立体几何导学案5

合集下载

高中立体几何教案5篇

高中立体几何教案5篇

高中立体几何教案5篇第一篇:高中立体几何教案高中立体几何教案第一章直线和平面两个平面平行的性质教案教学目标1.使学生掌握两个平面平行的性质定理及应用;2.引导学生自己探索与研究两个平面平行的性质定理,培养和发展学生发现问题解决问题的能力.教学重点和难点重点:两个平面平行的性质定理;难点:两个平面平行的性质定理的证明及应用.教学过程一、复习提问教师简述上节课研究的主要内容(即两个平面的位置关系,平面与平面平行的定义及两个平面平行的判定定理),并让学生回答:(1)两个平面平行的意义是什么?(2)平面与平面的判定定理是怎样的?并用命题的形式写出来?(教师板书平面与平面平行的定义及用命题形式书写平面与平面平行的判定定理)(目的:(1)通过学生回答,来检查学生能否正确叙述学过的知识,正确理解平面与平面平行的判定定理.(2)板书定义及定理内容,是为学生猜测并发现平面与平面平行的性质定理作准备)二、引出命题(教师在对上述问题讲评之后,点出本节课主题并板书,平面与平面平行的性质)师:从课题中,可以看出,我们这节课研究的主要对象是什么?生:两个平面平行能推导出哪些正确的结论.师:下面我们猜测一下,已知两平面平行,能得出些什么结论.(学生议论)师:猜测是发现数学问题常用的方法.“没有大胆的猜想,就作不出伟大的发现.”但猜想不是盲目的,有一些常用的方法,比如可以对已有的命题增加条件,或是交换已有命题的条件和结论.也可通过类比法即通过两个对象类似之处的比较而由已经获得的知识去引出新的猜想等来得到新的命题.(不仅要引导学生猜想,同时又给学生具体的猜想方法)师:前面,复习了平面与平面平行的判定定理,判定定理的结论是两平面平行,这对我们猜想有何启发?生:由平面与平面平行的定义,我猜想:两个平面平行,其中一个平面内的直线必平行于另一个面.师:很好,把它写成命题形式.(教师板书并作图,同时指出,先作猜想、再一起证明)猜想一:已知:平面α∥β,直线a 求证:a∥β.生:由判定定理“垂直于同一条直线的两个平面平行”.我猜想:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.[教师板书]α,猜想二:已知:平面α∥β,直线l⊥α.求证:l⊥β.师:这一猜想的已知条件不仅是“α∥β”,还加上了“直线l⊥α”.下面请同学们看课本上关于判定定理“垂直于同一直线的两平面平行”的证明.在证明过程中,“平面γ∩α=a,平面γ∩β=a′”.a与a′是什么关系?生:a∥a′.师:若改为γ不是过AA′的平面,而是任意一个与α,β都相交的平面γ.同学们考虑一下是否可以得到一个猜想呢?(学生讨论)生:如果一个平面与两个平行平面中的一个相交,也必与另一个平面相交.” [教师板书] 猜想三:已知:平面α∥β,平面γ∩α=a,求证:γ与β一定相交.师:怎么作这样的猜想呢?生:我想起平面几何中的一个结论:“一条直线与两条平行线中的一条相交,也必与另一条相交.”师:很好,这里实质用的是类比法来猜想.就是把原来的直线类似看作平面.两平行直线类似看作两个平行平面,从而得出这一猜想.大家再考虑,猜想三中,一个平面与两个平行平面相交,得到的交线有什么位置关系?生:平行师:请同学们表达出这个命题.生:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. [教师板书]猜想四:已知:平面α∥β,平面γ∩α=a,γ∩β=b.求证:a∥b.[通过复习定理的证明方法,既发现了猜想三,猜想四,同时又复习了定理的证明方法,也为猜想四的证明,作了铺垫] 师:在得到猜想三时,我们用到了类比法,实际上,在立体几何的研究中,将所要解决的问题与平面几何中的有关问题作类比,常常能给我们以启示,发现立体几何中的新问题.比如:在平面几何中,我们有这样一条定理:“夹在两条平行线间的平行线段相等”,请同学们用类比的方法,看能否得出一个立体几何中的猜想?生:把两条平行线看作两个平行平面,可得猜想:夹在两个平行平面间的平行线段相等. [教师板书] 猜想五:已知:平面α∥β,AA′∥BB′,且A,B∈α,B,B′∈β.求证:AA′=BB′.[该命题,在教材中是一道练习题,但也是平面与平面平行的性质定理,为了完整体现平面与平面平行的性质定理,故尔把它放在课堂上进行分析]三、证明猜想师:通过分析,我们得到了五个猜想,猜想的结论往往并不完全可靠.得到猜想,并不意谓着我们已经得到了两个平面平行的性质定理,下面主要来论证我们得到的猜想是否正确.[师生相互交流,共同完成猜想的论证] 师:猜想一是由平面与平面平行的定义得到的,因此在证明过程中要注意应用定义.[猜想一证明] 证明:因为α∥β,所以α与β无公共点.又因为a α,所以 a与β无公共点.故a∥β.师:利用平面与平面平行的定义及线面平行的定义,论证了猜想一的正确性.这便是平面与平面平行的性质定理一.简言之,“面面平行,则线面平行.”[教师擦掉“猜想一”,板书“性质定理一”] [论证完猜想一之后,教师与学生共同研究了“猜想二”,发现,若论证了“猜想四”的正确性质,“猜想二”就容易证了,因而首先讨论“猜想三,猜想四”] 师:“猜想三”是类比平面几何中的结论得到的,还记得初中时,是怎么证明的?[学生回答:反证法] 师:那么,大家可否类比初中的证明方法来证明“猜想三”呢?生:用反证法:假设γ与β不相交,则γ∥β.这样过直线a有两个平面α和γ与β平行.与“过平面外一点有且只有一个平面与已知平面平行”矛盾.故γ与β相交.师:很好.由此可知:不只是发现问题时可用类比法,就是证明方法也可用类比方法.不过猜想三,虽已证明为正确的命题,但教材中并把它作为平面与平面平行的性质定理,大家在今后应用中要注意.[猜想四的证明] 师:猜想四要证明的是直线a∥b,显然a,b共面于平面γ,只需推导出a与b无公共点即可.生:(证法一)因为a∥β,所以 a与β无公共点.又因为a α,b β.所以 a与b无公共点.又因为a γ,b 所以a∥b.师:我们来探讨其它的证明方法.要证线线平行,可以转化为线面平行.生:(证法二)因为a α,又因为α∥β,所以a∥β.又因为a γ,且γ∩β=b,所以a∥b.师:用两种不同证法得出了“猜想四”是正确的.这是平面和平面平行的性质定理二.[教师擦掉“猜想四”,板书“性质定理二”] 师:平面与平面平行的性质定理二给出了在两个平行平面内找一对平行线的方法.即:“作一平面,交两面,得交线,则线线平行.”同时也给我们证明两条直线平行的又一方法.简言之,“面面平行,则线线平行”.[猜想二的证明] 师:猜想二要证明的是直线l⊥β,根据线面垂直的判定定理,就要证明l和平面β内的两条相交直线垂直.那么如何在平面β内作两条相交直线呢?[引导学生回忆:“垂直于同一直线的两个平面平行”的定理的证明] γ,生:(证法一)设l∩α=A,l∩β=B.过AB作平面γ∩α=a,γ∩β=a′.因为α∥β,所以a∥a′.再过AB作平面δ∩α=b,δ∩β=b′.同理b∥b′.又因为l⊥α,所以l⊥a,l⊥b,所以l⊥a′,l⊥b′,又a′∩b′=β,故l⊥β.师:要证明l⊥β,根据线面垂直的定义,就是要证明l和平面β内任何一条直线垂直.生:(证法二)在β内任取一条直线b,经过b作一平面γ,使γ∩α=a,因为α∥β,所以a∥b,因此l⊥α,a α,故l⊥a,所以l⊥b.又因为b为β内任意一条直线,所以l⊥β.[教师擦掉“猜想二”,板书“性质定理三”] [猜想五的证明] 证明:因为AA′∥BB′,所以过AA′,BB′有一个平面γ,且γ∩α=AB,γ∩β=A′B′.因为α∥β,所以AB∥A′B′,因此AA′ B′B为平行四边形.故AA′=BB′.[教师擦掉“猜想五”,板书“性质定理四”] 师:性质定理四,是类比两条平行线的性质得到的.平行线的性质有许多,大家还能类比得出哪些有关平行平面的猜想呢?你能证明吗?请大家课下思考.[因类比法是重要的方法,但平行性质定理已得出,故留作课下思考]四、定理应用师:以上我们通过探索一猜想一论证,得出了平面与平面平行的四个性质定理,下面来作简单的应用.例已知平面α∥β,AB,CD为夹在α,β间的异面线段,E、F分别为AB,CD的中点.求证:EF∥α,EF∥β.师:要证EF∥β,根据直线与平面平行的判定定理,就是要在β内找一条直线与EF平行.证法一:连接AF并延长交β于G.因为AG∩CD=F,所以 AG,CD确定平面γ,且γ∩α=AC,γ∩β=DG.因为α∥β,所以AC∥DG,所以∠ACF=∠GDF,又∠AFC=∠DFG,CF=DF,所以△ACF≌△DFG.所以AF=FG.又 AE=BE,所以EF∥BG,BG 故EF∥β.同理:EF∥α.师:要证明EF∥β,只须过EF作一平面,使该平面与β平行,则根据平面与平面平行性质定理即可证.证法二:因为AB与CD为异面直线,所以A CD.β.在A,CD确定的平面内过A作AG∥CD,交β于G,取AG中点H,连结AC,HF.因为α∥β,所以AC∥DG∥EF.因为DG β,所以HF∥β.又因为 E为AB的中点,因此EH∥BG,所以EH∥β.又EH∩FH=H,因此平面EFH∥β,EF 所以EF∥β.同理,EF∥α.平面EFH,师:从以上两种证明方法可以看出,虽然是解决立体几何问题,但都是通过转化为平面几何的问题来解决的.这是解决立体几何问题的一种技能,只是依据的不同,转化的方式也不同.五、平行平面间的距离师:和两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线,它夹在这两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面有几条公垂线?这些公垂线的位置关系是什么?生:两个平行平面有无数条公垂线,它们都是平行直线.师:夹在两平行平面之间的公垂线段有什么数量关系?根据是什么?生:相等,根据“夹在两个平行平面间的平行线段相等.”师:可见夹在两个平行平面的公垂线段长度是唯一的.而且是夹在两个平行平面间的所有线段中最短的.因此我们把这公垂线段的长度叫做两个平行平面的距离.显然两个平行平面的距离等于其中一个平面上的任一点到另一个平面的垂线段的长度.六、小结1.由学生用文字语言和符号语言来叙述两个平面平行的性质定理.教师总结本节课是由发现与论证两个过程组成的.简单的说就是:由具体问题具体素材用类比等方法猜想命题,并由转化等方法论证猜想的正确性,得到结论.2.在应用定理解决立体几何问题时,要注意转化为平面图形的问题来处理.大家在今后学习中一定要注意掌握这一基本技能.3.线线平行、线面平行与面面平行的判定定理和性质定理构成一套完整的定理体系.在学习中应发现其内在的科学规律:低一级位置关系判定着高一级位置关系;高一级位置关系一定能推导低一级位置关系.下面以三种位置关系为纲应用转化的思想整理如下:七、布置作业课本:p.38,习题五5,6,7,8.课堂教学设计说明1.本节课的中心是两个平行平面的性质定理.定理较多,若采取平铺直叙,直接地给出命题,那样就绕开了发现、探索问题的过程,虽然比较省事,但对发展学生的思维能力是不利的.在设计本教案时,充分考虑到教学研究活动是由发现与论证这样两个过程组成的.因而把“如何引出命题”和“如何猜想”作为本节课的重要活动内容.在教师的启发下,让学生利用具体问题;运用具体素材,通过类比等具体方法,发现命题,完成猜想.然后在教师的引导下,让学生一一完成对猜想的证明,得到两个平面平行的性质定理.也就在这一“探索”、“发现”、“论证”的过程中,培养了学生发现问题,解决问题的能力.在实施过程中,让学生处在主体地位,教师始终处于引导者的位置.特别是在用类比法发现猜想时,学生根据两条平行线的性质类比得出许多猜想.比如:根据“平行于同一条直线的两条直线平行”得到“平行于同一个平面的两个平面平行.”根据“两条直线平行,同位角相等”等,得到“与两个平行平面都相交的直线与两个平面所成的角相等”等等,当然在这些猜想中,有的是正确的,有的是错误的,这里不一一叙述.这就要求教师在教学过程中,注意变化,作适当处理.学生在整节课中,思维活跃,沉浸在“探索、发现”的思维乐趣中,也正是在这种乐趣中,提高了学生的思维能力.2.在对定理的证明过程中,课上不仅要求证出来,而且还考虑多种证法.对于定理的证明,是解决问题的一些常用方法,也可以说是常规方法,是要学生认真掌握的.因此教师要把定理的证明方法,作为教学的重点内容进行必要的讲解,培养学生解决问题的能力.3.转化是重要的数学思想及数学思维方法.它在立体几何中处处体现.实质上处理空间图形问题的基本思想方法就是把它转化为平面图形的问题,化繁为简.特别是在线线平行,线面平行,面面平行三种平行的关系上转化的思想也有较充分的体现,因而在小结中列出三个平行关系相互转让的关系图,一方面便于学生理解,记忆,同时通过此表,能马上发现三者相互推导的关系,能打开思路,发现线索,得到最佳的解题方案.第二篇:高中立体几何高中立体几何的学习高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。

立体几何学案

立体几何学案

立体几何学案
一、学习目标
1. 理解三维空间的概念,掌握基本的空间几何元素及其性质。

2. 掌握空间中点、线、面的基本关系,包括平行、垂直、相交等。

3. 理解并掌握空间几何体的表面积和体积的计算方法。

4. 培养空间想象能力和几何推理能力。

二、学习内容
1. 空间几何基本概念:介绍三维空间的概念,空间几何元素(点、线、面)的定义和性质。

2. 空间几何关系:研究点、线、面之间的基本关系,包括平行、垂直、相交等。

3. 空间几何体的表面积和体积:介绍常见空间几何体(长方体、球体、圆柱体等)的表面积和体积的计算方法。

4. 空间几何的应用:通过实例介绍空间几何在现实生活中的应用,如建筑设计、机械制造等。

三、学习方法与建议
1. 观察与思考:通过观察生活中的实际例子,理解三维空间的概念和空间几何元素的基本性质。

2. 实践操作:通过制作简单的空间几何模型,理解空间几何关系和几何体的形态。

3. 归纳总结:总结学习内容,形成知识体系,加深对空间几何的理解。

4. 练习与巩固:通过大量的练习题,巩固所学知识,提高解题能力和空间想象能力。

四、学习资源
1. 教材:选择一本合适的立体几何教材,系统学习相关知识。

2. 网络资源:利用互联网查找相关资料,如三维几何图形库、教学视频等。

3. 习题集:选择一本合适的立体几何习题集,进行有针对性的练习。

4. 学习小组:与同学组成学习小组,共同探讨问题,相互学习,共同进步。

立体几何导学案

立体几何导学案

3. 2.1立体几何中的向量方法(线线角)教学目标:1. 掌握好向量的相关知识:概念、基本运算、建系方法、坐标求法(不定点的坐标)、平行与垂直、法向量求法2. 掌握向量作为工具解决立几问题的方法3. 向量解题后建议多思考传统的方法,不仅可以锻炼思维能力,还可以深刻认识空间几何的本质重点难点:向量作为工具解决立几问题的方法 教学过程: 设疑自探:两条异面直线所成的角:设l 1与l 2两条异面直线,n ∥l 1 , m ∥l 2,则l 1与l 2所成的角α=<n ,m >或α=л -<n ,m > (0<α≤2π)cos<n ,m >=mn m n ⋅⋅或 cosα=mn m n ⋅⋅ (0<α≤2π)1的正方体1111D C B A ABCD -中,E 、F 分别是BD D D ,1的中点,G 在棱CD 上,且CD CG 41=,H 为C 1G 的中点,应用空间向量方法求解下列问题。

(1)求证:EF ⊥B 1C ;(2)求EF 与C 1G 所成的角的余弦; (3)求FH 的长。

例2.如图,在棱长为2的正方体1111D C B A ABCD -中,E 是DC 的中点,取如图所示的空间直角坐标系。

(1)写出A 、B 1、E 、D 1的坐标; (2)求AB 1与D 1E 所成的角的余弦值。

解疑合探:.cos sin 0np p n P P o ⋅==βθP αnP 0dOθβ1、在正方体1111D C B A ABCD -中,如图E 、F 分别是BB 1,CD 的中点,(1)求证:⊥F D 1平面ADE ; (2)),cos(1CB EF2.如图,长方体ABCD —A 1B 1C 1D 1中,AB=BC=2, AA 1=1,E 、H 分别是A 1B 1和BB 1的中点.求:(1)EH 与AD 1所成的角; (2)AC 1与B 1C 所成的角.3. 如图所示,ABCD 是一个正四面体,E 、F 分别为BC 和AD 的中点.求:AE 与CF 所成的角质疑再探:请同学们踊跃发言提问,解除心中的疑问。

必修2第一章立体几何导学案

必修2第一章立体几何导学案

1、1简单几何体学习目标1、知识与技能了解简单旋转体和简单多面体的有关概念。

通过教材展示的几何体的实物、模型、图片等,让学生感受空间几何体的结构特征。

3、情感、态度与价值观通过学生生活中的实物展示和化学中的物质晶体状来培养学生观察、分析、思考的科学态度。

进一步培养学生的数学建模思想。

【重点】简单几何体的有关概念。

【难点】对简单多面体中棱柱、棱台概念的理解。

学习过程一、预习案:“我学习,我主动,我参与,我收获!”◆学法指导:认真阅读教材p3-p4,初步了解简单几何体的有关概念及结构特征,最后把自己在学习中遇到的疑惑写下来,有待上课时和老师、同学共同探究解决。

◆教材助读:1、旋转体(1)旋转面:一条绕着它所在的平面内的一条旋转所形成的曲面。

(2)旋转体:的旋转面围成的几何体。

2、球(1)球面:所在的直线为旋转轴,将半圆旋转所围成的曲面。

(2)球:所围成的几何体叫作球体,简称球。

(3)球的有关概念①球心: .②球的半径:连接和的线段。

③球的直径:连接,并且的线段。

3、圆柱、圆锥、圆台(1)定义:分别以、、所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫作圆柱、圆锥、圆台。

(2)高、底面、侧面及侧面的母线。

4、多面体:由若干个围成的几何体叫作多面体。

5、棱柱:两个面互相平行(无公共点的两个平面是平行的),其余各面都是,并且每相邻两个四边形的公共边都,这些面围成的几何体叫作棱柱。

(1)棱柱的有关概念:棱柱定义里的的平面叫作棱柱的底面,其余各面叫作棱柱的侧面,棱柱的侧面是。

叫作棱柱的棱,与的公共顶点叫作棱柱的顶点。

(2)棱柱的分类按侧棱是否垂直于底面(侧棱垂直于底面)斜棱柱(侧棱不垂直于底面)按底面多边形形状(底面是三角形)(底面是四边形)(底面是五边形)……(3)正棱柱:底面是的叫作正棱柱。

6、棱锥:有一个面是,其余各面是的三角形,这些面围成的几何体叫作棱锥。

7、棱台:用一个棱锥底面的平面去截棱锥,,叫作棱台。

高二必修二《立体几何初步》导学案

高二必修二《立体几何初步》导学案

立体几何初步1.1.1 棱柱、棱锥、棱台学习目标1. 感受空间实物及模型,增强学生的直观感知;2. 能根据几何结构特征对空间物体进行分类;3. 理解多面体的有关概念;4. 会用语言概述棱柱、棱锥、棱台的结构特征.学习过程:一.学生活动仔细观察下面的几何体,他们有什么共同特点?(1) (2) (3) (4) 二 建构数学1.棱柱的定义:一般地_________________________________________的几何体叫棱柱; ___________________________叫底面;__________________________叫棱柱的侧面. 底面为三角形、四边形、五边形……的棱柱分别称为三棱柱、四棱柱、五棱柱…… 棱柱的特点:_____________________________________________________________; 棱柱的表示:_____________________________________________________________. 2.下面几何体有什么共同特点?3.棱锥的定义:_____________________________________________________________; 棱锥的特点:_____________________________________________________________; 棱锥的表示图(2)记为三棱锥ABC S .(1) SABC4.棱台的定义:_____________________________________________________________; 棱台的特点:上下两底面平行,侧面是梯形.5.多面体的概念:___________________________________________________________. 三 知识运用 例题例1 画一个四棱柱和一个三棱台.例2 如图,用过BC 的一个平面(此平面不过D A '')截去长方体的一个角,剩下的几何体是什么?截去的几何体是什么?请说出各部分的名称.巩固练习1.如图,四棱柱的六个面都是平行四边形,这个四棱柱可以由哪个平面图形按怎样的方向平移得到?2.画一个三棱锥和一个四棱台.3.多面体至少有几个面?这个多面体是怎样的几何体?四 回顾小结棱柱、棱锥、棱台的有关概念;多面体图形的识别.A A ' D D 'B B 'C ' C五学习评价基础知识1、棱柱的侧面是形,棱锥的侧面是形,棱台的侧面是形.2、用过不相邻的两条侧棱所在的平面截一个棱柱,则截面图形锥,则截面图形是,用过不相邻的两条侧棱所在的平面截一个棱台,则截面图形是.3、一个五棱柱如图所示,这个棱柱的底面是,侧棱是,侧面是.4、正方体可以看做平移,平移的距离形成的几何体.5、有下列命题:(1)棱柱的侧面都是平行四边形;(2)棱锥的侧面为三角形,且所有侧面都有一个共同的公共点;(3)多面体至少有四个面;(4)棱台的侧棱所在直线均相交于同一点.以上命题中正确的是 .6、给出下列命题:(1)棱柱的底面一定是平行四边形;(2)棱锥的底面一定是三角形;(3)棱锥被平面分成的两部分不可能都是棱锥;(4)棱柱被两面分成的两部分可以都是棱柱.正确的是.7、如图所示,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.拓展延伸: 9、如图所示(1)如果你认为△ABC 是水平放置的三角形,试以它为底画一个三棱柱;(2)如果你认为△ABC 是竖起放置的三角形,试以它为底画一个三棱柱.10、指出棱柱、棱锥、棱台之间的关系.答案立体几何1.1.1棱柱、棱锥、棱台1. 平行四边 三角形 梯2. 平行四边形 三角形 梯形. 3五边形ABCDE ,五边形11111E D C B A ,11111,,,,EE DD CC BB AA ,四边形A A BB B B CC C C DD D D EE E E AA 1111111111,,,, 4. 正方形沿着正对着(垂直)于正方形所在平面的方向,等于正方形的边长 5. (1)(2)(3)(4) 6. (4) 7.略8.略9略。

2012--2013学生版立体几何导学案

2012--2013学生版立体几何导学案

222正(主)视图22侧(左)视图2012-2013学年高三数学导学案立体几何三视图和表面积、体积【高考目标定位】1.了解空间图形的不同表示形式;掌握画三视图的基本技能;)画出的视图与直观图.2.理解简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如:纸板)制作模型,会用斜二侧法画出它们的直观图;3.了解柱、锥、台体及球的表面积、侧面积和体积计算公式,能运用柱、锥、台体及球的有关公式进行计算和解决实际问题。

4.理解计算公式的由来;运用公式解决问题【考纲知识梳理】(一)空间几何体的表面积1.棱柱、棱锥、棱台的表面积、侧面积棱柱、棱锥、棱台是由多个平面图形围成的多面体,它们的表面积就是,也就是;它们的侧面积就是 .2.圆柱、圆锥、圆台的表面积、侧面积圆柱的侧面展开图是,长是圆柱底面圆的,宽是圆柱的设圆柱的底面半径为r,母线长为l,则S圆柱侧= S圆柱表=圆锥的侧面展开图为,其半径是圆锥的,弧长等于,设为r圆锥底面半径,l为母线长,则侧面展开图扇形中心角为,S圆锥侧= ,S圆锥表=圆台的侧面展开图是,其内弧长等于,外弧长等于,设圆台的上底面半径为r, 下底面半径为R, 母线长为l, 则侧面展开图扇环中心角为,S圆台侧= ,S圆台表=3.球的表面积:如果球的半径为R,那么它的表面积S=(二)空间几何体的体积1.柱体的体积公式V柱体=2.锥体的体积公式V锥体=3.台体的体积公式V台体=4. 球的体积公式V球=【课前热身】1.一空间几何体的三视图如图所示,则该几何体的体积为( ). A.223π+ B. 423π+ C.2323π+ D.2343π+2.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为()A.22B.23C.4D .25【典型例析】题型一:三视图问题例1.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱柱C.正方形D.圆柱动手试试:一个几何体的三视图如图所示,则该几何体的表面积为______________题型二:体积问题例2.已知三棱锥S ABC-的所有顶点都在球O的求面上,ABC∆是边长为1的正三角形,SC 为球O的直径,且2SC=;则此棱锥的体积为()()A26()B36()C23()D22动手试试:三棱柱ABC ABC P AA-''''中,为上一点,求V VP BBCC ABC ABC-''-''':俯视图题型三:侧面展开图问题例3.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为。

立体几何中点到直线的距离、点到平面的距离的计算 导学案

立体几何中点到直线的距离、点到平面的距离的计算 导学案

立体几何中点到直线的距离、点到平面的距离的计算班级:姓名:小组:【学习目标】(1)理解立体几何中点到直线的距离、点到平面的距离的概念.(2)掌握各种距离的计算方法.【重点、难点】重点:点到直线、点到平面距离公式的推导及应用.难点:把空间距离转化为向量知识求解.【学法指导】空间距离包括:点到点、点到线、点到面、线到线、线到面、面到面之间的距离.其中以点到面的距离最为重要,其他距离,如线到面、面到面的距离均可转化为点到面的距离,用向量法来求解。

【预习感知】1.两点间的距离的求法.设a=(a1,a2,a3),则|a|=______________,若A(x1,y1,z1),B(x2,y2,z2),则d AB=|AB→|=________________.2.点到直线距离的求法设l是过点P平行于向量s的直线,A是直线l外定点.作AA′⊥l,垂足为A′,则点A到直线l的距离d等于线段AA′的长度,而向量P A→在s上的投影的大小|P A→·s|等于线段P A′的长度,所以根据勾股定理有点A到直线l的距离d=_____________.3.点到平面的距离的求法设π是过点P垂直于向量n的平面,A是平面π外一定点.作AA′⊥π,垂足为A′,则点A到平面π的距离d等于线段AA′的长度,而向量P A→在n上的投影的大小|P A→·n0|等于线段AA′的长度,所以点A到平面π的距离d=____________.【预习检测】1.已知直线l过定点A(2,3,1),且方向向量为n=(0,1,1),则点P(4,3,2)到l的距离为()A.322B.22 C.102变式训练 如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 的平面ABC 1D 1的距离为( )A .12B .24C .22D .32【课堂检测】(见课堂多媒体,随堂检测) 【课后训练】10.已知三棱柱ABC —A 1B 1C 1的各条棱长均为a ,侧棱垂直于底面,D 是侧棱CC 1的中点,问a为何值时,点C 到平面AB 1D 的距离为1.。

立体几何中点到直线的距离、点到平面的距离的计算导学案

立体几何中点到直线的距离、点到平面的距离的计算导学案

全国名校高中数学优质学案专题汇编(经典问题附详解)选修2-1导学案立体几何中点到直线的距离、点到平面的距离的计算 班级: 姓名:小组:【学习目标】(1) 理解立体几何中点到直线的距离、点到平面的距离的 概念.(2) 掌握各种距离的计算方法.【重点、难点】重点:点到直线、点到平面距离公式的推导及应用. 难点:把空间距离转化为向量知识求解. 【学法指导】空间距离包括:点到点、点到线、点到面、线到线、线 到面、面到面之间的距离.其中以点到面的距离最为重要, 设I 是过点P 平行于向量s 的直线,A 是直线I 外定点.作AA '丄I ,垂足为A ',则点A 到直线I 的距离彳占d 等于线段AA '的长度,而向量PA 在 s 上的投 /1P影的大小|PA S o l 等于线段RA 的长度,所以根 据勾股定理有点A 到直线I 的距离d= ______________________________ .3.点到平面的距离的求法设n 是过点P 垂直于向量n 的平面,A 是平面n 外一定 点.作AA'丄n 垂足为A ;则点A 到平面n /A 的距离d 等于线段AA 的长度,而向量PA 在. ;n 上的投影的大小|PA n o |等于线段AA 的长 ’ ——- 度,所以点A 到平面n 的距离d = _________________________ .其他距离,如线到面、面到面的距离均可转化为点到面的距 离,用向量法来求解。

【预习感知】1. 两点间的距离的求法.设 a = (a i , a 2, a 3),则|a |= _____________ ,若 A(x i , y i , 乙),B (X 2 , y 2, Z 2),贝S d AB= |AB| = ______________ .选修2-1导学案全国名校高中数学优质学案专题汇编(经典问题附详解)2. 点到直线距离的求法【预习检测】1.已知直线I过定点A(2,3,1),且方向向量为n = (0,1,1),则点P(4,3,2)到I的距离为()全国名校高中数学优质学案专题汇编(经典问题附详解)选修2-i 导学案第3页A.2;'3 2.如图所示,正方体 ABCD — A i B i C i D i 的棱长为1, O是底面A i B i C i D i 的中心,则0到平面ABC i D i 的距离是() C.22变式训练 已知直线I 过定点A(2,3,i),且方向向量为n =(0,i,i),则点P(4,3,2)到I 的距离为(3. 已知长方体 ABCD — A i B i C i D i 中,AB = 6, BC = 4, BB i = 3,则点B i 到平面A i BC i 的距离为 ______________ .【自主探究】 ★求点到直线的距离如图,在空间直角坐标系中有长方体 ABCD — A'B'C'D ; AB =★点面距已知正方形ABCD 的边长为4, E 、F 分别是AB 、AD 的 中点,GC 丄平面ABCD ,且|GC|= 2,求点B 到平面EFG 的距离.全国名校高中数学优质学案专题汇编(经典问题附详解)选修2-i导学案第4页【课堂检测】(见课堂多媒体,随堂检测)【课后训练】i0.已知三棱柱ABC—A i B i C i的各条棱长均为a,侧棱变式训练如图,正方体ABCD —A i B i C i D i的棱长为1, O是底面A i B i C i D i的中心,则点0的平面ABC i D i的距离为B. 42C. 22D- 23A.A H 垂直于底面, 为何值时,点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导学案(五)学习目标
1、理解平面的描述性概念。

2、掌握平面的基本性质与推论。

使用说明
1 导学案40分钟独立,规范完成
2 积极探究,合作交流,大胆质疑
知识梳理
一、平面的基本性质与推论
基本性质1 如果一条直线上的在一个平面内,那么这条直线上的都在这个平面内.
基本性质2,
有且只有一个平面,这也可以简单地说成,不共线的三点确定一个平面.
基本性质3 如果不重合的两个平面,那么它们有且只有.
推论1,
有且只有一个平面.
推论2,
有且只有一个平面.
推论3,
有且只有一个平面.
二.符号语言与数学语言的关系
1.空间两条直线的位置关系有三种:相交、平行、异面
(1)相交直线: ;
(2)平行直线: ;
(3)异面直线: ;
2.判定异面直线的方法
(1)利用定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.
(2)利用反证法:假设两条直线不是异面直线,推导出矛盾.
3.基本性质4
——空间平行线的传递性.
4.等角定理
空间中如果两个角的两边分别对应平行,那么这两个角.
5.异面直线所成的角
设a,b是异面直线,经过空间任一点O,分别作直线a′∥a,b′∥b,把直线a′与b′所成的
叫做异面直线a与b所成的角(或夹角).
典型例题
例1 证明共点问题
如图所示,空间四边形ABCD中,E,F,G 分别在AB,BC,CD上,且满足AE:EB=CF:FB=2:1,CG:GD=3:1,过E,F,G 的平面交AD于H,连接EH.
(1)求AH:HD;
(2)求证:EH,FG,BD三线共点.
小结:所谓线共点问题就是证明三条或三条以上的直线交于一点.
(1)证明三线共点的依据是公理3.
(2)证明三线共点的思路是:先证两条直线交于一点,再证明第三条直线经过该点,把问题转化为证明点在直线上的问题.实际上,点共线、线共点的问题都可以转化为点在直线上的问题来处理.
例2 点共线问题
在正方体
1111
ABCD A B C D
中,对角线
1
A C与平面
数学符号语言数学表达语言
点A在直线a上
点A在直线a外
点A在平面α内
点A在平面α外
直线a在平面α内
直线a,b相交于点A
平面α,β相交于直线a
1BDC 交于点O,AC,BD 交于点M,求证:点1C ,O,M
共线.
小结:证 明若干点共线也可用基本性质3 为依据,找出两个平面的交线,然后证明各个点都是这两平面的公共点.
例3共面问题
证明:空间不共点且两两相交的四条直线在同一平面内.
小结:共面问题具体操作方法:①证明几点共面的问题可先取三点(不共线的三点)确定一个平面,再证明其余各点都在这个平面内.②证明空间几条直线共面问题可先取两条(相交或平行)直线确定一个平面,再证明其余直线均在这个平面内. 例4.异面直线的判定和证明 (2009辽宁卷理)如图,已知两个正方行ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点 。

用反证法证明:直线ME 与 BN 是两条异面直线。

小结:定异面直线的常用方法:反证法;
能力提升
练1. 如图所示,已知空间四边形ABCD ,E ,
F分别是AB,AD的中点,G,H分别是BC,CD 上的点.且CG= BC,CH= DC.求证:(1)E,F,G,H四点共面;
(2)三直线FH,EG,AC共点
.
练2如图所示,已知△ABC在平面α外,AB,BC,AC 的延长线分别交平面α于P,Q,R三点.求证:P,Q,R 三点共线. 练3如图,正方体ABCD—A1B1C1D1中,判断下列命题是否正确,并说明理由.
(1)直线AC1平面CC1B1B;
(2)设正方形ABCD 与A1B1C1D1 的中心分别为O ,O1,平面AA1C1C 平面BB1D1D=OO1;
(3)点A ,O ,C 可以确定一个平面; (4)由点A ,C1,B1确定的平面是ADC1B1; (5)由A ,C1,B1确定的平面和由A ,C1, D 确定的平面是同一平面.
练4如图所示,正方体
1111
ABCD A B C D 中,M ,
N 分别是A1B1,B1C1的中点.问:
(1)AM 和CN 是否是异面直线? (2)1D B 和1C C 是否是异面直线?请说明理由.
总结提升
※学习小结
1.对于平面的三个公理,要深刻理解其含义,并能用符号准确地表述.
2.主要题型的解题方法
(1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”).
(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上,因此共线.
课后作业
页学案3
学习感悟。

相关文档
最新文档