商人过河的数学模型及编程解决Word版
数学建模:研究商人过河问题

数学建模实验一报告实验题目:研究商人过河问题一、实验目的:编写一个程序(可以是C,C++或Mathlab )实现商人安全过河问题。
二、实验环境:Turbo c 2.0、Microsoft Visual C++ 6.0、Matlab 6.0以上 三、实验要求:要求该程序不仅能找出一组安全过河的可行方案,还可以得到所有的安全过河可行方案。
并且该程序具有一定的可扩展性,即不仅可以实现3个商人,3个随从的过河问题。
还应能实现 n 个商人,n 个随从的过河问题以及n 个不同对象且每个对象有m 个元素问题(说明:对于3个商人,3个随从问题分别对应于n=2,m=3)的过河问题。
从而给出课后习题5(n=4,m=1)的全部安全过河方案。
四、实验步骤:第一步:问题分析。
这是一个多步决策过程,涉及到每一次船上的人员以及要考虑此岸和彼岸上剩余的商人数和随从数,在安全的条件下(两岸的随从数不比商人多),经有限步使全体人员过河。
第二步:分析模型的构成。
记第k 次渡河前此岸的商人数为k x ,随从数为k y ,2,1=k ,n y x k k 2,1,=,(具有可扩展性),将)(k k y x ,定义为状态,状态集合成为允许状态集合(S )。
S={2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x )(}记第k 次渡船的商人数为k u ,随从数为k v ,决策为),(k k v u ,安全渡河条件下,决策的集合为允许决策集合。
允许决策集合记作D ,所以D={2,1,0,,21|,=<+<v u v u v u )(|1<u+v<2,u,v=0,1,2},因为k 为奇数时船从此岸驶向彼岸,k 为偶数时船由彼岸驶向此岸,所以状态k s 随决策k d 变化的规律是k k k k d s s )1(1-+=-,此式为状态转移律。
制定安全渡河方案归结为如下的多步决策模型:求决策)2,1(n k D d k =∈,使状态S s k ∈按照转移律,由初始状态)3,3(1=s 经有限n 步到达)0,0(1=+n s第三步:模型求解。
基于商人过河游戏的数学建模-最新教育文档

基于商人过河游戏的数学建模1提出问题文献[1]给出一个智力游戏:“三名商人各带一个随从渡河,一只小船只能容纳二人,由他们自己划行。
随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。
但是如何乘船的大权掌握在商人们手中。
商人怎样才能安全渡河呢?”此类智力问题当然可以通过一番思考,拼凑出一个可行的方案来。
文献[1]中通过图解法给出了解答,但是当商人数与随从数发生变化,船能容纳的人数不是二人时,图解法就会变得繁复而难以解决问题。
因此,将上述游戏改为n名商人各带一个随从过河,船每次至多运p个人,至少要有一个人划船,由他们自己划行。
随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。
但是如何乘船的大权掌握在商人们手中。
商人怎样才能安全渡河的问题。
除此之外,考虑了随着船载人数的增多,以及商人与仆人的对数增多到多少时,会影响商人的安全渡河的问题。
2问题分析由于这个虚拟的游戏已经理想化了,所以不必再作假设。
我们希望能找出这类问题的规律性,建立数学模型,并通过计算机编程进行求解。
安全渡河游戏可以看做是一个多步决策过程,分步优化,船由此岸驶向彼岸或由彼岸驶回此岸的每一步,都要对船上的商人和随从做出决策,在保证商人安全的前提下,在无限步内使全部人员过河。
用状态表示某一岸的人员状况,决策表示船上的人员情况,可以找出状态随决策变化的规律。
问题转化为在状态的允许范围内,确定每一步的决策,最后获取一个全局最优方案的决策方案,达到渡河的目标。
除此以外,我们还要找出,随着船载人数的增加,商人与仆人对数达到多少时,会影响到商人不能安全过河。
这里要对船载人数进行限制,因为船载人数过多时,此智力游戏会变得相当繁复,就会失去作为游戏的本来意义。
3模型构成记第k次渡河前此岸的商人数为,随从数为,,,。
将二维向量定义为过程的状态。
安全渡河条件下的状态集合称为允许状态集合,记作S。
当时,;当时,。
记第k次渡船上的商人数为uk,随从数为vk,将二维向量定义为决策。
数学建模:研究商人过河问题

数学建模实验一陈说之吉白夕凡创作实验题目:研究商人过河问题一、实验目的:编写一个法式(可以是C,C++或Mathlab )实现商人平安过河问题.二、实验环境:Turbo c 2.0、、Matlab 6.0以上三、实验要求:要求该法式不单能找出一组平安过河的可行方案, 还可以获得所有的平安过河可行方案.而且该法式具有一定的可扩展性, 即不单可以实现3个商人, 3个随从的过河问题.还应能实现n 个商人, n 个随从的过河问题以及n 个分歧对象且每个对象有m 个元素问题(说明:对3个商人, 3个随从问题分别对应于n=2,m=3)的过河问题.从而给出课后习题5(n=4,m=1)的全部平安过河方案.四、实验步伐:第一步:问题分析.这是一个多步决策过程, 涉及到每一次船上的人员以及要考虑彼岸和彼岸上剩余的商人数和随从数, 在平安的条件下(两岸的随从数不比商人多), 经有限步使全体人员过河. 第二步:分析模型的构成.记第k 次渡河前彼岸的商人数为k x , 随从数为k y , 2,1=k , n y x k k 2,1,=, (具有可扩展性), 将)(k k y x ,界说为状态, 状态集合成为允许状态集合(S ).S={2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x )(}记第k 次渡船的商人数为k u , 随从数为k v , 决策为),(k k v u , 平安渡河条件下, 决策的集合为允许决策集合.允许决策集合记作D, 所以D={2,1,0,,21|,=<+<v u v u v u )(|1<u+v<2,u,v=0,1,2},因为k 为奇数时船从彼岸驶向彼岸, k 为偶数时船由彼岸驶向彼岸, 所以状态k s 随决策k d 变动的规律是k k k k d s s )1(1-+=-, 此式为状态转移律.制定平安渡河方案归结为如下的多步决策模型:求决策)2,1(n k D d k =∈, 使状态S s k ∈依照转移律, 由初始状态)3,3(1=s 经有限n 步达到)0,0(1=+n s第三步:模型求解.#include "stdio.h"#include "string.h"#include <memory>#include <stdlib.h>#include <iostream>using namespace std;#include "conio.h"FILE *fp;/*设立文件指针, 以便将它用于其他函数中*/struct a{long m,s;struct a *next;};/*数组类型a :记录各种情况下船上的商人和仆人数, m :代表商人数 s :代表仆人数*/struct a *jj,head;/*head为头指针的链表单位(船上的人数的各种情况的链表)*/int n,total=0,js=0;/*total暗示船上各种情况总数*/struct aim {long m1,s1,m2,s2;int n;struct aim *back,*next;};/*用于建立双向的指针链表, 记入符合的情况, m1, s1暗示要过岸的商人数和仆人数;m2, s2暗示过岸了的商人数和仆人数, n暗示来回的次数*/int k1,k2;void freeit(struct aim *p){struct aim *p1=p;p1=p->back;free(p);if(p1!=NULL)p1->next=NULL;return;}/*释放该单位格, 并将其上的单位格的next指针还原*/int determ(struct aim *p){ struct aim *p1=p;if(p->s1>k2)return -1;/*仆人数不能超越总仆人数*/if(p->m1>k1)return -1;/*商人数不能超越总商人数*/if(p->s2>k2)return -1;/*对岸, 同上*/if(p->m2>k1)return -1;/*对岸, 同上*/if(p->s1<0)return -1;/*仆人数不能为负*/if(p->s2<0)return -1;/*商人数不能为负*/if(p->m1<0)return -1;/*对岸, 同上*/if(p->m2<0)return -1;/*对岸, 同上*/if(p->m1!=0)if(p->s1>p->m1)return -1;if(p->m2!=0)if(p->s2>p->m2)return -1;/*两岸商人数均不能小于仆人数*/ while(p1!=NULL){p1=p1->back;if(p1!=NULL)if(p1->n%2==p->n%2)if(p1->s1==p->s1)if(p1->s2==p->s2)if(p1->m1==p->m1)if(p1->m2==p->m2)return -1;}/*用于解决重复, 算法思想:即将每次算出的链表单位与以前的相比力, 若重复, 则暗示呈现循环*/if(p->s1==0&&p->m1==0)if(p->n%2==0)return 1;else return -1;/*显然如果达到条件就说明ok了*/return 0;}/*判断函数*/int sign(int n){if(n%2==0)return -1;return 1;}/*符号函数*/void copyit(struct aim *p3,struct aim *p){p3->s1=p->s1;p3->s2=p->s2;p3->m1=p->m1;p3->m2=p->m2;p3->n=p->n+1;p3->back=p;p3->next=NULL;p->next=p3;}/*复制内容函数, 将p中的内容写入p3所指向的链表单位中*/ void print(struct aim *p3){struct aim *p=p3;js++;while(p->back){p=p->back;}printf("\n第%d种方法:\n",js);fprintf(fp,"\n第%d种方法:\n",js);int count=0;while(p){ printf("%ld,%ld::%ld,%ld\t",p->m1,p->s1,p->m2,p->s2);fprintf(fp,"%ld,%ld::%ld,%ld\t",p->m1,p->s1,p->m2,p->s2); p=p->next;count++;}cout<<"一共有"<<count<<"步完成"<<endl;}/*打印函数, 将p3所指的内容打印出来*/void trans(struct aim *p){struct aim *p3;/*p3为申请的结构体指针*/struct a *fla;int i,j,f;fla=&head;p3=(struct aim *)malloc(sizeof(struct aim));f=sign(p->n);for(i=0;i<total;i++){fla=fla->next;copyit(p3,p);p3->s1-=fla->m*f;p3->m1-=fla->s*f;p3->s2+=fla->m*f;p3->m2+=fla->s*f;/*运算过程, 即过河过程*/j=determ(p3);/*判断, j记录判断结果*/ if(j==-1){if(i<total-1){continue;}else{freeit(p3);break;}}int count1=0;if(j==1){if(i<total-1){print(p3); count1++;continue;}else{print(p3);freeit(p3);break;}//cout<<cout1<<endl;printf("%d",count1);printf("\n");}if(j==0)trans(p3);}return;}/*转移函数, 即将人转移过河*//*n=0*/void main(){ struct aim *p,*p1;int j,a,e,f;struct a *flag;/*flag是用与记录头指针*/FILE*fpt;if((fpt=fopen("c:result.dat","w+"))==0){printf("can't creat it\n");exit(0);}fp=fpt;system("cls");printf("问题描述:三个商人各带一个随从搭船过河, 一只小船只能容纳X人, 由他们自己划船.三个商人窃听到随从们密谋, 在河的任意一岸上, 只要随从的人数比上人多, 就杀失落商人.可是如何搭船渡河的决策权在商人手里, 商人们如何安插渡河计划确保自身平安?\n");printf("\n");p=(struct aim *)malloc(sizeof(struct aim));p->back=NULL;p->next=NULL;p->s2=0;p->m2=0;p->n=1;/*设立初始头指针*/printf("please input the total of people on the board\n");fprintf(fp,"\n请输入船上的人数\n");scanf("%d",&n);fprintf(fp,"\n%d\n",n);flag=&head;for(e=0;e<=n;e++)for(f=0;f<=n;f++)if(e+f>0&&e+f<=n){ total++;jj=(struct a*)malloc(sizeof(struct a));jj->m=e;jj->s=f;flag->next=jj;jj->next=NULL;flag=jj;}/*********************************/printf("please input the total of merchant and salvent as follow: mechant,salvent;\n");fprintf(fp,"\nplease input the total of merchant and salvent as follow: mechant,salvent;\n");scanf("%ld,%ld",&p->m1,&p->s1);fprintf(fp,"\n%ld,%ld\n",p->m1,p->s1);/**********************************/k1=p->m1;k2=p->s1;trans(p);fclose(fpt);getch();}第一步:三个商人, 三个随从的模型求解谜底为:运行后的结果为:第 1 种方案:(3,3) 到 (0,0)、(3,1) 到 (0,2)、(3,2) 到(0,1)、(3,0) 到 (0,3)、(3,1) 到 (0,2)、(1,1) 到 (2,2)、(2,2) 到 (1,1)、(0,2) 到 (3,1)、(0,3) 到 (3,0)、(0,1) 到(3,2)、(0,2) 到 (3,1)、(0,0) 到 (3,3)第 2 种方案:(3,3) 到 (0,0)、(3,1) 到 (0,2)、(3,2) 到(0,1)、(3,0) 到 (0,3)、(3,1) 到 (0,2)、(1,1) 到 (2,2)、(2,2) 到 (1,1)、(0,2) 到 (3,1)、(0,3) 到 (3,0)、(0,1) 到(3,2)、(1,1) 到 (2,2)、(0,0) 到 (3,3)第 3 种方案:(3,3) 到 (0,0)、(2,2) 到 (1,1)、(3,2) 到(0,1)、(3,0) 到 (0,3)、(3,1) 到 (0,2)、(1,1) 到 (2,2)、(2,2) 到 (1,1)、(0,2) 到 (3,1)、(0,3) 到 (3,0)、(0,1) 到(3,2)(、0,2) 到 (3,1)、(0,0) 到 (3,3)第 4 种方案:(3,3) 到 (0,0)、(2,2) 到 (1,1)、(3,2) 到(0,1)、(3,0) 到 (0,3)、(3,1) 到 (0,2)、(1,1) 到 (2,2)、(2,2) 到 (1,1)、(0,2) 到 (3,1)、(0,3) 到 (3,0)、(0,1) 到(3,2)、(1,1) 到 (2,2)(0,0) 到 (3,3)第二步:四个商人三个随从, 其结果为:第1种方法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第2种方法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3一共有14步完成第3种方法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第4种方法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第5种方法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第6种方法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第7种方法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,13,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,0::4,3 一共有12步完成第8种方法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第9种方法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3一共有14步完成第10种方法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第11种方法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第12种方法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第13种方法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,1::4,2 0,2::4,1 0,0::4,3一共有14步完成第14种方法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,34,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,0::4,3 一共有12步完成第15种方法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第16种方法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3一共有14步完成第17种方法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第18种方法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第19种方法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第20种方法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,1::4,2 0,2::4,1 0,0::4,3一共有14步完成第21种方法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,13,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,0::4,3 一共有12步完成第22种方法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 0,2::4,10,3::4,0 0,1::4,2 1,1::3,2 0,0::4,3一共有14步完成第23种方法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 0,2::4,10,3::4,0 0,1::4,2 2,1::2,2 1,0::3,3 1,1::3,20,0::4,3 一共有16步完成第24种方法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 0,2::4,10,3::4,0 0,1::4,2 0,2::4,1 0,0::4,3一共有14步完成第25种方法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 0,1::4,2 1,1::3,2 0,0::4,3 一共有14步完成第26种方法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 0,1::4,2 0,2::4,1 0,0::4,3一共有14步完成第27种方法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,12,1::2,2 1,0::3,3 1,1::3,2 0,1::4,2 0,2::4,10,0::4,3 一共有16步完成第28种方法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第29种方法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 0,2::4,10,3::4,0 0,1::4,2 1,1::3,2 0,0::4,3一共有14步完成第30种方法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,10,3::4,0 0,1::4,2 2,1::2,2 1,0::3,3 1,1::3,20,0::4,3 一共有16步完成第31种方法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 0,2::4,10,3::4,0 0,1::4,2 0,2::4,1 0,0::4,3一共有14步完成第32种方法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 0,1::4,2 1,1::3,2 0,0::4,3 一共有14步完成第33种方法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,12,1::2,2 0,1::4,2 0,2::4,1 0,0::4,3一共有14步完成第34种方法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 1,0::3,3 1,1::3,2 0,1::4,2 0,2::4,10,0::4,3 一共有16步完成第35种方法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3一共有14步完成第36种方法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,01,1::3,2 0,0::4,3 一共有12步完成第37种方法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第38种方法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第39种方法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第40种方法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第41种方法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第42种方法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,0::4,3 一共有12步完成第43种方法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,00,1::4,21,1::3,2 0,0::4,3 一共有12步完成第44种方法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第45种方法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第46种方法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第47种方法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第48种方法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第49种方法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,0::4,3 一共有12步完成。
商人们怎样安全过河-(附MATLAB程序完整)

商人们怎样安全过河随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货.但是乘船渡河的方案由商人决定.商人们怎样才能安全过河?问题分析:决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员要求~在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河. 建立模型xk~第k次渡河前此岸的商人数 xk, yk=0,1,2,3;yk~第k次渡河前此岸的随从数 k=1,2,|....sk=(xk , yk)~过程的状态 S ~ 允许状态集合S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}uk~第k次渡船上的商人数 uk, vk=0,1,2;vk~第k次渡船上的随从数 k=1,2,.....dk=(uk , vk)~决策 D={(u , v) u+v=1, 2} ~允许决策集合~状态转移律多步决策问题求dk D(k=1,2, n), 使sk S, 并按转移律由s1=(3,3)到达 sn+1=(0,0).模型求解穷举法~ 编程上机S={(x , y) x=0, y=0,1,2,3;x=3, y=0,1,2,3;x=y=1,2}图解法状态s=(x,y) ~ 16个格点允许状态~ 10个点允许决策 ~ 移动1或2格; k奇,左下移; k偶,右上移.d1,.......,d11给出安全渡河方案评注和思考规格化方法,易于推广考虑4名商人各带一随从的情况程序%%%%%%%%%%%%%%%% 开始 %%%%%%%%%%%%%%%%%%%%%%function jueche=guoheclear allclc%%%%%%%%%%程序开始需要知道商人和仆人数;%%%%%%%%%%%%%shangren=input('输入商人数目: ');puren=input('输入仆人数目: ');rongliang=input('输入船的最大容量: ');if puren>shangrenshangren=input('输入商人数目:');puren=input('输入仆人数目:');rongliang=input('输入船的最大容量:');end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 决策生成jc=1; %决策向量放在矩阵d中,jc为插入新元素的行标初始为1;for i=0:rongliangfor j=0:rongliangif (i+j<=rongliang)&(i+j>0) % 满足条D={(u,v)|1<=u+v<=rongliang,u,v=0,1,2}d(jc,1:3)=[i,j ,1]; %生成一个决策向量立刻扩充为三维;d(jc+1,1:3)=[-i,-j,-1]; % 同时生成他的负向量;jc=jc+2; % 由于生成两个决策向量,则jc要向下移动两个;endendj=0;end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 状态数组生成kx=1; % 状态向量放在A矩阵中,生成方法同矩阵生成;for i=shangren:-1:0for j=puren:-1:0if ((i>=j)&((shangren-i)>=(puren-j)))|((i==0)|(i==shangren))% (i>=j)&((shangren-i)>=(puren-j)))|((i==0)|(i==shangren))为可以存在的状态的约束条件 A(kx,1:3)=[i,j,1]; %生成状态数组集合D `A(kx+1,1:3)=[i,j,0];kx=kx+2;endj=puren;end;%%%%%%%%%%%%%%% 将状态向量生成抽象矩阵%%%%%%%%%%%%%%%%%%%k=(1/2)*size(A,1);CX=zeros(2*k,2*k);a=size(d,1);for i=1:2*kfor j=1:ac=A(i,:)+d(j,:) ;x=find((A(:,1)==c(1))&(A(:,2)==c(2))&(A(:,3)==c(3))) ; v(i,x)=1; %x为空不会改变v值endend%%%%%%%%%%%%%%%%%%%%%%dijstra算法%%%%%%%%%%%%%%%%%%%%%%%%%%x=1; y=size(A,1);m=size(v,1);T=zeros(m,1);T=T.^-1;lmd=T;P=T;S=zeros(m,1);S(x)=1;P(x)=0; lmd(x)=0;k=x;while(1)a=find(S==0);aa=find(S==1);if size(aa,1)==mbreak;endfor j=1:size(a,1)pp=a(j,1);if v(k,pp)~=0if T(pp)>(P(k)+v(k,pp))T(pp)=(P(k)+v(k,pp));lmd(pp)=k;endendendmi=min(T(a));if mi==infbreak;d=find(T==mi);d=d(1);P(d)=mi;T(d)=inf;k=d;S(d)=1;endendif lmd(y)==infjueche='can not reach(不能过河)';return;endjueche(1)=y;g=2; h=y;while(1)if h==xbreak;endjueche(g)=lmd(h);g=g+1;h=lmd(h);endjueche=A(jueche,:);jueche(:,3)=[]; %%%%%%%%%%%%%%%%%% 程序完 %%%%%%%%%%%%%%%%%%欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
商人过河模型问题的求解

《数学建模实验》课程考试试题----商人安全过河数学建模与求解一.问题提出:4名商人带4名随从乘一条小船过河,小船每次自能承载至多两人。
随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货.乘船渡河的方案由商人决定,商人们如何才能安全渡河呢二.模型假设:商人和随从都会划船,天气很好,无大风大浪,且船的质量很好,可以保证很多次安全的运载商人和随从。
三.问题分析:商随过河问题可以视为一个多步决策过程,通过多次优化,最后获取一个全局最优的决策方案。
对于每一步,即船由此岸驶向彼岸或由彼岸驶向此岸,都要对船上的人员作出决策,在保证两岸的商人数不少于随从数的前提下,在有限步内使全部人员过河。
用状态变量表示某一岸的人员状况,决策变量表示船上的人员状况,可以找出状态随决策变化的规律,问题转化为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到安全渡河的目标。
四.模型构成:k x ~第k 次渡河前此岸的商人数,k y ~第k 次渡河前此岸的随从数 k x , k y =0,1,2,3,4; k =1,2,… …k S =(k x , k y )~过程的状态,S ~ 允许状态集合,S={(x , y )| x =0, y =0,1,2,3,4; x =4 ,y =0,1,2,3,4; x =y =1,2,3} k u ~第k 次渡船上的商人数k v ~第k 次渡船上的随从数k d =(k u , k v )~决策,D={(u , v )| 21≤+≤v u ,k u , k v =0,1,2} ~允许决策集合 k =1,2,… …因为k 为奇数时船从此岸驶向彼岸,k 为偶数时船从彼岸驶向此岸,所以状态k S 随决策k d 的变化规律是1+k S =k S +k )1(-k d ~状态转移律求k d ∈D(k =1,2, …n), 使k S ∈S, 并按转移律由1S =(4,4)到达状态1+n S =(0,0)。
商人过河问题的Java编程解决

商人过河问题的Java编程解决转自:“电脑编程技巧与维护”/摘要为商人过河问题建立数学模型,归结为路径搜索问题,并给出一个通用的Jav程序来解决此类问题。
关键词商人过河,二元组,链表,集合一、描述商人过河问题是一个传统的智力问题。
其描述如下:三名商人各带一名随从乘船渡河,—只小船只能容纳二人,由他们自己划行。
随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。
但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?商人过河问题可以看作一个多步决策过程,通过一系列决策步骤逼近决策目标,并最终达到决策目标。
对于该问题的每一步决策,就是要对船由此岸驶向彼岸或由彼岸驶回此岸的人员(包括商人和随从)作出规划,在保证商人安全的前提下,通过有限的步骤,实现人员全部过河的目标。
二、分析针对这一具体问题,可以经过一番精心安排,找到一个解决方案。
不过,本文希望对这一问题进行发展和延伸,建立起数学模型,发现其中蕴含的规律,并借助计算机的运算能力,找到一个通用的一般解法。
在商人过河问题中,用一个二元组来表示岸上商人和随从的组成(m,s),其中m表示商人人数,s表示随从人数,每个组合可以视为一种状态。
所有可能的状态可以表示为集合:S0={(m, s)| 0≤m≤3; 0≤s≤3}安全状态要求商人人数为0,或者大于等于随从人数,因此,所有的安全状态可以表示为集合:S1={(m, s)| m=0, s=0,1,2,3; m=3, s=0,1,2,3; m=s=1,2}二元组(m,s)也可以表示一次渡河方案,其中m表示船载的商人人数,s表示船载的随从人数。
则所有的渡河方案可以表示为集合:S2={(m , s)|0≤m;0≤s;0≤m+s≤2 }一次渡河决策可以表示为:(m, s)K+1 = (m , s)K- (-1)K(u, v)KK = 0,1,2,3…(m , s)K 为第K次渡河时,岸上的商人和随从的组成,(u, v)K为第K次渡河方案,K从0开始。
数学建模作业(商人过河问题)

数学建模作业(四)——商人过河问题一.问题描述有四名商人各带一名仆人过河,但船最多能载二人,商人已获得仆人的阴谋:在河的任一岸,只要仆人数超过商人数,仆人会将商人杀死并窃取财物且安排如何乘船的权力掌握在商人手中。
试为商人制定一个安全过河的方案。
二.解决方案用递归的源程序如下:开始时商人,强盗所在的河的这边设为0状态,另一边设为1状态(也就是船开始时的一边设为0,当船驶到对岸是设为1状态,在这两个状态时,都必须符合条件)#include <stdlib.h>struct node /*建立一个类似栈的数据结构并且可以浏览每一个数据点*/ {int x;int y;int state;struct node *next;};typedef struct node state;typedef state *link;link PPointer1=NULL;link PPointer2=NULL;int a1,b1;int a2,b2;/*栈中每个数据都分为0,1状态*/void Push(int a,int b,int n){link newnode;newnode=(link)malloc(sizeof(state));newnode-> x=a;newnode-> y=b;newnode-> state=n;newnode-> next=NULL;if(PPointer1==NULL){PPointer1=newnode;PPointer2=newnode;}else{PPointer2-> next=newnode;PPointer2=newnode;}}void Pop()/*弹栈*/{link pointer;if(PPointer1==PPointer2){free(PPointer1);PPointer1=NULL;PPointer2=NULL;}pointer=PPointer1;while(pointer-> next!=PPointer2)pointer=pointer-> next;free(PPointer2);PPointer2=pointer;PPointer2-> next=NULL;}int history(int a,int b,int n) /*比较输入的数据和栈中是否有重复的*/ {link pointer;if(PPointer1==NULL)return 1;else{pointer=PPointer1;while(pointer!=NULL){if(pointer-> x==a&&pointer-> y==b&&pointer-> state==n)return 0;pointer=pointer-> next;}return 1;}}int judge(int a,int b,int c,int d,int n)/*判断这个状态是否可行,其中使用了history函数*/{if(history(a,b,n)==0) return 0;if(a> =0&&b> =0&&a <=3&&b <=3&&c> =0&&d> =0&&c <=3&&d <=3&&a+c==3&&b+d==3){switch(n){case 1:{if(a==3){Push(a,b,n);return 1;}else if(a==0){Push(a,b,n);return 1;}else if(a==b){Push(a,b,n);return 1;}else return 0;}case 0:{if(a==3){Push(a,b,n);return 1;}else if(a==0){Push(a,b,n);return 1;}else if(a> =b){Push(a,b,n);return 1;}else return 0;}}}else return 0;}int Duhe(int a,int b,int n)/*递归法解决商人渡河问题,如果这一个状态符合*/ {/*则判断下一个状态,直至问题解决*/ if(a==0&&b==0) return 1;if(n==0)/*判断0状态时,商匪状态是否符合要求*/{if(judge(a-1,b-1,4-a,4-b,1)){if(Duhe(a-1,b-1,1)==1)return 1;}if(judge(a,b-2,3-a,5-b,1)){if(Duhe(a,b-2,1)==1)return 1;}if(judge(a-2,b,5-a,3-b,1)){if(Duhe(a-2,b,1)==1)return 1;if(judge(a-1,b,4-a,3-b,1)){if(Duhe(a-1,b,1)==1)return 1;}if(judge(a,b-1,3-a,4-b,1)){if(Duhe(a,b-1,1)==1)return 1;}else{Pop(0);return 0;}}if(n==1)/*判断0状态时,商匪状态是否符合要求*/{if(judge(a+1,b+1,2-a,2-b,0)){if(Duhe(a+1,b+1,0)==1)return 1;}if(judge(a,b+2,3-a,1-b,0)){if(Duhe(a,b+2,0)==1)return 1;}if(judge(a+2,b,1-a,3-b,0)){if(Duhe(a+2,b,0)==1)return 1;}if(judge(a+1,b,2-a,3-b,0)){if(Duhe(a+1,b,0)==1)return 1;}if(judge(a,b+1,3-a,2-b,0))if(Duhe(a,b+1,0)==1)return 1;}else{Pop(1);return 0;}}return 0;}main(){link pointer;Push(3,3,0);Duhe(3,3,0);pointer=PPointer1;while(pointer!=NULL){printf( "%d,%d---%d\n ",pointer-> x,pointer-> y,pointer-> state);pointer=pointer-> next;}getch();}。
商人过河

s=[3,3];m=[0,0];d=zeros(1,2);k=1;l=0; d=3*ones(1,2); while any(s~=0) k=k+1 %渡河 d1=[0,2;1,1;2,0]'; %每种渡河的方案 for i=d1 s1=s; m1=m; s1=s1-i‘; m1=m1+i'; if all(s1==0) l=l+1; d=[d;i']; s=s1; m=m1; else if all(s1>=0) & all(m1>=0) if (s1(1)==0 | s1(1)>=s1(2)) & (m1(1)==0 | m1(1)>=m1(2)) & any(i'~=d(end,:)) %back d2=[0 1;1 0;1 1]'; for j=d2 s2=s1; m2=m1; s2=s2+j‘; m2=m2-j'; if all(s2>=0) & all(m2>=0) if (s2(1)==0 | s2(1)>=s2(2)) & (m2(1)==0 | m2(1)>=m2(2)) l=l+1; d=[d;i']; d=[d;j']; m=m2; s=s2; l=l+1; break end; end; end break end; end; end; end;end d(2:end,:)
答案
商人过河问题
• 三名商人个带一个随从乘船渡河,一只小船 支能容纳二人,由他们自己划行,随从们密约, 在河的任一岸,一旦随从的人数比商人多,就 杀人越货.但是如何乘船渡河的大权掌握在 商人们手中,那么商人们应该怎样才能安全 渡河呢? • 对于这类智力问题可以通过逻辑思维判断 得出解决方案.也可以通过计算机枚举种种 可能,得到合理的解.(考虑过 表示出发岸边的人数; %m--表示河对岸的人数; %d--表示过河的每种决策 clear all s=[3,3];m=[0,0];
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:M对商仆过河,一只船最多载N人,船上和岸上的仆人数都不能多于商人数,否则商人有危险。
安排合理的渡河方案,保证商人能安全渡河。
(可利用向量,矩阵,图解等方法)一.问题提出:有M对商仆乘船过河,一只船最多载N人,由商人和仆人自己划船渡河,在河的任意一岸,一旦仆人数多于商人数,仆人就可将商人杀死,谋取利益,但是乘船渡河的主动权掌握在商人们手中,商人们如何安排渡河方案,才能安全渡河?二.假设:商人和仆人都会划船,天气很好,无大风大浪,船的质量很好,船桨足够很多次的运载商人和仆人。
三.参数:1.设(x,y)是状态向量,表示任一岸的商人和仆人数,并且x,y分别要大于等于0,小于等于M。
2.设(m,n)是运载向量,表示运载的商人数和仆人数,0<=m<=N,0<=n<=N,0<=m+n<=N。
3.设用s表示所有的可取状态向量的集合。
4.设用d表示所有运载向量的集合。
5.设用表示从此岸到彼岸,作减;用表示从彼岸到此岸,作加。
Sk:表示第k步可取状态向量(sk属于s);dk:表示第k步可取转移向量(dk属于d);四.问题分析:商仆安全渡河问题可以视为一个多步决策过程,多步决策是指决策过程难以一次完成,而是多步优化,最后获取一个全局最优方案的决策方法。
对于每一步,即船由此岸驶向彼岸,或者船由彼岸驶向此岸的决策,不仅会影响到该过程的效果,而且还会影响到下一步的初始状态,从而对整个过程都会有影响。
所以,在每一次过河时,就不能只从这一次过河本身考虑,还要把它看成是整个过河过程中的一个部分。
在对船上的人员做决策时,要保证两岸的商人数不能少于仆人数,用最少的步伐是人员全部过河。
应用状态向量和运载向量,找出状态随运载变化的规律,此问题就转化为状态在允许范围内(即安全渡河条件),确定每一次该如何过河,从而达到渡河的目标。
现在我们都把它们数量化:即用数学语言来表示。
我们以3名商人为例设第k次渡河前此岸的商人数为x k,随从数为y k,k=1,2,…,x k,y k =0,1,2,3,将二维向量S k =(x k,y k)定义为状态。
安全渡河条件下的状态集合称为允许状态集合,记为S,则允许状态集合为:S={(x,y)| x = 0或3,y = 0,1,2,3,x = y = 1,2} (1)又设第k次渡船上的商人数为u k,随从数为v k,将二维向量d k=(u k+ v k)定义为决策。
则允许决策集合为:D={(u,v)| u + v = 1,2} (2)因为k为奇数时船从此岸驶向彼岸,k为偶数时船由彼岸驶向此岸,所以状态S k随着决策d k变化的规律即状态转移规律是:S k+1 = S k +(- 1)k d k(3)这样,制定安全渡河方案归结为如下的多步决策问题:求决策d k ∈ D(k = 1,2,…,n),使状态S k ∈ S按照规律(3),由初始状态S1=(3,3)经有限步(设为n)到达状态S n+1=(0,0)。
模型的解答下面通过程序给出这个多步决策问题的一个解,a[1]={0,0};a[2]={0,1};a[3]={0,2};a[4]={0,3};a[5]={3,0};a[6]={3,1};a[7]={3,2};a[8]={3,3};a[9]={1,1};a[10]={2,2};(*以上给出10个允许的状态*)d[1]={0,2};d[2]={2,0};d[3]={1,1};d[4]={0,1};d[5]={1,0};(*以上表示给出5个允许的决策*)i=1;j=1;k=1;s[0]=s[1]={3,3};Print[″此岸————船上————对岸″];Do[Do[s[i+1]=s[i]+(-1)^i d[j];t=0;Do[If[s[i+1]= =a[k],t=1],{k,1,10}];If[t= =0,Continue[ ]];(*以上是保证状态属于允许的状态*)l=Mod[i+1,2];m=l;u=0;If[i+1> =3,Do[If[s[i+1]= =s[m],u=1,Break[ ]],{m,l,i -1,2}]];If[u= =0,c[i+1]=d[j];Break[ ]],{j,1,5}];If[t= =0,Print[No,Result];Break[ ]];b[i+1]={3,3}-s[i+1];Print[s[i],″- - - -″,c[i+1],″- - - -″,b[i+1]];If[s[i+1]= ={0,0},Break[ ]],{i,1,12}]程序运行结果如下:此岸——————船上——————对岸{3,3}——————{0,2}——————{0,2} {3,1}——————{0,1}——————{0,1} {3,2}——————{0,2}——————{0,3} {3,0}——————{0,1}——————{0,2} {3,1}——————{2,0}——————{2,2} {1,1}——————{1,1}——————{1,1} {2,2}——————{2,0}——————{3,1} {0,2}——————{0,1}——————{3,0} {0,3}——————{0,2}——————{3,2} {0,1}——————{0,1}——————{3,1} {0,2}——————{0,2}——————{3,3} 可以得出经过11步的渡河就能达到安全渡河的目标及满足渡河的次数尽量少的条件。
这11步的渡河方案就是上面程序运行结果中船上下面的一列。
渡河的整个过程如下所示:去2随从回1随从(3商人3随从)—————→(3商人1随从)—————→去2随从回1随从(3商人2随从)—————→(3商人0随从)—————→去2商人回1商人1随从(3商人1随从)—————→(1商人1随从)—————→去2商人回1随从(2商人2随从)—————→(0商人2随从)—————→去2随从回1随从(0商人3随从)—————→(0商人1随从)—————→去2随从(0商人2随从)—————→(渡河成功)一.程序实现#include "stdio.h"#include "string.h"#include <memory>#include <stdlib.h>#include<iostream>using namespace std;#include "conio.h"FILE *fp;/*设立文件指针,以便将它用于其他函数中*/ struct a{long m,s;struct a *next;};/*数组类型a:记录各种情况下船上的商人和仆人数,m:代表商人数s:代表仆人数*/struct a *jj,head;/*head为头指针的链表单元(船上的人数的各种情况的链表)*/int n,total=0,js=0;/*total表示船上各种情况总数*/ struct aim {long m1,s1,m2,s2;int n;struct aim *back,*next;};/*用于建立双向的指针链表,记入符合的情况,m1,s1表示要过岸的商人数和仆人数;m2,s2表示过岸了的商人数和仆人数,n表示来回的次数*/int k1,k2;void freeit(struct aim *p){struct aim *p1=p; p1=p->back;free(p);if(p1!=NULL)p1->next=NULL;return;}/*释放该单元格,并将其上的单元格的next指针还原*/int determ(struct aim *p){ struct aim *p1=p;if(p->s1>k2)return -1;/*仆人数不能超过总仆人数*/if(p->m1>k1)return -1;/*商人数不能超过总商人数*/if(p->s2>k2)return -1;/*对岸,同上*/if(p->m2>k1)return -1;/*对岸,同上*/if(p->s1<0)return -1;/*仆人数不能为负*/if(p->s2<0)return -1;/*商人数不能为负*/if(p->m1<0)return -1;/*对岸,同上*/if(p->m2<0)return -1;/*对岸,同上*/if(p->m1!=0)if(p->s1>p->m1)return -1;if(p->m2!=0)if(p->s2>p->m2)return -1;/*两岸商人数均不能小于仆人数*/while(p1!=NULL){p1=p1->back;if(p1!=NULL)if(p1->n%2==p->n%2)if(p1->s1==p->s1)if(p1->s2==p->s2)if(p1->m1==p->m1)if(p1->m2==p->m2)return -1;}/*用于解决重复,算法思想:即将每次算出的链表单元与以前的相比较,若重复,则表示出现循环*/ if(p->s1==0&&p->m1==0)if(p->n%2==0)return 1;else return -1;/*显然如果达到条件就说明ok了*/return 0;}/*判断函数*/int sign(int n){if(n%2==0)return -1;return 1;}/*符号函数*/void copyit(struct aim *p3,struct aim *p){p3->s1=p->s1;p3->s2=p->s2;p3->m1=p->m1;p3->m2=p->m2;p3->n=p->n+1;p3->back=p;p3->next=NULL;p->next=p3;}/*复制内容函数,将p中的内容写入p3所指向的链表单元中*/void print(struct aim *p3){struct aim *p=p3;js++;while(p->back){p=p->back;}printf("\n第%d种方法:\n",js);fprintf(fp,"\n第%d种方法:\n",js);int count=0;while(p){ printf("%ld,%ld——》%ld,%ld\t",p->m1,p->s1,p->m2,p->s2);fprintf(fp,"%ld,%ld——》%ld,%ld\t",p->m1,p->s1,p->m2,p->s2);p=p->next;count++;}cout<<"一共有"<<count<<"步完成"<<endl;}/*打印函数,将p3所指的内容打印出来*/void trans(struct aim *p){struct aim *p3;/*p3为申请的结构体指针*/struct a *fla;int i,j,f;fla=&head;p3=(struct aim *)malloc(sizeof(struct aim)); f=sign(p->n);for(i=0;i<total;i++){fla=fla->next;copyit(p3,p);p3->s1-=fla->m*f;p3->m1-=fla->s*f;p3->s2+=fla->m*f;p3->m2+=fla->s*f;/*运算过程,即过河过程*/j=determ(p3);/*判断,j记录判断结果*/if(j==-1){if(i<total-1){continue;}else{freeit(p3);break;}}int count1=0;if(j==1){if(i<total-1){print(p3);count1++;continue;}else{print(p3);count1++;freeit(p3);break;}//cout<<count1<<endl;printf("%d",count1);printf("\n");}if(j==0)trans(p3);}return;}/*转移函数,即将人转移过河*//*n=0*/void main(){struct aim *p,*p1;int j,a,e,f;struct a *flag;/*flag是用与记录头指针*/ FILE*fpt;if((fpt=fopen("c:result.dat","w+"))==0){ printf("can′t creat it\n");exit(0);}fp=fpt;system("cls");printf("问题描述:三个商人各带一个随从乘船过河,一只小船只能容纳X人,由他们自己划船。