. 【解析】【分析】(1)将P (m ,n )代入y=kx ,再结合m=2n 即可求得k 的值,联立y=1x 与y=kx 组成方程组,解方程组即可求得点P 的坐标;(2)画出两个函数的图象,观察函数的图象即可得.【详解】(1)∵函数()y kx k 0=≠的图象交于点()P m n ,,∴n=mk ,∵m=2n ,∴n=2nk ,∴k=12, ∴直线解析式为:y=12x , 解方程组112y x y x ⎧=⎪⎪⎨⎪=⎪⎩,得1122x y ⎧=⎪⎨=⎪⎩,2222x y ⎧=-⎪⎨=-⎪⎩, ∴交点P 的坐标为:(2,2)或(-2,-2); (2)由题意画出函数1y x =的图象与函数y kx =的图象如图所示, ∵函数1y x=的图象与函数y kx =的交点P 的坐标为(m ,n ), ∴当k=1时,P 的坐标为(1,1)或(-1,-1),此时|m|=|n|,当k>1时,结合图象可知此时|m|<|n|,∴当m n ≤时, k ≥1.【点睛】本题考查了反比例函数与正比例函数的交点,待定系数法等,运用数形结合思想解题是关键.27.(1)x≠0;(2)﹣1;(3)见解析;(4)图象关于y 轴对称.【解析】【分析】(1)由分母不等于零可得答案;(2)求出y=1时x 的值即可得;(3)根据表格中的数据,描点、连线即可得;(4)由函数图象即可得.【详解】(1)函数y=21x 的定义域是x≠0, 故答案为x≠0; (2)当y=1时,21x =1, 解得:x=1或x=﹣1,∴m=﹣1,故答案为﹣1;(3)如图所示:(4)图象关于y 轴对称,故答案为图象关于y 轴对称.【点睛】本题主要考查反比例函数的图象与性质,解题的关键是掌握反比例函数自变量的取值范围、函数值的求法、列表描点画函数图象及反比例函数的性质.。
上海市浦东新区2019-2020学年中考数学最后模拟卷含解析

上海市浦东新区2019-2020学年中考数学最后模拟卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在平面直角坐标系xOy 中,函数31y x =+的图象经过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限2.如图,在平行四边形ABCD 中,AC 与BD 相交于O ,且AO=BD=4,AD=3,则△BOC 的周长为( )A .9B .10C .12D .143.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是( ) A .16B .17C .18D .194.等腰三角形的两边长分别为5和11,则它的周长为( ) A .21B .21或27C .27D .255.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,下列方程组正确的是( ) A .B .C .D .6.2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( ) A .1.35×106B .1.35×105C .13.5×104D .135×1037.如图,△ABC 中,AB=AC=15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为21,则BC 的长为( )A .16B .14C .12D .68.直线AB 、CD 相交于点O ,射线OM 平分∠AOD ,点P 在射线OM 上(点P 与点O 不重合),如果以点P 为圆心的圆与直线AB 相离,那么圆P 与直线CD 的位置关系是( ) A .相离B .相切C .相交D .不确定9.下列分式中,最简分式是( )A .2211x x -+B .211x x +-C .2222x xy y x xy-+-D .236212x x -+10.正比例函数y=(k+1)x ,若y 随x 增大而减小,则k 的取值范围是( ) A .k >1B .k <1C .k >﹣1D .k <﹣111.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表:下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( ) A .1B .2C .3D .412.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A .3036101.5x x -=B .3030101.5x x -= C .3630101.5x x-= D .3036101.5x x+= 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:(13)0=_____. 14.学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一队混合双打组合,可组成不同的组合共有_____对.15.用不等号“>”或“<”连接:sin50°_____cos50°.16.已知点P (3,1)关于y 轴的对称点Q 的坐标是(a+b ,﹣1﹣b ),则ab 的值为_____.17.如图所示,直线y=x+b 交x 轴A 点,交y 轴于B 点,交双曲线8(0)y x x=>于P 点,连OP ,则OP 2﹣OA 2=__.18.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.20.(6分)如图1所示,点E在弦AB所对的优弧上,且为半圆,C是上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:x/cm 0 1 2 3 4 5 6y1/cm 0 0.78 1.76 2.85 3.98 4.95 4.47y2/cm 4 4.69 5.26 5.96 5.94 4.47(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数y 1、y 2的图象;结合函数图象,解决问题: ①连接BE ,则BE 的长约为 cm .②当以A 、B 、C 为顶点组成的三角形是直角三角形时,BC 的长度约为 cm .21.(6分)先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0. 22.(8分)△ABC 在平面直角坐标系中的位置如图所示.画出△ABC 关于y 轴对称的△A 1B 1C 1;将△ABC 向右平移6个单位,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标;观察△A 1B 1C 1和△A 2B 2C 2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.23.(8分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA ,OC 为邻边作矩形 OABC , 动点 M ,N 以每秒 1 个单位长度的速度分别从点 A 、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N 沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NP ⊥BC ,交 OB 于点 P ,连接 MP .(1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;(2)记△OMP 的面积为 S ,求 S 与 t 的函数关系式()06t <<;并求 t 为何值时,S 有最大值,并求出最大值.24.(10分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y (元/双)与一次性购买的数量x (双)之间满足的函数关系如图所示.当10≤x <60时,求y 关于x 的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双; ①若两次购买鞋子共花费9200元,求第一次的购买数量; ②如何规划两次购买的方案,使所花费用最少,最少多少元?25.(10分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?26.(12分)如图,已知:AD 和BC 相交于点O,∠A=∠C,AO=2,BO=4,OC=3,求OD 的长.27.(12分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b.当k>0,b>O时,图象过一、二、三象限,据此作答即可.【详解】∵一次函数y=3x+1的k=3>0,b=1>0,∴图象过第一、二、三象限,故选A.【点睛】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.2.A【解析】【分析】利用平行四边形的性质即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD=BC=3,OD=OB=12BD=2,OA=OC=4,∴△OBC的周长=3+2+4=9,故选:A.【点睛】题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.3.A【解析】【详解】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.【点睛】此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.4.C【解析】试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;当腰取11,则底边为5,则三角形的周长=11+11+5=1.故选C.考点:等腰三角形的性质;三角形三边关系.5.D【解析】试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选D.考点:由实际问题抽象出二元一次方程组6.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:135000=1.35×105故选B.【点睛】此题考查科学记数法表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.C【解析】【分析】先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.【详解】∵AB=AC=15,AD平分∠BAC,∴D为BC中点,∵点E为AC的中点,∴DE为△ABC中位线,∴DE=12 AB,∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故选C.【点睛】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.8.A【解析】【分析】根据角平分线的性质和点与直线的位置关系解答即可.【详解】解:如图所示;∵OM平分∠AOD,以点P为圆心的圆与直线AB相离,∴以点P为圆心的圆与直线CD相离,故选:A.【点睛】此题考查直线与圆的位置关系,关键是根据角平分线的性质解答.9.A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.10.D【解析】【分析】根据正比例函数图象与系数的关系列出关于k的不等式k+1<0,然后解不等式即可.【详解】解:∵正比例函数y=(k+1)x中,y的值随自变量x的值增大而减小,∴k+1<0,解得,k<-1;故选D.【点睛】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.11.B【解析】试题解析:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③,故选B.12.A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1【解析】【分析】本题需要运用零次幂的运算法则、立方根的运算法则进行计算. 【详解】由分析可得:(13)0﹣38=1-2=﹣1.【点睛】熟练运用零次幂的运算法则、立方根的运算法则是本题解题的关键.14.1【解析】【分析】利用树状图展示所有1种等可能的结果数.【详解】解:画树状图为:共有1种等可能的结果数.故答案为1.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.15.>【解析】试题解析:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案为>.点睛:当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).16.2【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出ab的值即可.。
完整word版初三数学试卷浦东2020一模.docx

浦东新区 2019 学年第一学期初中学业质量监测初三数学 试卷考生注意:1.本试卷共 25 题,试卷满分 150 分,考试时间 100 分钟 .2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效 .3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤 .一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.在 Rt △ ABC 中,∠ C=90°,如果 BC=5, AB=13 ,那么 sin A 的值为(A )5;(B )5;(C )12; (D )12.13121352.下列函数中,是二次函数的是( A ) y 2x 1; ( B ) ( C ) y x 21;( D )3.抛物线 yx 2 4 x 5 的顶点坐标是y2;x 2yx22 .1x( A )( - 2,1); ( B )( 2,1);( C )( - 2, - 1);( D )( 2,- 1).4.如图,点 D 、 E 分别在△ ABC 的边 AB 、 AC 上,下列各比例式不一定能推得 DE ∥ BC 的是(A )ADAE ; (B )ADDE ; BDCEABBC(C )ABAC ;(D )ADAE .BD CE AB AC(第 4 题图)5.如图, 传送带和地面所成斜坡的坡度为1∶3,它把物体从地面点A 处送到离地面 3 米高的B 处,则物体从 A 到 B 所经过的路程为传送带(A ) 3 10 米; (B ) 2 10 米;( C ) 10 米; (D ) 9 米.6.下列说法正确的是(第 5 题图)r r r rr r 0( A ) a ( a) ;( B )如果 a 和 b 都是单位向量,那么 a b ;r r rr r 1 r rr r ( C )如果 | a | |b | ,那么 ab ; ( D )如果 a b ( b 为非零向量 ),那么 a // b .2初三数学试卷— 1—二、填空 :(本大 共 12 ,每 4 分, 分48 分)【 将 果直接填入答 的相 位置】x y7.已知 x=3y ,那么 x 2 y =▲.8.已知 段 AB=2cm , P 是 段 AB 的黄金分割点, PA>PB ,那么 段 PA 的 度等于▲ cm .9.如果两个相似三角形 之比是 2∶ 3,那么它 的 中 之比是▲.10.如果二次函数 yx 2 2 x k 3 的 像 原点,那么k 的 是▲.11.将抛物 y = - 3x 2向下平移 4 个 位,那么平移后所得新抛物 的表达式 ▲ . 12.如果抛物 点 A ( - 1,0)和点 B ( 5,0),那么 条抛物 的 称 是直▲.13.二次函数 y2( x 1) 2的 像在 称 左 的部分是▲ .(填“上升”或“下降” )14.如 ,在△ ABC 中, AE 是 BC 上的中 ,点 G 是△ ABC 的重心, 点G 作 GF ∥AB交 BC 于点 F ,那么EF=▲.EB15.如 ,已知 AB ∥CD ∥ EF , AD=6 ,DF =3 , BC=7,那么 段 CE 的 度等于 ▲.16.如 ,将△ ABC 沿射 BC 方向平移得到△ DEF , DE 与 AC 相交于点 G ,如果BC = 6cm ,△ ABC 的面 等于9cm 2,△ GEC 的面 等于 4cm 2,那么 CF=▲cm .AGBF EC(第 14 题图)(第 15 题图)(第 16 题图)17.用“描点法”画二次函数y a x 2 b x c 的 像 ,列出了如下的表格:x⋯ 01 2 3 4 ⋯ y a x 2b x c⋯- 3 0 1- 3⋯那么当 x = 5 , 二次函数y 的▲.18.在 Rt △ ABC 中,∠ C=90°, AC=2,BC=4,点 D 、 E 分 是 BC 、 AB 的中点,将△ BDE 着点 B 旋 ,点 D 、 E 旋 后的 点分 点 D ’、 E ’,当直 D ’E ’点 A , 段CD ’的 ▲ .三、解答 :(本大 共 7 , 分 78 分) 19.(本 分 10 分)算: tan 45 cos60cot 260 .2sin30初三数学试卷— 2—20.(本题满分10 分,其中每小题各 5 分)如图,在平行四边形ABCD 中,点 E 在边 AD 上,且 AE =2ED,联结 BE 并延长交边CD的延长线于点F,设 BA a , BC = b .uuur uuur( 1)用a、b表示BE、DF;3 a b) 2(a b) .(不要求写作法,但要写明结论)( 2)先化简,再求作:(2(第 20 题图)21.(本题满分10 分,其中每小题各 5 分)如图,在△ ABC 中,点 D 、E 分别在边AB、 AC 上,且 AD=3 , AC=6, AE=4, AB=8.(1)如果 BC=7 ,求线段 DE 的长;(2)设△ DEC 的面积为 a,求△ BDC 的面积.(用 a 的代数式表示)(第 21 题图)22.(本题满分10 分)为了测量大楼顶上(居中)避雷针BC 的长度,在地面上点 A 处测得避雷针底部 B 和顶部 C 的仰角分别为55°58'和 57°.已知点 A 与楼底中间部位 D 的距离约为80 米.求避雷针BC 的长度.(参考数据:sin5558' 0.83 ,cos55 58' 0.56 ,tan55 58' 1.48 ,sin570.84 ,cos570.54 , tan57 1.54 )(第 22 题图)初三数学试卷— 3—23.(本题满分12 分,其中每小题各 6 分)如图,已知△ ABC 和△ ADE ,点 D 在 BC 边上, DA =DC,∠ ADE=∠ B,边 DE 与 AC 相交于点 F.(1)求证: AB AD DF BC ;(2)如果 AE∥ BC,求证:BD DF.DC FE(第 23 题图)24.(本题满分 12 分,其中每小题各 4 分)如图,在平面直角坐标系xOy 中,抛物线y x 2bx c 与x轴的两个交点分别为A( - 1,0)、 B( 3,0),与 y 轴相交于点C.(1)求抛物线的表达式;(2)联结 AC、 BC,求∠ ACB 的正切值;(3)点 P 在抛物线上且∠ PAB=∠ ACB,求点 P 的坐标.(第 24 题图)25.(本题满分14 分,其中第(1)小题 5 分,第( 2)小题 5 分,第( 3)小题 4 分)在 Rt △ ABC 中,∠A=90 °,AB=4,AC=3,D 为 AB 边上一动点(点 D 与点 A、B 不重合),联结 CD .过点 D 作 DE ⊥DC 交边 BC 于点 E.(1)如图,当 ED =EB 时,求 AD 的长;(2)设 AD=x, BE=y,求 y 关于 x 的函数解析式并写出函数定义域;(3)把△ BCD 沿直线 CD 翻折得△ CDB’,联结 AB’.当△ CAB’是等腰三角形时,直接写出 AD 的长.(第 25 题图)(备用图)初三数学试卷— 4—。
上海市浦东新区2019-2020学年中考一诊数学试题含解析

上海市浦东新区2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.y=(m ﹣1)x |m|+3m 表示一次函数,则m 等于( )A .1B .﹣1C .0或﹣1D .1或﹣12.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >43.如果2a b -=,那么22b a a b a a-+÷的值为( ) A .1 B .2 C .1- D .2-4.已知(AC BC)ABC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( )A .B .C .D . 5.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得A .B .C.D.6.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=14时,点E的运动路程为114或72或92,则下列判断正确的是( )A.①②都对B.①②都错C.①对②错D.①错②对7.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的()A.平均数B.中位数C.众数D.方差8.若x是2的相反数,|y|=3,则12y x的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或49.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm210.将2001×1999变形正确的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1 11.下列生态环保标志中,是中心对称图形的是()A.B.C.D.12.-2的绝对值是()A.2 B.-2 C.±2 D.1 2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8;x x =甲乙 =8,则这两人5次射击命中的环数的方差S 甲2_____S 乙2(填“>”“<”或“=”).14.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解, 则a 的取值范围是 ________. 15.写出一个比2大且比5小的有理数:______.16.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是__________.17.如图,六边形ABCDEF 的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.18.若关于x 的方程x 2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)﹣(﹣1)2018+4﹣(13)﹣1 20.(6分)如图,AB 是⊙O 的直径,BE 是弦,点D 是弦BE 上一点,连接OD 并延长交⊙O 于点C ,连接BC ,过点D 作FD ⊥OC 交⊙O 的切线EF 于点F .(1)求证:∠CBE =12∠F ; (2)若⊙O 的半径是23,点D 是OC 中点,∠CBE =15°,求线段EF 的长.21.(6分)某海域有A 、B 两个港口,B 港口在A 港口北偏西30°方向上,距A 港口60海里,有一艘船从A 港口出发,沿东北方向行驶一段距离后,到达位于B 港口南偏东75°方向的C 处,求:(1)∠C= °;(2)此时刻船与B 港口之间的距离CB 的长(结果保留根号).22.(8分)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A 是某市一高考考点,在位于A 考点南偏西15°方向距离125米的C 点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C 点北偏东75°方向的F 点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(3取1.732)23.(8分)已知抛物线2y x bx c =++过点(0,0),(1,3),求抛物线的解析式,并求出抛物线的顶点坐标.24.(10分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.① 若该公司当月卖出3部汽车,则每部汽车的进价为 万元;② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)25.(10分)如图,△ABC 是等腰三角形,AB =AC ,点D 是AB 上一点,过点D 作DE ⊥BC 交BC 于点E ,交CA 延长线于点F .证明:△ADF 是等腰三角形;若∠B =60°,BD =4,AD =2,求EC 的长,26.(12分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?27.(12分)计算:22b a b -÷(a a b-﹣1)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.2.C【解析】【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y 1=kx+b 与直线y 2=mx+n 分别交x 轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x <4,故选C .【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.3.D【解析】【分析】先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.【详解】22()()=b a a b b a b a b a a a ba a a -++-÷⨯=-+ 2ab -=Q()2b a a b ∴-=--=-故选:D .【点睛】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.4.D【解析】试题分析:D 选项中作的是AB 的中垂线,∴PA=PB ,∵PB+PC=BC ,∴PA+PC=BC .故选D .考点:作图—复杂作图. 5.A【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x 千米/小时,故选A .6.A【解析】【分析】由已知,AB=a ,AB+BC=5,当E 在BC 上时,如图,可得△ABE ∽△ECF ,继而根据相似三角形的性质可得y=﹣2155a x x a a ++-,根据二次函数的性质可得﹣215551·5223a a a a a +++⎛⎫+-= ⎪⎝⎭,由此可得a=3,继而可得y=﹣218533x x +-,把y=14代入解方程可求得x 1=72,x 2=92,由此可求得当E 在AB 上时,y=14时,x=114,据此即可作出判断. 【详解】解:由已知,AB=a ,AB+BC=5,当E 在BC 上时,如图,∵E 作EF ⊥AE ,∴△ABE ∽△ECF ,∴AB CE BE FC=, ∴5a x x a y-=-, ∴y=﹣2155a x x a a++-, ∴当x=522b a a +-=时,﹣215551·5223a a a a a +++⎛⎫+-= ⎪⎝⎭, 解得a 1=3,a 2=253(舍去), ∴y=﹣218533x x +-, 当y=14时,14=﹣218533x x +-, 解得x 1=72,x 2=92, 当E 在AB 上时,y=14时, x=3﹣14=114, 故①②正确,故选A .【点睛】本题考查了二次函数的应用,相似三角形的判定与性质,综合性较强,弄清题意,正确画出符合条件的图形,熟练运用二次函数的性质以及相似三角形的判定与性质是解题的关键.7.B【解析】【分析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8 名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.故选B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.8.D【解析】【分析】直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.【详解】解:∵x是1的相反数,|y|=3,∴x=-1,y=±3,∴y-12x=4或-1.故选D.【点睛】此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.9.C【解析】【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE 等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE S△ABC=4cm1.故选C.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE S△ABC.10.A【解析】【分析】原式变形后,利用平方差公式计算即可得出答案.【详解】解:原式=(2000+1)×(2000-1)=20002-1,故选A.【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.11.B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【考点】中心对称图形.12.A【解析】【分析】根据绝对值的性质进行解答即可【详解】解:﹣1的绝对值是:1.故选:A.【点睛】此题考查绝对值,难度不大二、填空题:(本大题共6个小题,每小题4分,共24分.)13.>【解析】【分析】分别根据方差公式计算出甲、乙两人的方差,再比较大小.【详解】 ∵x x =甲乙=8,∴2S 甲=15[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=15(1+1+0+4+4)=2,2S 乙=15[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=15(1+0+1+0+0)=0.4,∴2S 甲>2S 乙. 故答案为:>.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.2a ≥-【解析】【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】3122x a x x ->⎧⎨->-⎩①②, 解①得:x >a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故答案是:a≥-2.【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..15.2【解析】【分析】.【详解】解:2到5之间可以为:2(答案不唯一),故答案为:2(答案不唯一).【点睛】此题考查无理数的估算,解题的关键在于利用题中所给有理数的大小求符合题意的答案.16.k>-14且k≠1【解析】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k>-1/4 且k≠1.17.2【解析】【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是110°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【详解】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是110°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=1.∴GH=GP=GC+CD+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1.∴六边形的周长为1+3+3+1+4+1=2.故答案为2.【点睛】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.18.30°【解析】试题解析:∵关于x 的方程2sin 0x α+=有两个相等的实数根,∴(241sin 0V ,α=-⨯⨯= 解得:1sin 2α=, ∴锐角α的度数为30°;故答案为30°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.-1.【解析】【分析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.【详解】原式=﹣1+1﹣3=﹣1.【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.20.(1)详见解析;(1)6-【解析】【分析】(1)连接OE 交DF 于点H ,由切线的性质得出∠F+∠EHF =90∘,由FD ⊥OC 得出∠DOH+∠DHO =90∘,依据对顶角的定义得出∠EHF =∠DHO ,从而求得∠F=∠DOH ,依据∠CBE=12∠DOH ,从而即可得证; (1)依据圆周角定理及其推论得出∠F=∠COE =1∠CBE =30°,求出OD 的值,利用锐角三角函数的定义求出OH 的值,进一步求得HE 的值,利用锐角三角函数的定义进一步求得EF 的值.【详解】(1)证明:连接OE 交DF 于点H ,∵EF 是⊙O 的切线,OE 是⊙O 的半径,∴OE ⊥EF .∴∠F+∠EHF =90°.∵FD ⊥OC ,∴∠DOH+∠DHO=90°.∵∠EHF=∠DHO,∴∠F=∠DOH.∵∠CBE=12∠DOH,∴12 CBE F ∠=∠(1)解:∵∠CBE=15°,∴∠F=∠COE=1∠CBE=30°.∵⊙O的半径是23,点D是OC中点,∴3OD=.在Rt△ODH中,cos∠DOH=OD OH,∴OH=1.∴232HE=-.在Rt△FEH中,tan=EHFEF∠∴3623EF EH==-【点睛】本题主要考查切线的性质及直角三角形的性质、圆周角定理及三角函数的应用,掌握圆周角定理和切线的性质是解题的关键.21.(1)60;(2)26【解析】(1)由平行线的性质以及方向角的定义得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根据方向角的定义得出∠BAC=∠BAE+∠CAE=75°,利用三角形内角和定理求出∠C=60°;(2)作AD⊥BC交BC于点D,解Rt△ABD,得出2,解Rt△ACD,得出6,根据BC=BD+CD即可求解.解:(1)如图所示,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABC=45°,∵∠BAC=∠BAE+∠CAE=75°,∴∠C=60°.故答案为60;(2)如图,作AD⊥BC于D,在Rt△ABD中,∵∠ABD=45°,AB=60,∴2.在Rt△ACD中,∵∠C=60°,2,∴tanC=AD CD,∴30236,∴26.答:该船与B港口之间的距离CB的长为(26)海里.22.不需要改道行驶【解析】【详解】解:过点A作AH⊥CF交CF于点H,由图可知,∵∠ACH=75°-15°=60°, ∴()3 1.732AH AC sin60125125108.252=⋅︒==⨯=米. ∵AH >100米,∴消防车不需要改道行驶.过点A 作AH ⊥CF 交CF 于点H ,应用三角函数求出AH 的长,大于100米,不需要改道行驶,不大于100米,需要改道行驶.23.y=2x +2x ;(-1,-1).【解析】试题分析:首先将两点代入解析式列出关于b 和c 的二元一次方程组,然后求出b 和c 的值,然后将抛物线配方成顶点式,求出顶点坐标. 试题解析:将点(0,0)和(1,3)代入解析式得:0{13c b c =++=解得:2{0b c == ∴抛物线的解析式为y=2x +2x ∴y=2x +2x=2(1)x +-1 ∴顶点坐标为(-1,-1).考点:待定系数法求函数解析式.24.解:(1)22.1.(2)设需要售出x 部汽车,由题意可知,每部汽车的销售利润为:21-[27-0.1(x -1)]=(0.1x +0.9)(万元),当0≤x≤10,根据题意,得x·(0.1x +0.9)+0.3x=12,整理,得x 2+14x -120=0,解这个方程,得x 1=-20(不合题意,舍去),x 2=2.当x >10时,根据题意,得x·(0.1x +0.9)+x=12,整理,得x 2+19x -120=0,解这个方程,得x 1=-24(不合题意,舍去),x 2=3.∵3<10,∴x 2=3舍去.答:要卖出2部汽车.【解析】一元二次方程的应用.(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.25.(1)见解析;(2)EC=1.【解析】【分析】(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【详解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=12BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.26.(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%; (2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.1,2y =2.1,∵有利于减少库存,∴y =2.1.答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.27.1a b+ 【解析】【分析】根据分式的混合运算法则把原式进行化简即可.【详解】原式=()()b a b a b +-÷(a a b -﹣a b a b--) =()()b a b a b +-÷a a b a b-+- =()()b a b a b +-•a b b -=1a b.【点睛】本题考查的是分式的混合运算,熟知分式的混合运算的法则是解答此题的关键.。
上海市浦东新区2019-2020学年中考数学一模试卷含解析

上海市浦东新区2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,点C 为弧BD 的中点,若∠DAB=50°,则∠ABC 的大小是( )A .55°B .60°C .65°D .70°2.下列各运算中,计算正确的是( )A .1234a a a ÷=B .()32639a a =C .()222a b a b +=+D .2236a a a ⋅=3.如图,AB ∥CD ,FH 平分∠BFG ,∠EFB =58°,则下列说法错误的是( )A .∠EGD =58°B .GF =GHC .∠FHG =61°D .FG =FH4.如图,△ADE 绕正方形ABCD 的顶点A 顺时针旋转90°,得△ABF ,连接EF 交AB 于H ,有如下五个结论①AE ⊥AF ;②EF :AF=2:1;③AF 2=FH•FE ;④∠AFE=∠DAE+∠CFE ⑤ FB :FC=HB :EC .则正确的结论有( )A .2个B .3个C .4个D .5个 5.若函数2m y x +=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( ) A .m >﹣2B .m <﹣2C .m >2D .m <26.下列运算正确的是( )A .x 2•x 3=x 6B .x 2+x 2=2x 4C .(﹣2x )2=4x 2D .( a+b )2=a 2+b 27.一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是()A.B.C.D.8.下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a29.下列各数中是有理数的是()A.πB.0 C.2D.35 10.如图,数轴上表示的是下列哪个不等式组的解集()A.53xx≥-⎧⎨>-⎩B.53xx>-⎧⎨≥-⎩C.53xx<⎧⎨<-⎩D.53xx<⎧⎨>-⎩11.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.3036101.5x x-=B.3030101.5x x-=C.3630101.5x x-=D.3036101.5x x+=12.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_____人.14.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数kyx(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲ .15.若二次函数y=-x2-4x+k的最大值是9,则k=______.16.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=5.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S正方形ABCD=4+6.其中正确结论的序号是.17.若一个多边形的内角和为1080°,则这个多边形的边数为__________.18.把抛物线y=2x2向右平移3个单位,再向下平移2个单位,得到的新的抛物线的表达式是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在平面直角坐标系xOy中,抛物线与轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称.(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为1.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移()个单位后与直线BC只有一个公共点,求的取值范围.20.(6分)列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.21.(6分)M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?22.(8分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?23.(8分)矩形ABCD中,DE平分∠ADC交BC边于点E,P为DE上的一点(PE<PD),PM⊥PD,PM交AD边于点M.(1)若点F是边CD上一点,满足PF⊥PN,且点N位于AD边上,如图1所示.求证:①PN=PF;②DF+DN=2DP;(2)如图2所示,当点F在CD边的延长线上时,仍然满足PF⊥PN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.24.(10分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?25.(10分)如图,∠AOB=45°,点M,N在边OA上,点P是边OB上的点.(1)利用直尺和圆规在图1确定点P,使得PM=PN;(2)设OM=x,ON=x+4,①若x=0时,使P、M、N构成等腰三角形的点P有个;②若使P、M、N构成等腰三角形的点P恰好有三个,则x的值是____________.26.(12分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD 为45°,在B点测得D点的仰角∠CBD为60°.求这两座建筑物的高度(结果保留根号).27.(12分)作图题:在∠ABC 内找一点P ,使它到∠ABC 的两边的距离相等,并且到点A 、C 的距离也相等.(写出作法,保留作图痕迹)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】连接OC ,因为点C 为弧BD 的中点,所以∠BOC=∠DAB=50°,因为OC=OB ,所以∠ABC=∠OCB=65°,故选C .2.D【解析】【分析】利用同底数幂的除法法则、同底数幂的乘法法则、幂的乘方法则以及完全平方公式即可判断.【详解】A 、12394a a a a ÷=≠,该选项错误;B 、()32663279a a a =≠,该选项错误;C 、()222222a b a ab b a b +=++≠+,该选项错误;D 、2236a a a ⋅=,该选项正确;故选:D .【点睛】本题考查了同底数幂的乘法、除法法则,幂的乘方法则以及完全平方公式,正确理解法则是关键. 3.D【解析】【分析】根据平行线的性质以及角平分线的定义,即可得到正确的结论.【详解】解:AB CD EFB 58∠︒Q P ,=,EGD 58=∠∴︒,故A 选项正确;FH BFG ∠Q 平分,BFH GFH ∠∠∴=,又AB CD Q PBFH GHF ∠∠∴=,GFH GHF ∠∠∴=,GF GH =,∴故B 选项正确; BFE 58FH ∠︒Q =,平分BFG ∠, ()118058612BFH ︒︒︒∴∠=-=, AB CD Q PBFH GHF 61∠∠∴︒==,故C 选项正确;FGH FHG ∠∠≠Q ,FG FH ∴≠,故D 选项错误;故选D .【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等. 4.C【解析】【分析】由旋转性质得到△AFB≌△AED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否. 【详解】解:由题意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此选项①正确;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正确;∵△AEF是等腰直角三角形,有:1,故此选项②正确;∵△AEF与△AHF不相似,∴AF2=FH·FE不正确.故此选项③错误,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此选项⑤正确.故选:C【点睛】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.5.B【解析】【分析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数2myx+=的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.6.C【解析】【分析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.【详解】A、x2•x3=x5,故A选项错误;B、x2+x2=2x2,故B选项错误;C、(﹣2x)2=4x2,故C选项正确;D、( a+b)2=a2+2ab+b2,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键7.A【解析】【分析】一一对应即可.【详解】最左边有一个,中间有两个,最右边有三个,所以选A.【点睛】理解立体几何的概念是解题的关键.8.C【解析】【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【详解】A.a+3a=4a,错误;B.a5和a不是同类项,不能合并,故此选项错误;C.(a2)2=a4,正确;D.a8÷a2=a6,错误.故选C.【点睛】本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.9.B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.【详解】A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C是无理数,故本选项错误;D故选B.【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.10.B【解析】【分析】根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.【详解】解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,A、不等式组53xx≥-⎧⎨>-⎩的解集为x>-3,故A错误;B、不等式组53xx>-⎧⎨≥-⎩的解集为x≥-3,故B正确;C、不等式组53xx<⎧⎨<-⎩的解集为x<-3,故C错误;D、不等式组53xx<⎧⎨>-⎩的解集为-3<x<5,故D错误.故选B.【点睛】本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.11.A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.12.D【解析】如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.16000【解析】【分析】用毕业生总人数乘以“综合素质”等级为A的学生所占的比即可求得结果.【详解】∵A,B,C,D,E五个等级在统计图中的高之比为2:3:3:1:1,∴该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为80000×223311++++=16000,故答案为16000.【点睛】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.14.3yx =.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=3.∵正方形的中心在原点O ,∴直线AB 的解析式为:x=2.∵点P (2a ,a )在直线AB 上,∴2a=2,解得a=3.∴P (2,3).∵点P 在反比例函数3y x=(k >0)的图象上,∴k=2×3=2. ∴此反比例函数的解析式为:. 15.5【解析】y=−(x−2)2+4+k ,∵二次函数y=−x2−4x+k 的最大值是9,∴4+k=9,解得:k=5,故答案为:5.16.①③⑤【解析】【分析】①利用同角的余角相等,易得∠EAB=∠PAD ,再结合已知条件利用SAS 可证两三角形全等; ②过B 作BF ⊥AE ,交AE 的延长线于F ,利用③中的∠BEP=90°,利用勾股定理可求BE ,结合△AEP 是等腰直角三角形,可证△BEF 是等腰直角三角形,再利用勾股定理可求EF 、BF ;③利用①中的全等,可得∠APD=∠AEB ,结合三角形的外角的性质,易得∠BEP=90°,即可证; ④连接BD ,求出△ABD 的面积,然后减去△BDP 的面积即可;⑤在Rt △ABF 中,利用勾股定理可求AB 2,即是正方形的面积.【详解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD ,又∵AE=AP ,AB=AD ,∵在△APD 和△AEB 中,AE AP EAB PAD AB AD =⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△AEB (SAS );故此选项成立;③∵△APD≌△AEB,∴∠APD=∠AEB,∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴EB⊥ED;故此选项成立;②过B作BF⊥AE,交AE的延长线于F,∵AE=AP,∠EAP=90°,∴∠AEP=∠APE=45°,又∵③中EB⊥ED,BF⊥AF,∴∠FEB=∠FBE=45°,又∵BE= 22BP PE-= 52-= 3,∴BF=EF=62,故此选项不正确;④如图,连接BD,在Rt△AEP中,∵AE=AP=1,∴2又∵5∴3∵△APD≌△AEB,∴3∴S △ABP+S △ADP=S △ABD-S △BDP= 12S 正方形ABCD-12×DP×BE=12×(6)-12×33=126故此选项不正确.⑤∵6AE=1,∴在Rt△ABF中,AB 2=(AE+EF)2+BF 2,∴S 正方形ABCD=AB 2,故此选项正确.故答案为①③⑤.【点睛】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.17.1【解析】【分析】根据多边形内角和定理:(n﹣2)•110 (n≥3)可得方程110(x﹣2)=1010,再解方程即可.【详解】解:设多边形边数有x条,由题意得:110(x﹣2)=1010,解得:x=1,故答案为:1.【点睛】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•110 (n≥3).18.y=1(x﹣3)1﹣1.【解析】【分析】抛物线的平移,实际上就是顶点的平移,先求出原抛物线的顶点坐标,再根据平移规律,推出新抛物线的顶点坐标,根据顶点式可求新抛物线的解析式.【详解】∵y=1x1的顶点坐标为(0,0),∴把抛物线右平移3个单位,再向下平移1个单位,得新抛物线顶点坐标为(3,﹣1),∵平移不改变抛物线的二次项系数,∴平移后的抛物线的解析式是y=1(x﹣3)1﹣1.故答案为y=1(x﹣3)1﹣1.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)1+k (a,b,c 为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)(2).【解析】试题分析:(1)首先根据抛物线求出与轴交于点A,顶点为点B的坐标,然后求出点A 关于抛物线的对称轴对称点C的坐标,设设直线BC的解析式为.代入点B,点C的坐标,然后解方程组即可;(2)求出点D、E、F的坐标,设点A平移后的对应点为点,点D平移后的对应点为点.当图象G向下平移至点与点E重合时,点在直线BC上方,此时t=1;当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2.从而得出.试题解析:解:(1)∵抛物线与轴交于点A,∴点A的坐标为(0,2).1分∵,∴抛物线的对称轴为直线,顶点B的坐标为(1,).2分又∵点C与点A关于抛物线的对称轴对称,∴点C的坐标为(2,2),且点C在抛物线上.设直线BC的解析式为.∵直线BC经过点B(1,)和点C(2,2),∴解得∴直线BC的解析式为.2分(2)∵抛物线中,当时,,∴点D的坐标为(1,6).1分∵直线中,当时,,当时,,∴如图,点E的坐标为(0,1),点F的坐标为(1,2).设点A平移后的对应点为点,点D平移后的对应点为点.当图象G向下平移至点与点E重合时,点在直线BC上方,此时t=1;5分当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2.6分结合图象可知,符合题意的t的取值范围是.7分考点:1.二次函数的性质;2.待定系数法求解析式;2.平移.20.2.4元/米3【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m 3,进而得出等式即可.【详解】解:设去年用水的价格每立方米x 元,则今年用水价格为每立方米1.2x 元 由题意列方程得:301551.2x x-= 解得x 2=经检验,x 2=是原方程的解 1.2x 2.4=(元/立方米)答:今年居民用水的价格为每立方米2.4元.【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键.21.购买了桂花树苗1棵【解析】分析:首先设购买了桂花树苗x 棵,然后根据题意列出一元一次方程,从而得出答案.详解:设购买了桂花树苗x 棵,根据题意,得:5(x+11-1)=6(x-1), 解得x=1.答:购买了桂花树苗1棵.点睛:本题主要考查的是一元一次方程的应用,属于基础题型.解决这个问题的关键就是找出等量关系以及路的长度与树的棵树之间的关系.22.(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析【解析】分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;(2)根据学校总人数乘以骑自行车所占的百分比,可得答案.详解:(1)乘公交车所占的百分比60360=16, 调查的样本容量50÷16=300人,骑自行车的人数300×120360=100人, 骑自行车的人数多,多100﹣50=50人;(2)全校骑自行车的人数2400×120360=800人, 800>600,故学校准备的600个自行车停车位不足够.点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23.(1)①证明见解析;②证明见解析;(2)DN DF-,证明见解析.【解析】【分析】(1)①利用矩形的性质,结合已知条件可证△PMN≌△PDF,则可证得结论;②由勾股定理可求得DP,利用①可求得MN=DF,则可证得结论;(2)过点P作PM1⊥PD,PM1交AD边于点M1,则可证得△PM1N≌△PDF,则可证得M1N=DF,同(1)②的方法可证得结论.【详解】解:(1)①∵四边形ABCD是矩形,∴∠ADC=90°.又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;∵PM⊥PD,∠DMP=45°,∴DP=MP.∵PM⊥PD,PF⊥PN,∴∠MPN+∠NPD=∠NPD+∠DPF=90°,∴∠MPN=∠DPF.在△PMN和△PDF中,PMN PDFPM PDMPN DPF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△PMN≌△PDF(ASA),∴PN=PF,MN=DF;②∵PM⊥PD,DP=MP,∴DM2=DP2+MP2=2DP2,∴DP.∵又∵DM=DN+MN,且由①可得MN=DF,∴DM=DN+DF,∴DP;(2)DN DF-=.理由如下:过点P作PM1⊥PD,PM1交AD边于点M1,如图,∵四边形ABCD是矩形,∴∠ADC=90°.又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;∵PM1⊥PD,∠DM1P=45°,∴DP=M1P,∴∠PDF=∠PM1N=135°,同(1)可知∠M1PN=∠DPF.在△PM1N和△PDF中111PM N PDFPM PDM PN DPF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△PM1N≌△PDF(ASA),∴M1N=DF,由勾股定理可得:21DM=DP2+M1P2=2DP2,∴DM12DP.∵DM1=DN﹣M1N,M1N=DF,∴DM1=DN﹣DF,∴DN﹣DF=2DP.【点睛】本题为四边形的综合应用,涉及矩形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识.在每个问题中,构造全等三角形是解题的关键,注意勾股定理的应用.本题考查了知识点较多,综合性较强,难度适中.24.裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.25.(1)见解析;(2)①1;②:x=0或2﹣4或4<x<2;【解析】【分析】(1)分别以M、N为圆心,以大于12MN为半径作弧,两弧相交与两点,过两弧交点的直线就是MN的垂直平分线;(2)①分为PM=PN,MP=MN,NP=NM三种情况进行判断即可;②如图1,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;如图4,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.【详解】解:(1)如图所示:(2)①如图所示:故答案为1.②如图1,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴42=OM,当M与D重合时,即424=-=时,同理可知:点P恰好有三个;x OM DM如图4,取OM=4,以M为圆心,以OM为半径画圆.则⊙M 与OB 除了O 外只有一个交点,此时x=4,即以∠PMN 为顶角,MN 为腰,符合条件的点P 有一个,以N 圆心,以MN 为半径画圆,与直线OB 相离,说明此时以∠PNM 为顶角,以MN 为腰,符合条件的点P 不存在,还有一个是以NM 为底边的符合条件的点P ;点M 沿OA 运动,到M 1时,发现⊙M 1与直线OB 有一个交点; ∴当442x <<时,圆M 在移动过程中,则会与OB 除了O 外有两个交点,满足点P 恰好有三个; 综上所述,若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 的值是:x=0或424x =-或442x <<.故答案为x=0或424x =-或442x <<.【点睛】本题考查了等腰三角形的判定,有难度,本题通过数形结合的思想解决问题,解题的关键是熟练掌握已知一边,作等腰三角形的画法.26.甲建筑物的高AB 为(303-30)m ,乙建筑物的高DC 为303m【解析】【详解】如图,过A 作AF ⊥CD 于点F ,在Rt △BCD 中,∠DBC=60°,BC=30m ,∵CD BC=tan ∠DBC , ∴3,∴乙建筑物的高度为3;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(303﹣30)m,∴甲建筑物的高度为(303﹣30)m.27.见解析【解析】【分析】先作出∠ABC的角平分线,再连接AC,作出AC的垂直平分线,两条平分线的交点即为所求点.【详解】①以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;②分别以D、E为圆心,以大于12DE为半径画圆,两圆相交于F点;③连接AF,则直线AF即为∠ABC的角平分线;⑤连接AC,分别以A、C为圆心,以大于12AC为半径画圆,两圆相交于F、H两点;⑥连接FH交BF于点M,则M点即为所求.【点睛】本题考查的是角平分线及线段垂直平分线的作法,熟练掌握是解题的关键.。
上海市浦东新区2019-2020学年中考数学考前模拟卷(2)含解析

上海市浦东新区2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点 A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)在反比例函数y=(k <0)的图象上,若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 3<y 1<y 22.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用x 张铝片制作瓶身,则可列方程( )A .1645(100)x x =-B .1645(50)x x =-C .21645(100)x x ⨯=-D .16245(100)x x =⨯- 3.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是 A . B . C . D .4.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的( )A .平均数B .中位数C .众数D .方差 5.若不等式组236x m x x <⎧⎨-<-⎩无解,那么m 的取值范围是( ) A .m≤2 B .m≥2 C .m <2 D .m >26.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A .众数B .方差C .平均数D .中位数7.下列调查中,最适合采用普查方式的是( )A .对太原市民知晓“中国梦”内涵情况的调查B .对全班同学1分钟仰卧起坐成绩的调查C .对2018年央视春节联欢晚会收视率的调查D .对2017年全国快递包裹产生的包装垃圾数量的调查8.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A.3cm B.6cm C.2.5cm D.5cm9.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列.行程最长,途经城市和国家最多的一趟专列全程长13000 km,将13000用科学记数法表示应为( )A.0.13×105B.1.3×104C.1.3×105D.13×10310.如图图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.11.下列计算正确的是()A.2224()39b bc c=B.0.00002=2×105C.2933xxx-=--D.3242·323x yy x x=12.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浦东新区第二学期初三教学质量检测
数学试卷
(完卷时间:100分钟,满分150分)
1.本试卷含三个大题,共25题;
2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;
3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、选择题:(本大题共6题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列实数中,是无理数的是()
(A)3.14;(B)1
3
;(C)3;(D)9.
2.下列二次根式中,与a是同类二次根式的是()
(A)3a;(B)2
2a;(C)3a;(D)4a.
3.函数1
y kx
=-(常数k>0)的图像不经过的象限是()
(A)第一象限;(B)第二象限;(C)第三象限;(D)第四象限.
4.某幢楼10户家庭每月的用电量如下表所示:
那么这10户家庭该月用电量的众数和中位数分别是()
(A)180,180;(B)180,160;(C)160,180;(D)160,160.
5.已知两圆的半径分别为1和5,圆心距为4,那么两圆的位置关系是()
(A)外离;(B)外切;(C)相交;(D)内切.
6.如图,已知△ABC和△DEF,点E在BC边上,点A在DE边上,边EF和边AC相交于点G.如果AE=EC,∠AEG=∠B,那么添加下列一个条件后,仍无法判定△DEF与△ABC一定相似的是()
(A)AB DE
BC EF
=;(B)
AD GF
AE GE
=;
(C)AG EG
AC EF
=;(D)
ED EG
EF EA
=.
用电量(度)140 160 180 200
户数 1 3 4 2
二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】
7.计算:2
a a⋅= .
8.因式分解:22
x x
-= .
9.方程82x x
-=-的根是.
10.函数
3
()
2
x
f x
x
=
+
的定义域是.
11.如果关于x的方程220
x x m
-+=有两个实数根,那么m的取值范围是.
12.计算:
1
2()
3
a a b
++
r r r
.
13.将抛物线221
y x x
=+-向上平移4个单位后,所得新抛物线的顶点坐标是.
14.一个不透明的袋子里装有3个白球、1个红球,这些球除了颜色外无其他的差异,从袋子中随机摸出1个球,恰好是白球的概率是.
15.正五边形的中心角是.
16.如图,圆弧形桥拱的跨度AB=16米,拱高CD=4米,那么圆弧形桥拱所在圆的半径是
米.
17.如果一个三角形一边上的中线的长与另两边中点的连线段的长相等,我们称这个三角形为“等线三角形”,这条边称为“等线边”.
在等线三角形ABC中,AB为等线边,且AB=3,AC=2,那么BC= .
18.如图,矩形ABCD中,AB=4,AD=7,点E,F分别在边AD、BC上,且B、F关于过点E的直线对称,如果以CD为直径的圆与EF相切,那么AE= .
三、解答题:(本大题共7题,满分78分)19.(本题满分10分)
计算:
1
2
3
2282
21
-
--++
-
.
20.(本题满分10分)
解不等式组:
3(21)45,
31
1.
22
x x
x x
⎧->-
⎪
⎨
-≤
⎪⎩
①
②
.
21.(本题满分10分,每小题各5分)
已知:如图,在平面直角坐标系xOy中,点A在x轴的正半轴上,点B、C在第一象限,且四边形OABC
是平行四边形,25
OC=,
2
sin5
5
AOC
∠=,反比例函数
k
y
x
=的图像经过点C以及边AB的中点D.
求:(1)求这个反比例函数的解析式;
(2)四边形OABC的面积.
22.(本题满分10分)
某文具店有一种练习簿出售,每本的成本价为2元,在销售的过程中价格有些调整,按原来的价格每本8.25元,卖出36本;经过两次涨价,按第二次涨价后的价格卖出了25本.发现按原价格和第二次涨价后的价格销售,分别获得的销售利润恰好相等.
(1)求第二次涨价后每本练习簿的价格;
(2)在两次涨价过程中,假设每本练习簿平均获得利润的增长率完全相同,求这个增长率.
(注:
()
100%
-
=⨯
后一次的利润前一次的利润
利润增长率
前一次的利润
)
23.(本题满分12分,其中每小题各6分)
已知:如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=CD,点E、F分别在边BC、CD上,且BE=DF=AD,联结DE,联结AF、BF分别与DE交于点G、P.
(1)求证:AB=BF;
(2)如果BE=2EC,求证:DG=GE.
24.(本题满分12分,其中第(1)小题3分,第(2)小题4分,第(3)小题5分)
已知:抛物线23y ax bx =+-经过点A (7,-3),与x 轴正半轴交于点B (m ,0)、C (6m 、0)两点,与
y 轴交于点D .
(1)求m 的值;
(2)求这条抛物线的表达式;
(3)点P 在抛物线上,点Q 在x 轴上,当∠PQD =90°且PQ =2DQ 时,求点P 、Q 的坐标.
25.(本题满分14分,其中第(1)小题3分,第(2)小题6分,第(3)小题5分)
如图所示,∠MON =45°,点P 是∠MON 内一点,过点P 作PA ⊥OM 于点A 、PB ⊥ON 与点B ,且
22PB =.取
OP 的中点C ,联结AC 并延长,交OB 于点D .
(1)求证:∠ADB =∠OPB ;
(2)设PA=x ,OD =y ,求y 关于x 的函数解析式;
(3)分别联结AB 、BC ,当△ABD 与△CPB 相似时,求PA 的长.
(第24题图)
浦东新区第二学期初三教学质量检测
数学试卷参考答案及评分说明一、选择题
1.C;2.C;3.B;4.A;5.D;6.C.
二、填空题
7.3a ; 8.(2)x x -; 9.4x =-; 10.2x ≠-; 11.1m ≤;
12.7133a b +r r
; 13.(-1,2);
14.
3
4
; 15.72°; 16.10; 17;
18.3. 三、解答题
19. 3
4-.
20. 11x -<≤. 21.(1)8
y x
=
. (2)12OABC S =Y . 22. (1)11元. (2)20%.
23.(1)先证△BCF ≌△DCE ;
再证四边形ABED 是平行四边;
从而得AB=DE=BF .
(2)延长AF 交BC 延长线于点M ,从而CM=CF ; 又由AD ∥BC 可以得到
1DG AD
GE EH
==; 从而DG =GE . 24.解:(1)m=1.
(2)求抛物线的表达式为217322y x x =-+-.
(3)Q (-1,0),P (5,2)或者Q (0,0),P (6,0). 25.解:(1)略
(2)y =.
(3)PA=。