杂散电流埋入式测防端子示意图
防迷流端子地铁接地端子

地铁接地端子(Earthbridges & Earthpoints )制作:郑州普天防雷科技有限公司在地铁杂散电流防护系统的施工过程中,扁铜测防端子施工难度大且极易失窃,难以保证杂散电流防护系统的完整性。
结合现场实际情况,提出一种防盗效果明显、施工简单,并且更可靠、更经济、更美观的连接方式及替代产品。
这种新型的埋入式杂散电流测防端子,在西安地铁1号线轨道道床施工中被采用,取得了很好的效果。
【凯威】接地端子广泛应用在电气化高速铁路、变电站、石油化工、数据中心等领域,一般采用纯铜进行铸造直接灌注在电缆槽或其他混凝土制品中。
按照IEC 62305-3的规定采用铜铸造时要求材料纯度应达到98%以上。
(电气化铁路的梁体、墩身及无电缆上桥需求的桥墩墩帽的接地端子,设单孔(M16);路基以及有电缆上桥需求的桥墩墩帽,一般设双孔(M16),特殊情况可采用多孔M16作为扩展母排使用。
)埋入式端子本体要求:1、铜端子与镀锌圆钢之间采用放热焊接,铜端子为热锻压工艺制造,铜含量不低于98%。
焊接点直流电阻小于30μΩ,单个埋入式端子整体电阻不大于200μΩ,通过端子与下部材料焊接结合处面积不小于800mm²,载流量不小于600A。
2、铜端头顶部开M16的螺栓孔,孔深25mm,镀锌圆钢直径不小于φ16,长度不小于120mm,圆钢具体长度根据实际情况确定。
3、铜端子有防扭动措施,如设置侧翼,防止螺栓拧入时,造成埋入式端子发生同步旋转而破坏混凝土或使下部焊接松动。
4、铜端子表面应具有宁龙或塑料保护盖,防止土建施工时其它杂质覆盖铜端子表面进入螺栓孔洞而影响其导电及连接。
保护盖与铜端子、镀锌圆钢应为整体供货。
Features●Long-lasting design●Low ground resistance and impedance●Superior electrical conductivity and resistance tocorrosion●Electrically and mechanically robust and reliable●Easy to install。
杂散电流监测系统(含排流柜)、单向导通装置技术规格书

杂散电流监测系统(含排流柜)、单向导通装置技术规格书(一)杂散电流监测系统(含排流柜)1. 适用范围本技术要求适用于重庆轨道交通一号线朝沙段杂散电流监测系统,并作为投标方制定投标技术文件和供货设备的技术依据。
2. 环境条件1)环境温度:-5︒C~+44.5︒C2)污秽等级:重污区3)相对湿度:日平均:95%月平均:90%有凝露发生4)海拔高度:≤1000m5)雷电日:60D/年6)地震烈度:7度3. 供货规格型号4. 采用标准(但不限于此)地铁杂散电流自动监测系统有关设备所涉及的产品标准、规范;工程标准、规范;验收标准、规范等完全满足所有中华人民共和国的条例及规范,包括:《地铁杂散电流腐蚀防护技术规程》CJJ49-92《低压电器外壳防护等级》GB4942.2-85《电工电子产品基本环境试验规程》GB2423-81《电磁兼容试验和测量技术》GB/T 17626《煤矿通信、检验、控制用电工电子产品基本试验方法》MT 210《交流电气装置的接地》DL/T621-1997《地铁设计规范》GB50157-2003《地铁直流牵引供电系统》GB10411-895. 系统构成本工程杂散电流监测系统采用车站(变电所)监测和控制中心集中监测二级监测系统。
杂散电流监测装置通过变电所内通信网络与电力监控系统接口,并将处理和统计后的数据传至监控中心。
杂散电流监测系统由参比电极、整体道床测防端子、地下结构测防端子、测量线、传感器、通信电缆、信号转接器、监测装置组成。
6. 系统功能杂散电流监测装置的输入端与从沿线各传感器引入的通信电缆连接,通过各监测点传感器实时采集监测分区内的结构钢筋的极化电位,参比电极自然本体电位,并对数据进行A/D转换,计算、存贮、统计并通过变电所内通信网络,将统计结果传送到变电所自动化系统,本监测系统具备以下几种功能:6.1 通信功能每个供电区间内的监测装置定期向传感器发出数据采集命令,数据按指定的格式上传到监测装置。
地铁站综合接地及杂散电流施工方案

目录一、编制依据 ............................................................................................................................... 错误!未定义书签。
二、工程概况 ............................................................................................................................... 错误!未定义书签。
2.1工程概况 ............................................................................................................................ 错误!未定义书签。
2.1.1站位情况 .................................................................................................................... 错误!未定义书签。
2.1.2 车站概况 ................................................................................................................... 错误!未定义书签。
2.2工程地质和水文地质条件................................................................................................. 错误!未定义书签。
杂散电流设备

杂散电流防护设备简介及运行情况一、概述在城市轨道交通等直流电气化轨道运输系统中以轨道作为回流导体,由于钢轨不可能对地完全绝缘,而且回流钢轨存在电压降,因而导致一部分负荷电流,从钢轨流到轨枕和道床及地下钢轨等金属设施中去,这部分电流,就是杂散电流。
由于杂散电流的产生以及它对地下金属的电腐蚀效应,使对线路以及周围设施的金属构件构成了一定的威胁。
这种电腐蚀总是发生在离子导电电流流出金属结构的地方,既发生在金属与电解质存在的阳极区,杂散电流的阳极电腐蚀对金属的破坏相当严重。
能引起水管穿孔漏水、锈蚀、电缆挂钩打火、道钉生锈断裂等,导致地铁设施的使用寿命降低,造成严重的经济损失。
地铁杂散电流防护措施主要是以堵为主、以排为辅、加强监测、防止外泄。
增加钢轨与轨枕间的绝缘,加接均回流电缆,减小回流时的钢轨电阻,铺设排流网安装排流柜,采用极性排流措施,加强监测,及时发现和预判腐蚀区域的产生。
二、杂散电流防护设备设施上海地铁杂散电流防护设备设施基本有二种,一是以较早运行线路为主的。
如上海地铁1号线、2号线、4号线等,通过站台参比电极对站台结构钢筋、区间参比电极对区间轨壁结构钢筋、钢轨对结构钢筋、排流等引出端子电缆线,分别连接到站台四个杂散电流测量箱中,用移动数据采集器来测量杂散电流数据,把收集来的杂散电流数据进行分析。
排流柜作为杂散电流主要设备之一,安装于牵引变电所内,排流柜的一端接负极柜内的负回流母排上,另一端通过排流电缆、排流二级管连接到隧道区间道床排流网引出端子。
使排流网内的电流通过排流柜单向回流到牵引变电所内的负极柜内负回流母排上,把泄漏的杂散电流通过区间道床排流网、排流柜流回到牵引变电所的负极柜内,以减少杂散电流对结构钢筋的腐蚀。
二是以新运行线路为主的,如9号线、10号线等,它采用的是站台参比电极对站台结构钢筋、区间参比电极对区间轨壁结构钢筋、参比电极对道床结构钢筋、钢轨对结构钢筋、排流等引出线。
通过区间隧道传感器、信号转接器、站内杂散电流监测装置、上位机PC电脑等一些设备来监测杂散电流泄漏情况。
新型通用端子替代杂散电流腐蚀防护铜排端子的探讨

传 统 端 子 在 功 能 上 能 够 满 足 杂
散 电流腐 蚀防护及监测系统 的设计 要求 ,但在 工程建设及运营 中存在
以下弊 端 。
. 1传统端子 简介 城 市 轨 道 交 通 采 用 直 流 牵 引供 1 电系统 ,将 不可避 免地产生杂散 电
( 1 )铜 端 子 外 露 于 安 装 面之
研究 ,采用 一种新型端子 能ቤተ መጻሕፍቲ ባይዱ 好地
解决 这些 问题 。
图1 传统道床连接端子示意图
王 渊 :中铁二院工程集 团有限责任公 司电气化研 究设计 院,工程 师,四川成都 6 1 0 0 3
狈 代 墟 市 轨 皿 交 圈 2 / 2 0 1 3 M O D E R N U R B A N T R A N S I T 0
试端子、排流端子在 实际使用中存在种种缺陷和弊端,新型端子的 出 现 在很 大程度 上解决 了这些问题。文章 基于工程实践,通过对传统、 新型端子的分析和比较,探讨 了新型端子在城 市轨道 交通杂散 电流腐
蚀 防护 系统 中技 术上 的 可行性 和 经 济上 的推 广 价值 以及应 用前 景 。 关键 词 :城 轨 交通 ;杂散 电流 ;新 型端 子 :应 用 ;探 讨
杂 散 电 流腐 蚀 防 护 系 统 中 的 外 。 由于 铜 属 于 贵 重 金 属 ,在 施 工
流。为 防止杂散 电流腐蚀城市轨道 铜端子 主要分为连接端 子 、测试端 过 程 中极 易 被 盗 。 在 以往 的 工 程 实 类,传统的3 类端子虽 施 中,为避免被 盗 ,往往采用缩短 交通 结 构 钢 筋 、金 属 管 线 及 扩 散 至 子 、排流端子3
式 进 行 防 护 。对 杂 散 电 流 腐 蚀 的 防 构 钢 筋 进 行 电 气 连 接 , 以确 保 全 线 解 决 端 子 被 盗 问题 , 反 而 给 施 工 安 护究其 根本主要是 “ 收集 ” 和 “ 限 杂散 电流腐蚀 收集 网的 电流 畅通 ,
地铁车站杂散电流施工.pptx

采用混凝土泵车输送混凝土入仓。衬墙混凝土浇筑高度最大值约为 4.8m,混凝土由顶入仓时,混凝土下落度大于3m。为此,采取以下施 工方法:
1.利用混凝土泵管直接伸入墙模内下料,避免了在墙模上开口入混凝土 而带来的施工不便,以及影响墙体混凝土的外观质量。
2.下料点间距不超过1.5m,使混凝土能够自然摊平。不得堆积下料用振 捣棒平仓,以免混凝土离析。
在振捣过程中,振捣棒略上下抽动,使混凝土振捣密实,插点要均 匀,插点之间距离控制在50cm左右。采用单一的行列形式,不要与交错 式混用,以免漏振,振捣点时间要掌握好,一般控制在20~30s 之间,直 至混凝土表面泛浆,不出现气泡,混凝土不再下沉为止。
在振捣时振捣器不得碰撞钢筋、模板和预埋件。振捣时严格控制振 动棒的移动距离,特别要注意混凝土的入仓振捣,防止离析和漏振。
焊缝厚6mm,长6倍钢筋直径
见附图
涉及到中板开孔、风道、人行通道在结构墙开孔,焊接 要求如下:
1、围绕孔洞的内外层纵向、横向钢筋在交叉点应焊接,围绕孔洞 形成钢筋环。在内外层钢筋环的四个角处,通过内外层钢筋环的联络 钢筋与内外层钢筋环焊接,将两个钢筋环焊接起来。
2、与钢筋环相交的横向、纵向钢筋应与钢筋环焊接。
混凝土浇筑
➢一、工程概况 ➢二、混凝土浇筑施工方法及工艺流程 ➢三、混凝土养护
1、工程概况
浑南大道站十号线车站底板厚0.9m(扩大端厚1.0m),底板梁厚2.2m ,混凝土为C40P10。中板厚0.4m。混凝土为C40。侧墙标准段地下二层及 地下三层厚0.6m,标准段地下三层及扩大端侧墙厚0.7m,混凝土为 C40P10。顶板厚0.7m,扩大端部分为0.8m,混凝土为C40P10。结构柱主 要尺寸为1100mm×800mm,混凝土为C50。
杂散电流监测系统(含排流柜)、单向导通装置技术规格书

杂散电流监测系统(含排流柜)、单向导通装置技术规格书(一)杂散电流监测系统(含排流柜)1. 适用范围本技术要求适用于重庆轨道交通一号线朝沙段杂散电流监测系统,并作为投标方制定投标技术文件和供货设备的技术依据。
2. 环境条件1)环境温度:-5C~+44.5C2)污秽等级:重污区3)相对湿度:日平均:95%月平均:90%有凝露发生4)海拔高度:1000m5)雷电日:60D/年6)地震烈度:7度3. 供货规格型号序号名称规格型号备注1 排流柜FM3022 参比电极MHC3 传感器FM301A4 信号转接器FM301Z5 监测装置FM3056 管理软件4. 采用标准(但不限于此)地铁杂散电流自动监测系统有关设备所涉及的产品标准、规范;工程标准、规范;验收标准、规范等完全满足所有中华人民共和国的条例及规范,包括:《地铁杂散电流腐蚀防护技术规程》CJJ49-92《低压电器外壳防护等级》GB4942.2-85《电工电子产品基本环境试验规程》GB2423-81《电磁兼容试验和测量技术》GB/T 17626《煤矿通信、检验、控制用电工电子产品基本试验方法》MT 210《交流电气装置的接地》DL/T621-1997《地铁设计规范》GB50157-2003《地铁直流牵引供电系统》GB10411-895. 系统构成本工程杂散电流监测系统采用车站(变电所)监测和控制中心集中监测二级监测系统。
杂散电流监测装置通过变电所内通信网络与电力监控系统接口,并将处理和统计后的数据传至监控中心。
杂散电流监测系统由参比电极、整体道床测防端子、地下结构测防端子、测量线、传感器、通信电缆、信号转接器、监测装置组成。
6. 系统功能杂散电流监测装置的输入端与从沿线各传感器引入的通信电缆连接,通过各监测点传感器实时采集监测分区内的结构钢筋的极化电位,参比电极自然本体电位,并对数据进行A/D转换,计算、存贮、统计并通过变电所内通信网络,将统计结果传送到变电所自动化系统,本监测系统具备以下几种功能:6.1 通信功能每个供电区间内的监测装置定期向传感器发出数据采集命令,数据按指定的格式上传到监测装置。
管道杂散电流的检测方法和应用

4.杂散电流参数的测试4.1检测参数的选择及意义杂散电流的检测是地铁杂散电流防护的重要组成部分,做好杂散电流的检测工作对保障地铁的良好运行至关重要。
地铁杂散电流难以直接测量,一般采用间接的办法来反应杂散电流的的腐蚀情况,地铁结构与设备受杂散电流腐蚀的危险性指标是由结构表面向周围电解质的泄漏电流密度和由此引起的电位极化偏移来确定的。
而电流密度难以直接测量,只有通过测量埋地金属极化电位来判断。
因此埋地金属极化电位是杂散电流腐蚀监测中的主要参数。
埋地金属极化电位的测量采用埋参比电极的方法。
参比电极与结构钢筋之间的电位差为结构钢筋的极化电位。
由于参比电极本身存在自然本体电位,且会受到各种外在因素的影响而发生变化,所以在测量时要对其进行修正校准,以提高测量精度,修正方法是在列车停运时,在没有杂散电流干扰的情况下测量结构钢对参比电极的电位作为参比电极的本体电位。
为了得到极化电位的正向偏移值,自然本体电位的测量也很重要。
泄露的杂散电流引起的结构钢的电位极化偏移值,即极化电位。
应取在列车运行高峰时间内测得的半小时平均值。
对于钢筋混凝土质的地铁主体结构钢,极化电位的正向偏移平均值不应超过0.5V[32]。
从理论上讲,埋地金属结构对地电位的地应该是无限远点的大地,这在实际测量中是难以实现的,一般以就近的大地作为地。
在地铁直流牵引供电系统中,由于杂散电流的干扰作用使得接地电位发生偏移,所以不能以接地作为电压测量的基准点,需要使用合适的参比电极。
在实际测量中埋地金属结构对地电位的定义是指金属结构表面与电解质之间用与同一电解质接触的参比电极测得的电位差。
参比电极作为测量电位的传感器,其性能及其可靠性是影响电位测量的关键因素。
应具有以下特点:长期使用时电位稳定,重现性好,不易极化,寿命长,并有一定的机械强度,具有最低的内阻以降低电流通过时因电极内部欧姆压降而产生的误差,常用的参比电极有甘汞、银/氯化银、铜/硫酸铜电极。
长效铜/硫酸铜参比电极具有电压稳定、耐极化性能好、使用寿命长、内阻小等优点,完全符合阴极保护工程中对参比电极的要求,可以作为地铁杂散电流极化电压测量的基准。