高等代数第六章自测题
习题答案(第六章)

1、R n 中分量满足下列条件的全体向量1(,,)n x x 的集合,是否构成R n的子空间?①10n x x ++= ;②120n x x x ⋅⋅⋅= ;③2211n x x ++= 。
解:①是,设(){}111,,|0nnV x x x x=++= ,显然V 1≠∅,1,,,a b F V ξη∀∈∀∈,设1212(,,),(,,)x x y y ξη== ,则()()()1111,,,,,,n n n n a b a x x b y y ax by ax by ξη+=+=++ ,而 1111()()()()000n n n n ax by ax by a x x b y y a b ++++=+++++=+=所以1a b V ξη+∈,所以V 1是R n 的子空间;②不是,取(1,0,,0),(0,1,,1)αβ== ,则(){}11,,,|0nnV x x x xαβ∈=⋅⋅= ,但(1,1,,1)V αβ+=∉ ,所以V 不是R n 的子空间;③不是,取(1,0,,0),(0,1,0,,0)αβ== ,则(){}2211,,,|1nn V x x xx αβ∈=++= ,但(1,1,0,,0)V αβ+=∉ ,所以V 不是R n 的子空间。
2、子集{}1|,,V X AX XB A B n ==为已知的阶矩阵是否是()n M F 的子集?解:是()n M F 的子集;证:显然1V ≠∅,1,,,X Y V a b F ∀∈∈,有()()A aX bY aAX bAY aXB bYB aX bY B +=+=+=+,所以1aX bY V +∈,所以1V 是()n M F 的子集。
3、设12(1,0,1,0),(1,1,2,0)αα==-,求含12,αα的R 4的一组基。
解:因为101010101010112001100010⎛⎫⎛⎫⎛⎫→→⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭, 取34(0,0,1,0),(0,0,0,1)αα==,所以{}1234,,,αααα为R 4的一组基。
高等代数(北大版)第6章习题参考答案

第六章线性空间.设M N ,证明:M N M , M N N。
1证任取M , 由 M N ,得N , 所以M N , 即证 M N M 。
又因M N M , 故M NM 。
再证第二式,任取M或N , 但 M N , 因此无论哪一种情形,都有N , 此即。
但N M N , 所以 M N N 。
2.证明 M ( NL ) (M N ) (M L) , M (N L) ( M N ) (M L ) 。
证x M (N L), 则x M 且 x NL. 在后一情形,于是x M N或 x M L.所以 x (M N )(M L) ,由此得 M ( N L) (M N ) (M L ) 。
反之,若x (M N ) ( M L) ,则 x M N或x M L. 在前一情形, x M , x N , 因此x N L. 故得 x M ( N L ), 在后一情形,因而x M , x L, x N L ,得x M ( N L ), 故 ( M N ) ( M L) M ( N L), 于是 M ( N L) (M N ) (M L ) 。
若x M (NL),则xM ,x N L 。
在前一情形 X x M N,且 X ML,因而 x( MN)( M L)。
在后一情形, xN ,x 因而x M N ,且X M,即 X ( M N)(M L)所以L, L(M N)(M L) M (N L)故M (NL) =()(M L)M N即证。
3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1)次数等于n( n 1)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设 A 是一个 n× n 实数矩阵, A 的实系数多项式 f (A )的全体,对于矩阵的加法和数量乘法;3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法;4)平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法;5)全体实数的二元数列,对于下面定义的运算:( a1,b1)( a b ( a1a2,b1b2a1 a2)(kk 1) 2k。
高数A上第六章测验题答案

第六章 定积分应用 测验题
1、设平面图形A 由22
2x y x +≤与y x ≥所确定,
求图形A 绕直线x =2旋转一周所得旋转体的体积。
2、一个高为l 的柱形贮油罐,底面是长轴2a 、短轴为2b 的椭圆。
现将贮油罐平放,当油罐中油面高度为32
b 时, 计算油的质量(长度单位为m ,质量单位为kg ,油的密度为为常量ρ,单位为kg/m3)。
3、已知星形线33cos (0)sin x a t a y a t
⎧=⎪>⎨=⎪⎩, 求(1)它所围成的面积;(238
a π) (2)它的弧长;(6a ) (3)它绕x 轴旋转而成的旋转体的体积及表面积。
(332105a π)
4、边长为a 和b 的矩形薄板,与液面成α角斜沉于液体内,长边平行于液面而位于深h 处, 设a >b ,液体的密度为ρ,试求薄板每面所受的压力。
答案:1(2sin )2
gab h b ρα+
5、设有一长度为l 、线密度为μ的均匀细直棒,在棒的一端垂直距离为a 单位处 有一质量为m 的质点M ,试求这细棒对质点M 的引力。
答案:取y 轴通过细直棒,
1(y x F Gm F a μ==
6、以每秒a 的流量往半径为R 的半球形水池内注水。
(1)求在池中水深h (0<h <R )时水面上升的速度; (2)若再将满池水全部抽出,至少需做功多少? ( ; )
2(2)dh a dt Rh h π=-44R π。
(完整版)第六章线性空间练习题参考答案

第六章线性空间练习题参考答案一、填空题0 0 01.已知V a b c 0 a,b,c R 是R1 2的一个子空间,则维(V)3 30 c b 00 0 0 0 0 0 0 0 03V 的一组基是1 0 0 , 1 0 0 , 0 1 0 .0 0 0 0 1 0 0 1 0在P4中,若 1 (1, 2,0,1),1,1), 4 (0,1, k,1)线性无2 (1,1,1, 1),3 (1, k,关,则k的取值范围是k 3(以1, 2, 3, 4为行或者列构成的行列式不为零)3•已知a是数域P中的一个固定的数,而W {(a,x1,L ,x n) x i P,i 1,2,L ,n}是P n+1的一个子空间,贝U a = 0 ,而维(W)=巴4. 维数公式为dimV i dimV2 dim(V i V2) dim(V i I V2).5•设1, 2, 3是线性空间V的一组基,X i 1 X2 2 X3 3,则由基1, 2, 30 0 1到基2, 3, 1的过渡矩阵T = 1 0 0,而在基3, 2, 1下的坐标是0 1 00 1 1 (X3,X2,X1)由基1, 2, 3到基2 3, 3 1, 1 2的过渡矩阵为T二10 1. 阵全体构成数域P上凹卫维线性空间,数域P上n级对交矩阵全体构成数域1 1 06 •数域P上n级对称矩阵全体构成数域P上如B维线性空间,数域P上2n级反对称矩阵全体构成数域P上晋维线性空间,数域P上n级上三角矩2P上n维线性空间,数域P上n级数量矩阵全体构成数域P上_1_维线性空间.二、判断题1•设V P n n,则W {A A P nn,A 0}是V的子空间.错•行列式为零的两个方阵的和的行列式未必为零,因此W中矩阵关于矩阵的加法运算不封闭,不能成为子空间.)2. 已知V {(a bi,c di) a, b, c, d R}为R上的线性空间,且维(V)= 2.错.是子空间,但是是4维的,其基为(1,0),( i,0),(0,1),(0, i).A3. 设A,B P n n,V是X 0的解空间,V1是AX = 0的解空间,V2是B(A + B)X = 0 的解空间,则V V1 I V2 .正确• Vj V2中的向量既满足AX = 0,又满足(A + B)X = 0,因此也满足ABX = 0,即满足X 0,即为V中的向量.反之,V中的向量既在V中,又B在V2中,即为yi V2中的向量.因此V V1 I V2 .4. 设线性空间V的子空间W中每个向量可由W中的线性无关的向量组1, 2丄,s线性表出,则维(W) = S.正确.根据定理1.5. 设W是线性空间V的子空间,如果, V,但W且W,则必有W.错误.可能W.如取,为一对互为负向量,则0 W.6. W {(x1,x2,x3) R3|X3 0}是R3的子空间.正确. 基为( 1,0,0),(0,1,0),维数为 2.7. W {( x1,x2, x3) R3 | x21} 是R3的子空间.错误.不包含零向量8. W {( x1,x2,x3)R3 |x1x2X3}是R3的子空间正确.基为(1,1,1),维数为 1.9. W {( x1,x2,x3)R3 |x1 x2X3}是R3的子空间正确. 基为( 1 , 1 ,0),( 1 ,0 ,-1),维数为 2.、计算题1.求所有与A可交换的矩阵组成的P n n的子空间C(A)的维数与一组基,其中100A 0 2 0 .003解:设矩阵B (b j )3 3与A可交换,即有AB BA.即1 0 0 b11 b12 b13 b11 b12 b13 1 0 00 2 0 b21 b22 b23 b21 b22 b23 0 20 0 3 b31b32 b33 b31 b32b33 0 0 3b11 b12 b13 b11 2b12 3b132b21 2b222b23 b212b223b23 .3b31 3b32 3b33b312b32 3b33所以有ib ij b ij j ,(i j)b ij 0,i, j 1,2,3. 当i j时,b ij 0 ,因此b11 0 0C(A) 0b22 00 0 b33 维数为3,基为E11 , E22 ,E33 .2•在线性空间P4中,求由基1, 2, 3, 4到基1, 2, 3, 4的过渡矩阵,并求(1,4,2,3)在基1, 2, 3, 4下的坐标,其中1 (1,0,0,0),2 (4,1,0,0),3 ( 3,2,1,0),4 (2, 3,2,1)1 (1,1,8, 3),2 (0, 3,7, 2),3 (1,1,6, 2),4 (1,4, 1, 1)解:令过渡矩阵为T ,则有1 0 1 1 1 4 3 21 3 1 4 0 12 3T8 7 6 1 0 0 1 23 2 2 1 0 0 0 1因此1 4 32 1 1 0 1 1 23 7 9 80 1 2 3 1 3 1 4 6 3 3 1T0 0 1 2 8 7 6 1 2 3 2 10 0 0 1 3 2 2 1 3 2 2 1令1 1 4 32 X14 0 1 2 3 X22 0 0 1 2 X33 0 0 0 1 X4X1 1 4 3 2 1 1 1 4 11 36 1 101X2 0 1 2 3 4 0 1 2 7 4 21X3 0 0 1 2 2 0 0 1 2 2 4X4 0 0 0 1 3 0 0 0 1 3 3(1, 4,2,3) 在基1,2 ! , 3 ,4下的勺坐标为(- 101,2 1,-4四、证明题1.V为定义在实数域上的函数构成的线性空间,令W { f(x) f (x) V, f(x) f( x)},W { f(x) f (x) V, f(x) f( x)}证明:W i 、W 2皆为V 的子空间,且V W 1 W 2.证明:W i 、W 2分别为偶函数全体及奇函数全体构成的集合,显然 W i 、W 2均为非空的.由奇偶函数的性质可得 W i 、W 2皆为V 的子空间.以 V W 1 W 2.2.设W 是P n 的一个非零子空间,若对于 W 的每一个向量(a i ,a 2丄,a n )来 说,或者a i a 2 L a n 0,或者每一个i 都不等于零,证明:维(W) = 1.证明:由W 是P n 的一个非零子空间,可得 W 中含有非零向量设(a i ,a 2,L ,a n ),(^也丄,g)是W 中的任二个非零向量,由题意可得每一个 a i ,b i 都不等于零.考虑向量由题设条件有b i a 2 a i b 2 L b i a n a i b n 0 ,即有色 更 L 空.即W 中的b i b 2 b n 任二个非零向量均成比例,因此维(W)二i.f(x) V,f(x)f(x) f( x) 2 f(x) f( X)2而 f (x)f( x) W 1 f(x) f(x)2 ' 2W 2,因此VW 1 W 2.又 W 1 I W 2{0}.所b |a ib i (a i ,a 2丄,a n )印⑴庄丄,b n ) (0,呃 a4,L ,b i a na ib n ) W。
高数(AT)第六章自测试卷

高等数学(A 下)第六章自测试卷一、 单项选择题1、0)(=+'y x p y 的通解为( )A x ce y =B x ce y -=C ⎰=-dx x p ce y )(D ⎰=dx x p c y )(2、032=-'-''y y y 有两个不等实根1-与3,则通解为( )A c x y ++-=3B c x y +-=13C xx e c e c y 321+=- D xe c c y 221= 3、0322=+'+''y y y 有二共轭复根i 52121±-,则两无关特解( ) A x y 21±= B x y 521±= C i y 521±= D x e y x e y xx 25sin ,25cos 2121--==4、22x y y y =+'-''的一个特解是( )A 0=yB 1=yC 642++=x x yD x y =5、x Ae qy y p y α=+'+''的特解形式( )A x K e Bx y α=B Ax y =C 2Ax y =D K Bx y =6、已知x y x y 3sin 2,3sin 21==是09=+''y y 的特解,则2211y c y c y +=是() A 通解 B 特解 C 一般解 D 全不对7、物体作直线运动,,2)(,0)0(t t v s ==则)(t s 为( )A 23tB 22tC c t +2D 2t8、y x e y -='2,则通解为( )A c x y +=21B c e e x y +=221C x y e e 221= D x y 2=9、设21,y y 是齐次方程两特解,则2211y c y c y += ( )A 是通解B 是特解C 是解D 全不对10、0=-'y y 且1)0(=y 的解为( 难 A)A x e y =B x ce y =C 0=yD 1=y11、过(1,2)点,xy 1='的曲线方程是 ( ) A 2ln +=x y B c x y +=ln C x y ln = D 2=y12、常数变易法是把常数C 变为 ( )A x eB x cosC x lnD 待定函数)(x c13、02=+'-''y y y 的特征根是 ( )A 1±B 1,2C 重根1D 0,114、)(2)(t v mg t v m -='是 ( )A 线性的B 非齐次的C 一阶的D 都不全面二、 填空题1、22e x y y =+'是__________________微分方程。
高数答案(全集)第六章参考答案

高数答案(全集)第六章参考答案第六章常微分方程1. (1) b,c,d (2) a,c (3) b,d2. (1) 二阶,线性 (2) 一阶,非线性 (3) 一阶,非线性 (4) 一阶,非线性3. (1)-(3)均为微分方程0222=+y dxy d ω的解,其中(2) (3)为通解 4. (1)将变量分离,得dx ydy cos 2= 两边积分得 c x y +=-sin 1通解为,sin 1c x y +-=此外,还有解0=y(2)分离变量,得dx x x y y d xx dx dy y y )111(1)1(2112222+-=+++=+或两边积分,得cx x y ln )1ln(ln )1ln(212++-=+即(1+ 2y )(1+ x)2=c 1 2x(3)将变量分离,得1122=-+-yydy xxdx积分得通解21x -+)20(12还有使因子21x -?012=-y 的四个解.x=(±)11 y -, y=(±)11 x - (4)将方程改写为(1+y 2)ex2dx-[]0)1( )e y +(1y=+-dy yex2dx=dy y y ??++-2y11 (e 积分得--=y e e y x arctan 212)1ln(212y +-21(5)令 z=x+y+1,z dx dz sin 1+=分解变量得到dx zdz=+sin 1………………(*) 为了便于积分,用1-sinz 乘上式左端的分子和分母,得到dz z z z se dz zzdz z z )tan sec (cos sin 1sin 1sin 1222-=-=-- 将(*)两端积分得到tanz-secz=x+c22z-∏)=x+c,将z 换为原变量,得到原方程的通解 X+c=-tan(214++-∏y x )6.令y=ux,则dy=udx+xdu 代入原方程得x 2( u 2-3)(udx+xdu)+2 x 2udx=0分离变量得du x dx 1)-u(u u 22-=,即得y 3=c(2y -2x ) 7. 令xy u =,则原方程化为dx x udu 1=,解得c x u ==ln 212,即,ln 2222cx x x y +=由定解条件得4=c ,故所求特解为,ln 4222x x x y +=8. 将方程化为x y xyy +-='2)(1,令x yu =,得,u u x y +'=代入得dx x du u 1112=- 得c x u ln ln arcsin +=,cx xyln arcsin= 9.化为x e x y dx dy x =+,解得)(1xe c xy +=,代入e y =)1(得0=c 特解x e y x = 10.由公式得1)()(-+=-x ce y x ??11.化为x y x y dx dy ln 2=+为贝努里方程令xyu =,则原方程化为dx dy y dx du 2--= 代入方程的x u x dx du ln 1-=-用公式求得])(ln 21[2x c x u -=解得12])(ln 21[1--=x c x y 另为,0=y 也是原方程的解 12.为贝努里方程令x yu =,则原方程化为322x xu dx du -=+用公式求得122+-=-x ce u x解得1122+-=-x cey x13.23x y yx dx dy =-将上式看成以y 为自变量的贝努里方程令x z 1=有3y yz dxdy-=- 22212+-=-y ce z y ,得通解1)2(2212=+--y cex y14.令x y N x y M +-=-=4,32有xNy M ??==??1,这是全微分方程0=duxy x y dy x y dx x y u y x +--=---=?32),()0,0(22)4()3(,即方程得通解为c y x xy =--232 15.化为0122=+-+xdx yx xdy ydx ,得通解为c x xy xy =+-+211ln 16.该方程有积分因子221y x +,)(arctan ))ln(21(2222x y d y x d y x ydx xdy xdy ydx ++=+-++ 17.1c e xe dx e xe e xd dx xe y xx x xx x+-=-==='?21211)2()(c x c x e c e xe x c e dx c e xe y x x x x x x ++-=+-++-=+-=?18.xx x dx x x y x1ln 32ln 12--=+=''? 2ln ln 213)1ln 3(21---=--='?x x x dx x x x y x 21ln 2223)2ln ln 213(2212+--=---=?x x x x dx x x x y x19.令y z '=,则xz z =-',xx x dxdx e c x c e x e c dx xe e z 111)1(])1([][++-=++-=+??=--?即x e c x y 1)1(++-='得2121c e c x y x ++--=20.令p y =',则dy dp p dx dy dy dp dx dp y =?==''所以0)(2323=+-=+-p p dy dp y p p p dy dp p y 则得p=0或02=+-p p dy dp y,前者对应解,后者对应方程y dy p p dp =-)1(积分得y c pp11=-即y c y c p dx dy 111+==两边积分得21||ln c x y c y '+='+,因此原方程的解是21||ln c x y c y '+='+及y=c 。
高等数学第六章习题及答案

微分方程习题课基本概念基本概念一阶方程一阶方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程7.伯努利方程7.伯努利方程可降阶方程可降阶方程线性方程解的结构定理1;定理2定理3;定理4线性方程解的结构定理1;定理2定理3;定理4欧拉方程欧拉方程二阶常系数线性方程解的结构二阶常系数线性方程解的结构特征方程的根及其对应项特征方程的根及其对应项f(x)的形式及其特解形式f(x)的形式及其特解形式高阶方程高阶方程待定系数法特征方程法一、主要内容微分方程解题思路一阶方程一阶方程高阶方程高阶方程分离变量法分离变量法全微分方程全微分方程常数变易法常数变易法特征方程法特征方程法待定系数法待定系数法非全微分方程非变量可分离非全微分方程非变量可分离幂级数解法幂级数解法降阶作变换作变换积分因子1、基本概念微分方程凡含有未知函数的导数或微分的方程叫微分方程.微分方程的阶微分方程中出现的未知函数的最高阶导数的阶数称为微分方程的阶.微分方程的解代入微分方程能使方程成为恒等式的函数称为微分方程的解.通解如果微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.特解确定了通解中的任意常数以后得到的解,叫做微分方程的特解.初始条件用来确定任意常数的条件.初值问题求微分方程满足初始条件的解的问题,叫初值问题.dxx f dy y g )()(=形如(1) 可分离变量的微分方程解法∫∫=dx x f dy y g )()(分离变量法2、一阶微分方程的解法)(x yf dx dy =形如(2) 齐次方程解法xyu =作变量代换)(111c y b x a c by ax f dxdy++++=形如齐次方程.,01时当==c c ,令k Y y h X x +=+=,(其中h 和k 是待定的常数)否则为非齐次方程.(3) 可化为齐次的方程解法化为齐次方程.)()(x Q y x P dxdy=+形如(4) 一阶线性微分方程,0)(≡x Q 当上方程称为齐次的.上方程称为非齐次的.,0)(≡x Q 当齐次方程的通解为.)(∫=−dxx P Cey (使用分离变量法)解法非齐次微分方程的通解为∫+∫=−∫dx x P dx x P eC dx e x Q y )()(])([(常数变易法)(5) 伯努利(Bernoulli)方程nyx Q y x P dxdy )()(=+形如)1,0(≠n 方程为线性微分方程.时,当1,0=n 方程为非线性微分方程.时,当1,0≠n解法需经过变量代换化为线性微分方程.,1nyz −=令.))1)((()()1()()1(1∫+∫−∫==−−−−c dx e n x Q ez ydxx P n dxx P n n),(),(=+dy y x Q dx y x P 其中dyy x Q dx y x P y x du ),(),(),(+=形如(6) 全微分方程xQ y P ∂∂=∂∂⇔全微分方程注意:解法¦应用曲线积分与路径无关.∫∫+=yy xx dyy x Q x d y x P y x u 0),(),(),(0,),(),(00x d y x P dy y x Q xx yy ∫∫+=.),(c y x u =§用直接凑全微分的方法.通解为3、可降阶的高阶微分方程的解法解法),(x P y =′令特点.y 不显含未知函数),()2(y x f y ′=′′型)()1()(x f yn =接连积分n 次,得通解.型解法代入原方程, 得)).(,(x P x f P =′,P y ′=′′),(x P y =′令特点.x 不显含自变量),()3(y y f y ′=′′型解法代入原方程, 得).,(P y f dydpP =,dydp P y =′′4、线性微分方程解的结构(1)二阶齐次方程解的结构:)1(0)()(=+′+′′y x Q y x P y 形如定理1 如果函数)(1x y 与)(2x y 是方程(1)的两个解,那末2211y C y C y +=也是(1)的解.(21,C C 是常数)定理2:如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 那么2211y C y C y +=就是方程(1)的通解.(2)二阶非齐次线性方程的解的结构:)2()()()(x f y x Q y x P y =+′+′′形如定理 3 设*y 是)2(的一个特解, Y 是与(2)对应的齐次方程(1)的通解, 那么*y Y y +=是二阶非齐次线性微分方程(2)的通解.定理4 设非齐次方程(2)的右端)(x f 是几个函数之和, 如)()()()(21x f x f y x Q y x P y +=+′+′′而*1y 与*2y 分别是方程,)()()(1x f y x Q y x P y =+′+′′ )()()(2x f y x Q y x P y =+′+′′的特解, 那么*2*1y y +就是原方程的特解.5、二阶常系数齐次线性方程解法)(1)1(1)(x f y P y P yP yn n n n =+′+++−−L 形如n 阶常系数线性微分方程=+′+′′qy y p y 二阶常系数齐次线性方程)(x f qy y p y =+′+′′二阶常系数非齐次线性方程解法由常系数齐次线性方程的特征方程的根确定其通解的方法称为特征方程法.2=++q pr r 0=+′+′′qy y p y 特征根的情况通解的表达式实根21r r ≠实根21r r =复根βαi r±=2,1xr x r eC e C y 2121+=xr ex C C y 2)(21+=)sin cos (21x C x C e y xββα+=特征方程为1)1(1)(=+′+++−−y P y P yP yn n n n L 特征方程为0111=++++−−n n n nP r P r P r L 特征方程的根通解中的对应项rk 重根若是rxk k exC x C C )(1110−−+++L β±αj k 复根重共轭若是xk k k k ex xD x D D x xC x C C α−−−−β++++β+++]sin )(cos )[(11101110L L 推广:阶常系数齐次线性方程解法n6、二阶常系数非齐次线性微分方程解法)(x f qy y p y =+′+′′二阶常系数非齐次线性方程型)()()1(x P e x f m xλ=解法待定系数法.,)(x Q e x y m xkλ=设⎪⎩⎪⎨⎧=是重根是单根不是根λλλ2,10k型]sin )(cos )([)()2(x x P x x P e x f n l xωωλ+=],sin )(cos )([)2()1(x x R x x R e x y mmxkωωλ+=设次多项式,是其中m x R x R mm)(),()2()1({}n l m ,max =⎩⎨⎧±±=.1;0是特征方程的单根时不是特征方程的根时ωλωλj j k7、欧拉方程欧拉方程是特殊的变系数方程,通过变量代换可化为常系数微分方程.x t e x tln ==或)(1)1(11)(x f y p y x p yxp yx n n n n n n =+′+++−−−L 的方程(其中n p p p L 21,形如叫欧拉方程.为常数),二、典型例题.)cos sin ()sin cos (dy x yx x y y x dx x y y x y x y −=+求通解例1解原方程可化为),cos sin sin cos (xyx y x y x yx y x y x y dx dy −+=,xyu =令.,u x u y ux y ′+=′=代入原方程得),cos sin sin cos (uu u uu u u u x u −+=′+,cos 2cos sin x dx du u u uu u =−分离变量两边积分,ln ln )cos ln(2C x u u +=−,cos 2xCu u =∴,cos 2x C x y x y =∴所求通解为.cos C xy xy =.32343y x y y x =+′求通解例2解原式可化为,32342y x y xy =+′,3223134x y x y y =+′−−即,31−=y z 令原式变为,3232x z xz =+′−,322x z x z −=−′即对应齐方通解为,32Cx z =一阶线性非齐方程伯努利方程,)(32x x C z =设代入非齐方程得,)(232x x x C −=′,73)(37C x x C ′+−=∴原方程的通解为.73323731x C x y ′+−=−利用常数变易法.212yy y ′+=′′求通解例3解.x 方程不显含,,dy dPP y P y =′′=′令代入方程,得,212y P dydP P +=,112y C P =+解得,,11−±=∴y C P ,11−±=y C dxdy即故方程的通解为.12211C x y C C +±=−.1)1()1(,2=′=−=+′−′′y y e xe y y y xx 求特解例4解特征方程,0122=+−r r 特征根,121==r r 对应的齐次方程的通解为.)(21xe x C C Y +=设原方程的特解为,)(2*xe b ax x y +=,]2)3([)(23*xe bx x b a ax y +++=′则,]2)46()6([)(23*xe b x b a x b a ax y +++++=′′代入原方程比较系数得将)(,)(,***′′′y y y ,21,61−==b a 原方程的一个特解为,2623*xx e x e x y −=故原方程的通解为.26)(2321x x xe x e x e x C C y −++=,1)1(=y Q ,1)31(21=−+∴e C C ,]6)1()([3221xe x x C C C y +−++=′,1)1(=′y Q ,1)652(21=−+∴e C C ,31121+=+e C C ,651221+=+e C C 由解得⎪⎩⎪⎨⎧−=−=,121,61221e C e C 所以原方程满足初始条件的特解为.26])121(612[23x x xe x e x e x e e y −+−+−=).cos (x x y y 2214+=+′′求解方程例5解特征方程,042=+r 特征根,22,1i r ±=对应的齐方的通解为.2sin 2cos 21x C x C Y +=设原方程的特解为.*2*1*y y y +=,)1(*1b ax y +=设,)(*1a y =′则,0)(*1=′′y ,得代入x y y 214=+′′,x b ax 2144=+由,04=b ,214=a 解得,0=b ,81=a ;81*1x y =∴),2sin 2cos ()2(*2x d x c x y +=设,2sin )2(2cos )2()(*2x cx d x dx c y −++=′则,2sin )44(2cos )44()(*2x dx c x cx d y +−−=′′,得代入x y y 2cos 214=+′′故原方程的通解为.2sin 81812sin 2cos 21x x x x C x C y +++=,2cos 212sin 42cos 4x x c x d =−由,04=−c ,214=d 即,81=d ,0=c ;2sin 81*2x x y =∴.)(),(1)()(2此方程的通解(2)的表达式;(1),试求:的齐次方程有一特解为,对应有一特解为设x f x p x xx f y x p y =′+′′例6解(1)由题设可得:⎪⎩⎪⎨⎧=−+=+),()1)((2,02)(223x f xx p x x x p 解此方程组,得.)(,)(331x x f xx p =−=(2)原方程为.313x y x y =′−′′,的两个线性无关的特解程是原方程对应的齐次方显见221,1x y y ==是原方程的一个特解,又xy 1*=由解的结构定理得方程的通解为.1221xx C C y ++=例7求微分方程()423d d 0y x y xy x −+=解原方程变形为23d 3,d x x x y y y−=−即223d 62,d x x y y y−=−此是关于函数的一阶线性非齐次微分方程,()2x f y =的通解.由求解公式得66d d 23e 2ed y y y yx y y C −⎛⎞∫∫=−+⎜⎟⎜⎟⎝⎠∫6463d 2.y y C y Cy y ⎛⎞=−+=+⎜⎟⎝⎠∫再作变换则有方程1,z u −=例8求解方程2d cos cos sin sin .d y y x y y x−=解令则原式为sin ,u y =2d cos .d u u x u x−=⋅此方程为伯努利方程,d cos .d zz x x+=−由积分公式, 得该方程的通解为()1sin cos e .2xz x x C −=−++从而得到原方程的通解()11sin sin cos e .2x y x x C −⎡⎤=−++⎢⎥⎣⎦⑵证明当时满足不等式例9设在时所定义的可微函数满足条件1x>−()g x ()()()()01d 0,011xg x g x g t t g x ′+−==+∫⑴求(),g x ′()e1.xg x −≤≤证⑴原方程变形为()()()()01d .xx g x g x g t t ′++=⎡⎤⎣⎦∫两端求导, 得()g x 0x ≥()()()()()()1,x g x g x g x g x g x ′′′′++++=⎡⎤⎣⎦令则原方程化为(),g x p ′=()()d 120,d px x p x +++=由条件所设即方程⑴()()001,g g ′=−=−01,x p ==−即2d ,1dp x x p x +=−+⑴()1e .1xg x p x −′==−+两端积分, 并由初始条件, 得⑵函数在上满足拉格郎日中值定理的条件, ()g x []0,x ()()()()()e 000,0,1g x g g x x x x ξξξξ−′−=−=−><<+从而有故当时, 又当()()01,g x g <=() 1.g x ≤0x ≥()()1ee e 0,1x x xf xg x x −−−′′=+=−≥+所以当时单调增加, 于是()f x 0x ≥因此时, 令则()()e ,xf xg x −=−()()()()e0010,x f x g x f g −=−≥=−=即综合以上得, 当时有,()e .x g x −≥0x ≥()e 1.x g x −≤≤例12 设()()()0sin d ,x f x x x t f t t =−−∫().f x 解因()()()00sin d d ,x xf x x xf t t tf t t =−+∫∫两边求导, 得()()()()0cos d xf x x f t t xf x xf x ′=−−+∫()0cos d ,xx f t t =−∫再次求导, 得()f x 其中为连续函数, 求()()sin ,f x x f x ′′=−−即()()sin .f x f x x ′′+=−并有初始条件对应的齐次方程的通()()00,0 1.f f ′==12sin cos .y C x C x =+设非齐次方程的特解是()*sin cos ,y x a x b x =+解是由待定系数法得10,.2a b ==121sin cos cos .2y C x C x x x =++由初始条件, 得121,0,2C C ==()11sin cos .22f x x x x =+即即原方程的通解为。
高等代数第六章9第六章课堂练习题太原理工大学

2) L(1 , 2 ) L( 1 , 2 ) L(1 , 2 , 1 , 2 )
对以 1 , 2 , 1 , 2 为列向量的矩阵A作初等行变换
返回 上页 下页
1 2 A 1 0 1 0 0 0
1 1 1 1 1 0 1 0
2 1 0 1 2 2 1 2
从而
V1=V2.
证毕.
返回
上页
下页
五.在R2×2中证明向量组
1 2 3 1 4 3 2 4 3 4 , 4 2 , 2 1 , 1 3 线性相关. 证明 由 1 2 3 1 4 3 2 k1 3 4 k2 4 2 k3 2 1 k4 1 k1 3 k 2 4 k 3 2 k 4 0 即有 2 k1 k 2 3 k 3 4 k 4 0 3 k1 4 k 2 2 k 3 k 4 0 4k1 2k 2 1k 3 3k 4 0
即
x1 x1 x1 x 2 x1 2 x 2
解得x2=-2x1,令x1 =k,得所求向量为
x= k(1, -2)T.
返回
上页
下页
1 1 2 2 , 七.已知 A , W X AX XA , X R 0 1 证明W是R2×2的子空间;求W的基与维数;写出W 中矩阵的一般形式.
第六章 课堂练习题
返回 上页 下页
一.单项选择题
1. 下列各向量集合不构成线性空间的是( D ).
V x x1 , x2 , , xn x1 x2 xn 0, xi R
2 2 2
(A)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 线性空间 自测题
一、填空题(20分)
1、若n ααα,,,21 就是线性空间V 的一个基,则满足条件(1)n ααα,,,21 就是 ;
(2)对V 中任意向量β, 、
2、数域P 上的线性空间V 的非空子集W 就是V 的子空间的充要条件为 、
3、已知12,W W 为线性空间V 的子空间, 12W W +为直与的充要条件为 、
4、设V 与W 就是数域P 上两个线性空间,V 到W 的一个同构映射f 满足如下三个条件:
(1)f 就是V 到W 的 ;
(2)对V ∈∀βα,,有 ;
(3)对,V k P α∀∈∈,有 、
5、向量空间V 的基12,n ααα,,到基11,,
,n n ααα-,的过渡矩阵为_______ 、 6、复数域作为实数域上的向量空间,则dim =_____,它的一个基为__ __、 复数域作为复数域上的向量空间,则dim =__ __,它的一个基为__ _ _、
二、选择题(10分)
1、若21,W W 均为线性空间V 的子空间,则下列等式成立的就是( )
(A)21211)(W W W W W =+; (B)21211)(W W W W W +=+ ;
(C)1211)(W W W W =+ ; (D)2211)(W W W W =+
2、按通常矩阵的加法与数乘运算,下列集合不构成P 上线性空间的就是:( ) (A){}1n n W A P A A ⨯'=∈=; (B){}2()0n n
W A P tr A ⨯=∈=; (C){}
30n n W A P A ⨯=∈=; (D){}4n n W A P A A ⨯'=∈=-、 3、数域P 上线性空间V 的维数为V r n ∈ααα,,,,21 ,且任意V 中向量可由n ααα,,,21 线性表出,则下列结论成立的就是:( )
(A)n r =; (B)n r ≤; (C)n r <; (D)n r >
4、设1324[],[]W P x W P x ==则=+)dim
(21W W ( ) (A)2; (B)3; (C)4; (D)5
5、设线性空间{}
R a a a a W ∈=)3,2,(,则W 的基为:( )
(A))3,2,1(; (B)),,(a a a ; (C))3,2,(a a a ;(D))3,0,0()0,2,0()0,0,1(
三、(10分) 在线性空间4P 中求由线性方程组:⎪⎩⎪⎨⎧=+-+=-+-=+-+01113530333045234321
43214321x x x x x x x x x x x x 所确定的4
P 的子空间W 的基与维数、
四、(15分)设3中的两个基分别为()1101α=,()2010α=,()3122α=, ()()()123100,110,111βββ===、
(1)求由基321321,,,,βββααα到基的过渡矩阵、
(2)已知向量α在基321,,ααα下的坐标为()130,求α在基321,,βββ下的坐标、
五、(15分) 设12(1,2,1,0),(1,1,1,1),αα==-1(2,1,0,1),β=- 2(1,1,3,7)β=,),(),,(212211ββααL W L W ==,求)dim (21W W +及)dim (21W W 、
六、(15分) 设n n A P ⨯∈:
1)证明:全体与A 可交换的矩阵组成n n P ⨯的一子空间,记作()C A ;
2)当A =E 时,求()C A ;
3)当1000020000
0A n ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦时,求()C A 的维数与一组基、 七、(15分)已知n n P ⨯的两个子空间{}1n n V A P A A ⨯'=∈=,{}2n n V A P A A ⨯'=∈=-,
证明:12n n P V V ⨯=⊕.
答案:
一、1、线性无关,β可以由n ααα,,,21 线性表示 2、 对V 的加法与数乘封闭 3、 12{}W W o ⋂=或12dim()0W W ⋂= 4、 线性映
射,()()()f f f αβαβ+=+,()()f k kf αα= 5、 111
⎡⎤⎢
⎥⎢⎥⎢⎥⎢⎥⎣⎦
6、 dim =2,它的一个基为1,i ; dim =2,它的一个基为1、
二.C C B C A
三、 解:由32543254325431330387018735131103870000---⎡
⎤
⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥--→--→-⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦
12534101920183701837300000000--⎡⎤
⎡⎤
⎢⎥⎢⎥→-→-⎢⎥⎢
⎥⎢⎥⎢⎥⎣⎦⎣⎦
,W 的维数为2, 一组基为()()'
'1218310,29701ξξ=-=-、
四、 解:(1)由()()()123123123101=012=A 102αααεεεεεε⎡⎤
⎢⎥⎢⎥⎢⎥⎣⎦
,
()()()123123123111=011=001B βββεεεεεε⎡⎤
⎢⎥
⎢⎥⎢⎥⎣⎦
,
()()1123123=A B βββααα-∴,
过渡矩阵1
110111*********
1=01201121201123
110200110100111
0A B ---⎡⎤
⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢
⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦、
(2) ()112312311=(,,)3=300B A ααααβββ-⎛⎫⎛⎫
⎪
⎪
⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
坐标为111101*********=0110123110320001102010201B A -----⎛⎫⎡⎤
⎡
⎤⎛⎫⎡⎤⎛⎫⎛⎫
⎪
⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥-=-= ⎪ ⎪ ⎪ ⎪
⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎝⎭⎣⎦⎝⎭⎝⎭
五、解:由()121211211
10321110117=1103022201170115ααββ-⎡⎤⎡⎤
⎢⎥⎢⎥
-⎢⎥⎢⎥→⎢⎥⎢⎥--⎢⎥⎢⎥---⎣⎦⎣⎦
10141
00001170
10000412001000020001--⎡⎤⎡⎤
⎢⎥⎢⎥
⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦
,
12dim 2,dim 2W W ==,12dim()=4W W +,12dim()=0W W
六、 证明 1)设与A 可交换的矩阵的集合记为()C A 、显然()O C A ∈, ,()B D C A ∀∈,()()A B D AB AD BA DA B D A +=+=+=+,故()B D C A +∈、 若k 就是一数,()B C A ∀∈,可得()()()()A kB k AB k BA kB A ===,故()kB C A ∈、所以()C A 构成n n P ⨯的子空间。
2)当A E =时,()n n C A P ⨯=、
3)设()ij B b =为可与A 交换的矩阵,由第四章习题5知,B 只能就是对角矩阵,故维数为n ;1122,,,nn E E E 为一组基、
七、 证明:显然12+n n V V P ⨯⊂,又''
,22
n n A A A A A P A ⨯+-∀∈=+, 其中'2A A +为对称矩阵,'
2
A A -为反对称矩阵, ''1222A A A A A V V +-∴=+∈+ 故12+n n P V V ⨯⊂,从而12=+n n P V V ⨯、
又因为12A V V ∀∈⋂,'',A A A A ==-, 有A O =、故12{}V V O ⋂=,故12+V V 为直与、 故12n n P V V ⨯=⊕。