心理学统计方差分析
心理学统计第五部分重复测量方差分析

心理学统计第五部分重复测量方差分析在心理学研究中,有时候研究者需要评估一个或多个因素对参与者的多个测量结果的影响。
这种情况下,重复测量方差分析(Repeated Measures Analysis of Variance,简称为RM ANOVA)是一种常用的统计方法。
重复测量方差分析是一种比较多个组内变量平均数差异的方法,它比较了每个组内变量的差异以及每个组间变量的差异。
与传统的方差分析不同,重复测量方差分析考虑了相同参与者在不同条件下的多次测量结果,因此能够更准确地评估因素对测量结果的影响。
首先,我们需要明确的是,在重复测量方差分析中,我们的因变量是一个连续的测量结果,而自变量是一个或多个处理条件。
例如,我们可能想要评估一个新药物是否对人们的注意力产生影响,我们可以将注意力测量结果作为因变量,而药物与安慰剂作为自变量。
重复测量方差分析有三个基本的假设。
首先,我们假设不同处理条件下的测量结果的总平均数相等,即每组的平均值相等。
其次,我们假设各个处理条件下的测量结果有一定的方差。
最后,我们假设不同处理条件下的测量结果相互独立。
重复测量方差分析有一些优点和注意事项。
首先,这种方法可以减少误差变异,因为我们可以通过比较同一参与者在不同条件下的测量结果来消除参与者间的差异。
其次,重复测量方差分析可以提高统计功效,以便检测到小的差异。
然而,我们需要注意确保多次测量结果之间的独立性,以及在数据分析中正确处理可能的违反方差齐性和正态分布的情况。
总结起来,重复测量方差分析是一种常用的心理学统计方法,用于评估一个或多个因素对参与者的多个测量结果的影响。
它是一种有效的方法,可以提供关于不同处理条件之间差异的信息。
在分析数据时,我们需要检查数据的正态性和方差齐性,并使用适当的修正方法来应对违反这些假设的情况。
重复测量方差分析为心理学研究提供了一个强有力的统计工具,使得研究者能够更好地理解和解释影响行为和心理过程的因素。
方差分析的概念与应用

方差分析的概念与应用方差分析(Analysis of Variance, ANOVA)是一种统计方法,用于比较三个或三个以上样本均值是否存在显著差异。
其基本原理是通过将总方差分解为不同来源的方差,从而判断不同组之间是否存在显著性差异。
方差分析在生物医学、心理学、市场营销等多个领域都得到了广泛的应用。
本文将详细探讨方差分析的基本概念、方法及其实际应用。
一、方差分析的基本概念1.1 什么是方差方差是指数据集中各数据值与其均值之间的离散程度,它衡量了数据分布的变动幅度。
方差越大,数据分布越分散;相反,方差越小,数据分布越集中。
在方差分析中,我们主要关注的是不同样本均值之间的方差。
1.2 方差分析的原理在进行方差分析时,我们首先计算总体样本的总方差。
这一总方差可以分解为组间方差和组内方差。
具体来说:组间方差:代表不同组均值之间的变异程度。
组内方差:代表同一组内部样本之间的变异程度。
根据F检验原理,当组间方差显著大于组内方差时,可以认为至少有一个组的均值与其他组存在显著性差异。
这一过程可以用F统计量来表示,F统计量等于组间平均平方(Mean Square Between)除以组内平均平方(Mean Square Within)。
二、方差分析的类型2.1 单因素方差分析单因素方差分析是最基础的方差分析方法,适用于仅有一个因素对结果变量影响的情况。
例如,研究不同肥料对植物生长高度的影响,我们可以采用单因素方差分析。
在进行单因素分析时,假设我们有n个样本,每个样本在不同处理下进行观察。
通过计算各处理组均值与全局均值的偏离程度,可以判断是否有显著性差异。
2.2 双因素方差分析双因素方差分析则扩展至两个自变量对因变量影响的情况。
例如,研究不同肥料和不同光照条件下植物生长高度的影响。
在这种情况下,不仅要考虑肥料对植物生长高度的影响,还需要考虑光照对植物生长高度以及两者交互作用。
双因素分析可以帮助研究者揭示更复杂的关系,从而提供更加深入的理解。
心理学研究中的统计分析方法

心理学研究中的统计分析方法心理学研究中的统计分析方法是研究者用来对研究数据进行处理和解释的一种工具,它以数学统计原理为基础,通过运用多种统计方法,对收集到的研究数据进行描述、推断和解释,从而为研究者提供科学可信的研究结论。
以下将介绍心理学研究中常用的统计分析方法。
一、描述统计方法1.频数和百分比:用于描述变量的分类情况,统计各个分类的频数和所占的百分比。
2.中心趋势参数:包括平均数、中位数和众数,用于描述变量的集中趋势。
3.离散程度参数:包括标准差、方差和范围,用于描述变量的离散程度。
4.分布形态参数:用于描述变量的分布形态,如偏度和峰度。
二、推论统计方法1.参数检验方法:用于对总体参数进行估计和检验,如t检验、F检验和卡方检验。
-t检验适用于两组样本之间的差异检验,如独立样本t检验和配对样本t检验。
-F检验适用于两个以上组别的样本之间的差异检验,如单因素方差分析和双因素方差分析。
-卡方检验适用于分类变量之间的关联性检验,如卡方独立性检验和卡方拟合优度检验。
2. 非参数检验方法:用于对总体分布进行估计和检验,不对总体参数进行具体假设,如Wilcoxon符号秩检验和Mann-Whitney U检验。
3.相关分析方法:用于研究变量之间关系的强度和方向,如皮尔逊相关系数和斯皮尔曼等级相关系数。
4.回归分析方法:用于研究变量之间的因果关系,包括线性回归分析、多元回归分析和逻辑回归分析。
5.方差分析方法:用于研究变量之间的差异源自于哪些因素,如方差分析和共线性分析。
2. 聚类分析方法:用于研究多个对象之间的相似性和差异性,将相似的对象聚成一类,如层次聚类和K-means聚类。
3.判别分析方法:用于分类变量的预测和解释,根据已知类别的数据建立判别函数,判别新数据所属的类别。
4.结构方程模型方法:用于研究变量之间的因果关系和模型拟合度,将测量模型和结构模型相结合,对研究模型进行验证。
以上介绍了心理学研究中常用的统计分析方法,研究者可以根据研究设计和研究问题的需要,选择合适的统计方法进行数据分析和解释。
统计学中的方差分析与协方差分析的应用场景

统计学中的方差分析与协方差分析的应用场景方差分析和协方差分析是统计学中常用的两种分析方法,它们在不同领域中有着广泛的应用场景。
本文将重点介绍方差分析和协方差分析的定义、基本原理以及各自的应用场景,帮助读者更好地理解这两种重要的统计分析方法。
一、方差分析的应用场景方差分析(Analysis of Variance,ANOVA)是一种用于比较两个或多个样本均值差异是否显著的统计方法。
它通过分析总平方和、组内平方和和组间平方和的比值来判断不同样本间的差异是否由随机因素引起。
方差分析广泛应用于以下几个领域:1.实验设计领域:方差分析可以用于评估和比较不同处理组之间的差异是否显著。
例如,在药物研发过程中,可以使用方差分析来比较不同剂量组的治疗效果是否有显著差异。
2.教育研究领域:方差分析也常用于教育研究中,例如比较不同教学方法对学生成绩的影响是否显著。
3.社会科学研究领域:方差分析可以分析和比较不同社会群体或不同治疗方法对人们行为和心理状态的影响。
4.工程领域:方差分析可以用于评估不同工艺参数对产品性能的影响是否显著。
例如在制造业中,可以使用方差分析来确定不同生产线上产品的质量差异是否显著。
二、协方差分析的应用场景协方差分析(Analysis of Covariance,ANCOVA)是一种结合了方差分析和线性回归分析的方法,用于比较不同样本间对其他自变量的反应是否存在显著差异。
协方差分析常见的应用场景包括:1.医学研究领域:协方差分析可以用于控制和调整影响变量对响应变量的影响。
例如,在研究两种药物疗效时,协方差分析可以用于从各自的基线水平(协变量)出发,调整患者的其他因素,对疗效进行比较。
2.心理学研究领域:协方差分析可以用于研究心理因素对人类行为的影响。
例如,调查某种新的心理干预措施是否对抑郁症患者的恢复有帮助。
3.教育评估领域:协方差分析可以用于评估不同教育干预措施对学生成绩的影响是否显著。
例如,在一所学校中,可以使用协方差分析来比较不同教学方法对学生成绩发展的影响。
教育与心理统计学 第六章 方差分析考研笔记-精品

第六章方差分析第一节方差分析概述一.方差分析的定义[用途]定义:用途方差分析也称为变异数分析,是在教育与心理研究中最常用的变量分析方法,其主要功能在于分析测量或实验数据中不同来源的变异对总变异的贡献大小,从而确定测量或实验中因素对反应变量是否存在显著影响。
即用于置信度不变情况下的多组平均数之间的差异检验。
它既可以比较两个以上的样本平均数的差异检验,也可以应用于一个因素多种水平以及多个因素有多种水平的数据分析。
二.方差分析的作用方差分析主要应用于两种以上实验处理的数据分析,同时匕徽两个以上的样本平均数,推断多组资料的总体均数是否相同,也即检验多组数据之间的均数差异是否有统计意义。
在这个意义,也可以将其理解为平均数差异显著性检验的扩展。
当我们用多个t检验来完成这一过程时,相当于从t分布中随机抽取多个t值,这样落在临界范围之外的可能大大增加,从而增加了I型错误的概率,我们可以把方差分析看作t检验的增强版。
方差分析一次检验多组平均数的差异,降低了多次进行两组平均数检验所带来的误差。
在进行方差分析时,设定的假设是综合虚无假设,即假设样本所归属的所有总体的平均数都相等。
如果检验的结果是存在显著性差异,只能说明多组平均数之间存在显著性差异,但是无法确定究竟哪些组之间存在显著性差异,此时需要运用事后检验的方法来确定。
三.方差分析的相关概念一(一)数据的变异(1)变异:统计中的变异是普遍存在的7一般意义上的变异是指标志(包括品质标志和数量标志)在总体单位之间的不同表现。
可变标志的属性或数值表现在总体各单位之间存在的差异,统计上称之为变异,这是广义上的变异,即包括了品质标志和数量标志,有时仅指品质标志和在总体单位之间的不同表现。
注:随机性,即变异性。
(2)组间变异[组间差异]:组间变异表示处理间变异,主要指由于接受不同的实验处理(实验处理效应)而造成的各组之间的变异,可以用两个平均数之间的离差来表示,可将组间离差平方和记为SS AO组间差异可用组间方差来表征,用符号MS B表示。
心理学实验设计与统计分析方法

心理学实验设计与统计分析方法在心理学研究领域中,实验设计和统计分析方法是至关重要的工具。
它们帮助研究人员制定准确的实验方案,收集和分析数据,并得出科学有效的结论。
本文将介绍心理学实验设计和统计分析方法的基本原则和常用技巧。
一、实验设计方法实验设计方法旨在确保心理学实验的可靠性和有效性,从而得出可靠的结论。
以下是几种常见的实验设计方法:1. 随机分组设计随机分组设计是一种常用的实验设计方法。
它通过将实验参与者随机分配到不同的实验组和对照组中,来控制潜在的干扰因素。
例如,研究人员可能将参与者随机分为接受心理治疗的实验组和接受安慰性谈话的对照组,以观察两种干预方式的效果差异。
2. 反复测量设计反复测量设计是一种用于观察变量随时间变化的实验设计方法。
通过定期测量和记录参与者在一段时间内的变化,研究人员可以更好地理解变量的发展趋势。
例如,研究人员可能每个月测量一次参与者的焦虑水平,以观察焦虑水平是否有显著变化。
3. 交叉设计交叉设计是一种实验设计方法,用于比较不同条件下的参与者的表现差异。
它采用参与者在不同条件下的重复测量,以减少个体差异的干扰。
例如,研究人员可能让参与者在不同音量条件下完成学习任务,并比较他们在不同音量条件下的表现。
二、统计分析方法统计分析方法帮助研究者从收集到的数据中找出规律和趋势,推断总体特征,并评估结果的可靠性。
以下是几种常见的统计分析方法:1. 描述性统计分析描述性统计分析方法用于概括和描述数据的分布情况和中心趋势。
例如,研究人员可以计算数据的平均值、标准差和频率分布,以提供对数据的整体认识。
2. 推断性统计分析推断性统计分析方法用于从样本数据中进行推断,以支持对总体特征的推断。
例如,研究人员可以使用t检验来比较两个组别之间的平均值差异,以确定是否存在显著差异。
3. 方差分析方差分析是一种用于比较三个或更多组别的平均值差异的统计方法。
它可以用于分析多个组别之间的差异,也可以控制其他潜在变量的影响。
方差分析方法的比较

方差分析方法的比较方差分析是一种广泛应用于统计学中的方法,用于比较两个或多个群体之间的差异性。
近年来,社会科学领域中越来越多的研究者开始使用方差分析方法,但是同时也出现了很多其他的方法,并且每种方法都有其优缺点。
本文将对比几种不同的方差分析方法,以期能够帮助使用者更好地选择适用于自己研究的方法。
一、单因素方差分析单因素方差分析是最常见的一种方差分析方法,主要用于比较两个或多个群体在一个因素下的差异性。
例如,在一个心理学实验中,想要比较不同教育背景的学生在完成一个困难任务时所花费的时间是否有所不同,就可以使用单因素方差分析来进行比较。
单因素方差分析的优点在于简单易用,适用范围广泛。
同时,它还可以通过多个组合因素来进行协作。
然而,单因素方差分析也存在一些缺点。
例如,当因素较多时,它就不再适用。
此外,在不同条件下,虽然不同组别的差异显著,但是考虑到一些随机因素而无统计意义。
二、重复测度方差分析重复测度方差分析是一种常用的方差分析方法,主要用于比较同一群体在不同时间或不同情况下的差异性。
例如,在一个医学实验中,想要比较同一患者在接受不同治疗方案的情况下血压值的变化,就可以使用重复测度方差分析进行比较。
重复测度方差分析的优点在于可以减少测量误差,提高测试的稳定性。
此外,由于样本中存在了自身控制组,更容易发现实验组中出现的重要特征。
重复测度方差分析也存在一些缺点。
例如,如果要比较的两个时间之间的差异很小,则可能会导致拒绝零假设。
另外,重复测度方差分析所得到的结果比较关注群体的平均水平,而较少关注个体信息。
三、协方差分析协方差分析是一种常用的方差分析方法,主要用于比较两个或更多个因素之间的交互作用。
例如,在一个心理学实验中,想要比较学生的性别和教育背景对完成一个任务的影响,就可以使用协方差分析进行比较。
协方差分析的优点在于可以更深入地理解因素的交互作用。
此外,它比较灵活,因此可以适用于多个变量的情况。
然而,协方差分析也存在一些缺点。
心理学考研-心理统计资料-方差分析

2017考研已经拉开序幕,很多考生不知道如何选择适合自己的考研复习资料。
中公考研辅导老师为考生准备了【心理学考研知识点讲解和习题】,希望可以助考生一臂之力。
同时中公考研特为广大学子推出考研集训营、专业课辅导、精品网课、vip1对1等课程,针对每一个科目要点进行深入的指导分析,欢迎各位考生了解咨询。
第十章方差分析【本章综述】两个平均数之间的差异检验用Z/t检验,那么两个以上的平均数之间差异检验该用何种检验?方差分析主要处理两个两个或以上的平均数之间的差异检验问题。
本章主要介绍方差分析的基本原理,以及完全随机设计和随机区组设计这两种最基本的实验设计数据的方差分析以及事后检验。
【考点分布】方差分析【本章框架】【复习建议】方差分析这一章处处是重点,而且有一定的难度。
同学们在复习时旨在把握方差分析的原理以及在不同的实验设计中的变异来源,抓住这一精髓灵活地应对不同类型的题。
第一节 方差分析的原理与基本过程(一)方差分析的基本原理1. 方差分析依据的基本原理就是方差的可加性或者说可分解性原则,具体说就是将实验中的总变异分解为几个不同来源的变异。
一般来说,总变异包括组间变异(组间平方和)和组内变异(组内平方和)两部(平方和指观测数据与平均数离差的平方总和)。
2. 其公式如下: ① SS T = SS B + SS W ;∑∑===k j n1i )X (X SS 2ijT 1-t ;∑=∙=kj )X X (n SS 2jB 1-t ;∑∑===k j n1i )X (X SS 2ijW 1-j ;这些公式中,X 的下标j 表示第几组,i 表示某一组中第几个被试,求和符号的起止标记意思与这个相同。
k 表示实验处理数;n 表示每种实验处理下的被试数。
SS T 表示总平方和,所有观测值与总平均数的离差的平方总和,也即实验中产生的总变异;SS B 为组间平方和,几个组的平均数与总平均数的离差的平方总和,表示由于接受不同的实验处理而造成的各组之间的差异以及无法控制的随机实验误差(通常忽略不计);SS W 为组内平方和,各被试的数值与组平均数之间的离差的平方总和,表示由实验误差(个体差异)造成的变异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近来关于随机区组和被试内实验设计以及对应的方差分析的问题,多人追问不止。
既自觉已思路清晰、天下无敌。
特本着一半自己再梳理一下,一半友好互助的形式小写个群邮件,充个英勇,让大家也分享下。
定是不足与不当多多,盼批评指正。
相信把这个东西认真看完,思路不清晰的童鞋马上也会思路清晰起来。
看似很复杂,实际上我尽全力做到深入浅出,因此,相信只要是地球人都可以看得懂。
一、随机区组的被试分配:a1 a2区组 b1 b2 b1 b21 1 4 7 102 2 5 8 113 3 6 9 12数据刻意简单化,不合理没有关系。
是个2*2随机区组设计,3个区组。
如何分配被试?首先,随机区组的每个区组的被试应该是有差异的,否则就不需要分区组了,直接完全随机就可以了。
因此随机区组的前提是:区组间异质,而区组内的被试尽可能同质。
被试有以下几个情况:第一分配方式:假设该实验的被试总个数为24个,每个区组的被试为8个。
他可以有两种分配方式1、将每组中的任意每2个被试随机接受一种处理,2*4=82、8人同时接受所有的处理,1*8=8需要注意的三个问题:1、一般都用第一种情况,第二种不用,因为区组内的这8个人本来就是理论上的同质的,所以只要把他们分开,随机接受不同的处理就能说明问题,这样可以省时,省钱,还能避免每个人由于重复测量导致的额外变量的增加。
2、它强调了区组内的被试随机接受不同的实验处理,也因此叫随机区组。
3、它要求每个区组的被试单位应该是实验处理水平的整数倍。
如8/4=2第二种分配方式:假设该实验的被试一共是3个,就是说,一个被试为一个区组。
那么每个区组的这个被试全部接受实验的4个不同水平的处理。
这个时候就需要平衡实验的顺序,防止一个人不短的被实验而出现的顺序效应,如何平衡,一般用“ABBA”或所谓的“拉丁方”。
第三种分配方式:当一个大团体(如学校)为一个区组的时候,而大团体中又有小团体的时候(如学校中的班级),通常让一个小团体接受一种处理。
例如:ABC分别是不同的三个学校,他们各自为一个区组,那么A学校是区组一,A学校就要抽四个班级出来,每个班级随机接受一种实验处理。
注意:传统的观点认为上述“第二种方式”----一个被试为一个区组的情况不叫区组,叫被试内设计,就是因为每个被试都接受了不同的实验处理,因此没有随机可言。
其具体的方差分析和随机区组的方差分析也有所差别。
表现在SS残差的是否细分。
具体往下看。
二、随机区组的方差分析还是那个例子:a1 a2b1 b2 b1 b2区组处理1 处理2 处理3 处理41 1 4 7 102 2 5 8 113 3 6 9 12假定研究某种药物对某种操作的影响自变量A(药物)有两个水平,药物分别是0单元和2单元自变量B(实验环境)有两个水平,环境1和环境2。
分别取三个不同层次的个体,分别是:少年、青年、老年。
数据刻意简单化,不合理没有关系。
是个2*2随机区组设计区组的个数n=3a因素的处理水P=2b因素的处理水平q=2所有的处理水平p*q=4所有的被试单位=N =npq =3*2*2=12为了本质化,特意把所有的无聊的SS后面的字母统统去掉,用汉字表达平方和的分解:SS总=SS处理间+SS区组+SS残差1、SS总=整个实验的每个具体测量值和整个实验的总平均数差的平方再求和。
即:SS总=∑(X-μ)^2(μ=总平均数,X=各原始测量值)2、“SS处理间”是什么意思?例子一共有4种处理,因此,SS处理间=4种处理中,n倍的“每一种处理的平均值与整个实验总平均值差的平方再求和”。
即:SS处理间=n*[∑(各种处理平均值-μ)^2](μ=总平均数)3、“SS区组”是什么意思?例子一共有3个区组,因此,SS区组=3个区组中,pq倍的“每一个区组的平均值与整个实验总平均值差的平方再求和”。
即:SS区组=pq*[∑(各区组平均值-μ)^2](μ=总平均数)如何具体求SS总、SS处理间、SS区组?1、求SS总:因为SS总=∑(X-μ)^2(μ=总平均数,X=各原始测量值)又因为整个实验的总平均数=6.5因此SS总=∑(X-μ)^2=(1-6.5)^2+(2-6.5)^2+(3-6.5)^2+……+(12-6.5)^2 (μ=总平均数,X=各原始测量值)2、求SS处理间:因为SS处理间= n*[∑(各种处理平均值-μ)^2](μ=总平均数,X=各原始测量值)又因为处理1的平均值是2;处理2的平均值是5;处理3是8,处理4的是11。
因此SS处理间= n*[∑(各种处理平均值-μ)^2]=3*[(2-6.5)^2+(5-6.5)^2+(8-6.5)^2+(11-6.5)^2]3、求SS区组:因为SS区组= pq*[∑(各区组平均值-μ)^2](μ=总平均数,X=各原始测量值)又因为区组一的平均值是5.5,区组二的平均值是6.5,区组三的平均值是7.5。
因此SS区组= pq*[∑(各区组平均值-μ)^2]=4*[(5.5-6.5)^2+(6.5-6.5)^2+(7.5-6.5)^2]4、求SS残差:直接用SS残差= SS总-SS处理间-SS区组但是实际中,计算一般不用先求对应的平均数,而是直接用原始数据。
根据数学转化,可以得出以下等式:(数学转换过程不需要管)1、SS总=∑(X-μ)^2=∑X^2-[(∑X) ^2]/npq(μ=总平均数,X=各原始测量值)2、SS处理间= n*[∑(各种处理平均值-μ)^2]=∑[(各种处理的总值^2)/n]-[(∑X) ^2]/npq(X=各原始测量值)3、SS区组= pq*[∑(各区组平均值-μ)^2]=∑[(各区组的总值^2)/pq]-[(∑X) ^2]/npq(X=各原始测量值)所以可以用原始数据这么计算:1、SS总=∑(X-μ)^2=∑X^2-[(∑X) ^2]/npq=1^2+2^2+3^2+......+12^2-[(1+2+3+ (12)^2]/122、因为处理1的总水平=1+2+3=6;处理2的总水平=4+5+6=15;处理3的总水平=7+8+9=24;处理4的总水平=10+11+12=33所以SS处理间=∑[(各种处理的总水平^2)/n]-[(∑X) ^2]/npq=(6^2)/3+(15^2)/3+(24^2)/3+(33^2)/3-[(1+2+3+……+12)^2]/123、因为区组1的总水平=1+4+7+10=22,区组2的总水平=2+5+8+11=26,区组3的总水平=3+6+9+12=30所以SS区组=∑[(各区组的总水平^2)/pq]-[(∑X) ^2]/npq=(22^2)/4+(26^2)/4+(30^2)/4-[(1+2+3+……+12)^2]/12通过上述的分析,我们可以得到SS总、SS处理间、SS区组,自然“SS残差”也就得出来了。
因此,这个时候就可以通过“SS区组/ df区组”来计算出“MS区组”,同时通过“SS残差/df残差”可以计算出“MS残差”。
在这里插个问题:“df总”指总自由度,它等于所有被试单位-1,即npq-1=3*2*2-1=11df区组等于多少?它等于区组数-1,即n-1=3-1df处理间等于多少?它等于处理水平-1,即pq-1=2*2-1=3df残差自然就等于(n-1)(pq-1)df总=df区组+df处理间+df残差再回到问题:将“MS区组”除以“MS残差”,就可以得到F值,再与对应的F(0.05)以及F(0.01)比较。
若F大于F(0.05),则说明在0.05的水平上,可以得到差异显著结论。
请注意,到底是什么差异是否显著?在这里,计算的是MS区组/ MS残差,因此,它所描述的统计结论是:该实验的三个区组的水平是否差异。
具体的说,某种药物对某种操作的影响在少年、成年、老年这三个区组上的结果是差异显著的。
或者说不同年龄段的人不管药物水平和环境如何,结果都是差异显著的。
同样,我们也可以通过“SS处理间/ df处理间”来计算出“MS处理间”,将“MS处理间”除以“MS 残差”,就可以得到F值,再与对应的F(0.05)以及F(0.01)比较。
得出是否显著显著。
请您集中全身注意,惊险时刻!!!在这里,通过计算“MS处理间/MS残差”检验的是什么差异是否显著?实验要检验的是在A因素上实验的结果是否差异显著、B因素上实验的结果是否差异显著、在AB因素交互作用下结果差异是否显著。
而按照“MS处理间/MS残差”检验的时候只能检验出实验中4个处理水平是否差异显著。
每个水平既有A因素,又有B因素。
因此,在多因素实验设计的时候,必须对SS处理间进行平方和的再分解,分解出A、B以及AB交互的平方和:SSA、SSB以及SSAB之后,再利用SSA/dfA、SSB/dfB以及SSAB/dfAB求出对应的MSA、MSB以及MSAB才能具体检验。
如何分解?如何计算SSA、SSB以及SSAB以及对应的dfA、dfB以及dfAB?先等等,到这里插个问题题:如果我们把题目改成:区组处理1 处理2 处理3 处理41 1 4 7 102 2 5 8 113 3 6 9 12比较一下,把两个AB因素去掉了,直接说成是一个自变量的4种处理,实质上的方差分析是一模一样的。
自变量(药物)有4个处理水平,药物分别是0单元、2单元、4单元、8单元(几个单元不管,只是区分水平)分别取三个不同层次的个体,分别是:少年、青年、老年。
这就是个单因素随机区组设计区组的个数n=3处理水平k=4所有的被试单位=N =nK=3*4=12方差分析要分析出:区组差异是否显著,以及处理间差异是否显著。
同样:SS总=SS区组+SS处理间+SS残差如何计算?方法跟上面一模一样,只是这里的K等于原来的pq因此字母换一下而已:1、SS总=∑(X-μ)^2=∑X^2-[(∑X) ^2]/nk=1^2+2^2+3^2+……+12^2-[(1+2+3+……+12)^2]/122、SS处理间=∑[(各种处理的总值^2)/n]-[(∑X) ^2]/nk=(6^2)/3+(15^2)/3+(24^2)/3+(33^2)/3-[(1+2+3+……+12)^2]/123、SS区组=∑[(各区组的总值^2)/k]-[(∑X) ^2]/nk=(22^2)/4+(26^2)/4+(30^2)/4-[(1+2+3+……+12)^2]/12同时:df总=nk-1=3*2*2-1=11df区组=n-1=3-1df处理间=k-1=2*2-1=3df残差=(n-1)(k-1)df总=df区组+df处理间+df残差这个时候,用“MS区组/ MS残差”检验描述的统计结论还是:某种药物对某种操作的影响在少年、成年、老年这三个区组上的结果是差异显著的。
而用“MS处理间/MS残差”检验描述得统计结论自然变得“理所当然”:某种药物不同水平对某钟操作的影响是差异显著的。