第九章 聚合物的流变性
聚合物流体的流变性概述

第15页
对于小分子流体该粘度为常数, 称为牛顿 粘度。
而对于聚合物流体, 因为大分子长链结构 和缠结, 剪切力和剪切速率不成百分比, 流体 剪切粘度不是常数, 依赖于剪切作用。
含有这种行为流体称为非牛顿流体, 非牛 顿流体粘度定义为非牛顿粘度或表观粘度。
2024/7/18
聚合物流体的流变性概述
2024/7/18
聚合物流体的流变性概述
第2页
原因:
粘度高,如低密度聚乙烯熔体粘度约0.3×102~ 1×103Pa.s,而且流速较低,在加工过程中剪切速率 普通小于103s-1。
注意
不过在特殊场所, 如经小浇口熔体注射进大 型腔, 因为剪切应力过大等原因, 会出现弹性湍 流, 熔体会发生破碎, 破坏成型。
比如
2024/7/18
聚合物流体的流变性概述
聚合物熔体在等截面圆管内作层状流动时, 其速度分布仅是圆管半径函数, 是一个经典一 维流动。
第7页
二维流动: 流道截面上各点速度需要两个垂直于流 动方向坐标表示。比如流体在矩形和椭圆型截面通道 中流动时,其流速在通道高度和宽度两个方向均发生 改变,是经典二维流动。
三维流动: 流体在截面改变通道中流动,如锥形通 道或收缩型管道,其质点速度不但沿通道截面纵横两 个方向改变,而且也沿主流动方向改变。即流体流速 要用三个相互垂直坐标表示,因而称为三维流动。
二维流动和三维流动规律在数学处理上, 比较一维流动要复杂很多。
有二维流动, 如平行板狭缝通道和间隙很 小圆环通道中流动, 按一维流动作近似处理时 不会有很大误差。
dv
dr
式中 η- 百分比常数, 称为粘度, Pa·s
2024/7/18
第九章_聚合物的流变性

种涨落被认为是粘度对分子量长生差异的原因所在,也 是长支链阻止蛇行 松弛的主要机理
9.3 聚合物熔体的弹性表现
影响聚合物熔体弹性的因素 高聚物的弹性形变是由链段运动引起的 当τ很小时,形变的观察时间t>>τ,则形变以粘性流动为主 当τ很大时,形变的观察时间t<<τ,则形变以弹性流动为主
随 增加,σ显著增加,增大流体的 需要很大的
σ,这样的流体称为胀塑性流体(胀流性流体)
9.1.2 非牛顿流体
(3)假塑性流体 (切力变稀)
流动曲线通过原点,随 的增加,σ增加的速率有
所降低,将曲线上的一点做切线,交于纵轴上都有一个 虚拟的σy ,将这样的流体称为假塑性流体
如:几乎所有的高分子熔体的浓溶液
支链(分子量相等时) 长支链:主链和支链都发生缠结,粘度增大 短支链:增大分子间距,粘度小
9.2.2 影响因素及分子解释 9.2.2.1 分子结构与熔体结构
共聚(分子量相等时) 规整性被破坏,粘度降
聚合方式 悬浮聚合PVC---粘度大 乳液聚合PVC---粘度小 内残留小颗粒、疏松,易接触增塑剂, 小颗粒易滑动,降低粘度
一个半径为r ,密度为ρs 的小球,在密度为ρ1 的液体中以 恒定速率ν下落,可用斯托克斯方程求出液体介质的粘度,记作
斯托克斯粘度ηs:
s
2 9
r2
s
(2
9
r
2
s(
s
11
))gg
式中 K——仪器常数 t——小球由a到b所需的时间 η0————零切粘度
高聚物的流变性1

本章小结
谢谢
重点:聚合物熔体的流动特点,为什么聚合物
熔体为假塑性流体
导言: 什么是流变学?
流形 动变
高聚物流变定义
当高聚物熔体和溶液(简称流体)在
受外力作用时,既表现粘性流动,又 表现出弹性形变,因此称为高聚物流
体的流变性或流变行为。
当温度T 高于非晶态聚合物的Tf 、晶态聚合 物的Tm时:
聚合物变为可流动的粘流态或称熔融态,形 变随时间发展,并且不可逆。
原因:
大部分高分子材料的成型都包括熔 体在压力下被挤出的过程,用毛细 管流变可以得到十分接近加工条件 的流变学物理量
不仅能测 与 之间的关系,还可 以根据挤出物的外形和直径,或者 通过改变毛细管的长径比来观察聚 合物熔体的弹性和不稳定流动现象
原理:活塞杆在十字 头的带动下以恒速下 移,挤压高聚物熔体 从毛细管流出,用测 力头将挤出熔体的力 转成电讯号在记录仪 上显示,从 v ~ p 的 测定,可求得 与
(2)不符合牛顿流动规律:在流动过程
中粘度随切变速率的增加而下降(剪切变稀)
(3)熔体流动时伴随高弹形变:因为在
外力作用下,高分子链沿外力方向发生伸展, 当外力消失后,分子链又由伸展变为卷曲, 使形变部分恢复,表现出弹性行为
9.1.3聚合物流体的非牛顿性
高聚物流体
弹性:分子链构象不断变化
粘性:流动中分子链相对移动 —— 非牛顿流体
熔融态加工对某些聚合物除外
(1) 交联聚合物:硫化橡胶、酚醛、环 氧树脂
(2) 分解温度Td <Tf 的聚合物:聚丙烯腈 PAN、聚乙烯醇
(3) 刚性极大:如Kevlar
结构特点
高聚物的流动行为是高聚物分子运动的表现, 反映了高聚物的组成、结构、分子量及其分 布等结构特点。
聚合物的粘流态

Company Logo
Logo
(3)膨胀性流体 特点:无屈服应力,一个很小的剪切应力就能
使其开始运动。与假塑性流体相反, ↑, η↑ ,即剪切变稠。一般高含量微细固体颗 粒分散体(如聚合物熔体 - 填料体系、涂料 生产中的研磨料、聚合物胶乳等聚合物分散 体系)具有这种特性。
两类液体中的粘度变化都是可逆的。
Company Logo
Logo
1、触变性流体
触变性流体通常具有三维网络结构,称之为凝胶, 由分子间的氢键等作用力而形成。
由于这种键力较弱,当受剪切力作用,很易断裂, 凝胶逐渐受到破坏,这种破坏是有时间依赖性的, 最后会达到给定剪切速率下的最低值,这时凝胶完 全破坏,成为“溶胶”。
Company Logo
Logo
聚合物液体流动时,以粘性形变为主,兼有弹 性形变,故称之为弹粘体,它的流变行为强烈 地依赖于聚合物本身的结构、分子量及其分布、
温度、压力、时间、作用力的性质和大小等外
界条件的影响。 流变学:研究材料流动和变形规律的一门科学。
当温度升高,分于热运动能量增加,液体中的孔穴 也随着增加和膨胀,使流动的阻力减少。以粘度 η表示流动阻力的大小,而液体的粘度与温度T有 如下关系: (6-89) 式中 A 是常数;ΔEη 称流动活化能。 流动活化能 与蒸发热存在如下关系:
Ae
E / RT
(6-90) 式中β是比例常数,一般低分子β≈1/3~1/4;
当剪切力消失时,凝胶结构又会逐渐恢复,但恢复 的速度比破坏的速度慢得多。
触变性就是凝胶结构形成和破坏的能力。
Company Logo
Logo
触变性在涂料中起很好的作用。我们可有意设法使
聚合物的流变性质

大多数热塑性 聚合物属于假 塑性液体。
• “剪切稀化”效应 :(假塑性液体)表观粘度随切变速率的 增大呈指数规律减小。
生产中的关键是如何 控制各种因素,以便 剪切稀化效应保持菜 一个合理的范围。
成型有关的聚合物流变性质
3. 影响粘度的因素
聚合物结构 温度 压力
(1)聚合物结构对粘度的影响 • 注射成型过程中,相对分子质量分布经常
塑料成型工艺与模具设计
聚合物的流变性质
• 流变学:研究物质变形与流动的科学。 • 聚合物流变学:
应力 聚合物在外力作用下: 应变
影响因素
关系
粘度
应变速率
• 注射成型:
聚合物流变学理论
选择合理的工艺条件 合理设计成型系统、模具结构
成型有关的聚合物流变性质
1. 牛顿流动规律
液体在圆管中流动的形式
层流(Re<2100~4000) 紊流(Re>4000)
聚合物成型时: 层流
• 非牛顿液体大多服从: 指数流动规律
K
dv
n
K
•Байду номын сангаас
n
dr
K:稠度系数;
n:非牛顿指数;
•
取:
K
n
1
:表现粘度;
•
:表现粘度;
• 当n=1时,ηα=K=η ,这意味着非牛顿液 体转变为牛顿液体,所以n值可用来可反映
• n>1:膨胀性液体。 • n<1:假塑性液体。
(3)压力对粘度的影响
成型设备
力F
聚合物 熔体
熔体体积收缩
粘度提高
• 对需要增大粘度而又不宜采用降温措施的 场合,可考虑采用提高压力的方法解决。
塑料成型工艺与模具设计
第9章聚合物的流变性

第9章聚合物的流变性流变学是研究材料流动和变形规律的一门科学。
聚合物液体流动时,以粘性形变为主,兼有弹性形变,故称之为粘弹体,它的流变行为强烈地依赖于聚合物本身的结构、分子量及其分布、温度、压力、时间、作用力的性质和大小等外界条件的影响。
牛顿流体与非牛顿流体9.1.1非牛顿流体描述液体层流行为最简单的定律是牛顿流动定律。
凡流动行为符合牛顿流动定律的流体,称为牛顿流体。
牛顿流体的粘度仅与流体分子的结构和温度有关,与切应力和切变速率无关。
式中:——剪切应力,单位:牛顿/米2(N/㎡);——剪切速率,单位:s-1;——剪切粘度,单位:牛顿•秒/米2(N•s/㎡),即帕斯卡•秒(Pa•s)。
非牛顿流体:不符合牛顿定律的液体,即η是或时间t的函数。
包括:1、假塑性流体(切力变稀体)η随的↗而↙例:大多数聚合物熔体2、膨胀性流体(切力变稠体)η随的↗而↗例:泥浆、悬浮体系、聚合物胶乳等。
3、宾汉流体。
τ<τy,不流动;τ>τy,发生流动。
按η与时间的关系,非牛顿流体还可分为:(1)触变体:维持恒定应变速率所需的应力随时间延长而减小。
(2)流凝体:维持恒定应变速率所需的应力随时间延长而增加。
牛顿流体,假塑性流体与膨胀性流体的应力-应变速率关系可用幂律方程来描述:式中:K为稠度系数n:流动指数或非牛顿指数n=1时,牛顿流体 k=η; n>1 时,假塑性流体; n<1 时,膨胀性流体。
定义表观粘度聚合物的粘性流动9.2.1聚合物流动曲线聚合物的流动曲线可分为三个主要区域:图9-1 聚合物流动曲线1、第一牛顿区低切变速率,曲线的斜率n=1,符合牛顿流动定律。
该区的粘度通常称为零切粘度,即的粘度。
2、假塑性区(非牛顿区)流动曲线的斜率n<1,该区的粘度为表观粘度ηa,随着切变速率的增加,ηa值变小。
通常聚合物流体加工成型时所经受的切变速率正在这一范围内。
3、第二牛顿区在高切变速率区,流动曲线的斜率n=1,符合牛顿流动定律。
聚合物的流变性

粘度差别不大。
(二)外因因素(加工工艺)
1.温度的影响 温度升高,粘度下降,但不同高聚物粘度对温度变化
的敏感性不同。
a.较高温度时,T> Tg+100℃ 此时高聚物体内自由体积较大,高聚物粘度和温度符
合 Arrehnius 方程
η=A·eΔEη/RT
由上式可知,温度升高,链段活动能力增强,分子间
作用力下降,η下降,流动性增加,变化得
dr r3
在无管壁滑移情况下,外筒的内壁处 r=R2,角速度为
内筒的内壁处 r=R1,角速度为 0
d
M
R2 dr
0
2L r R1 3
M 4L
(
1 R12
1 R22
)
s
M
2r 2 L
= dV 2 R12 R22
dr r 2 R22 R12
A
r2
优点:当圆筒间隙很小时,被测流体的剪切速率接近均一,仪
2.高分子流动机理 如果按照小分子孔穴理论,高聚 物流动需要熔体内形成许多能容 纳整个大分子链的孔穴,使整个 高分子跃迁,显然是困难的。
实验中,高聚物流动活化能 ΔEη~分子量M关系可知,当 nc=20~30时,ΔEη不再随nc增加 而增加。说明,高聚物流动单元 不是整个分子链而是链段。高分 子的流动是通过链段的相继跃迁
橡胶: 硅橡胶 E = 4 kcal/mol , BR = 4.7~8 kcal/mol
NR = 8~9 kcal/mol
, LDPE =11.7 kcal/mol
(二)流动粘度大
高分子链较长,熔体内部能形成一种类似网状 的缠结结构(物理交联点,在一定温度或外力 作用下可缠结),使得整个分子的相对位移比 较困难,所以流动粘度大。
高分子物理---第九章聚合物的粘性流动

高聚物流体
弹性:分子链构象不断变化
粘性:流动中分子链相对移动 —— 非牛顿流体
非牛顿流体的流变行为用幂律方程表示
= K n
K, n = const.
n = 1, 牛顿流体 n > 1, 膨胀性流体 n < 1, 假塑性流体
n与1相差越大, 偏 离牛顿流体的程 度越强
小分子液体流动可用简单的孔穴模型来说明: 模型假设:① 液体中存在许多孔穴,且孔穴尺寸与小分子 液体尺寸相当;② 无外力作用时,分子热运动无规则跃迁, 和孔穴不断变换位置,发生分子扩散运动;③外力作用下, 分子沿外力方向优先跃迁,形成宏观流动。
高分子的流动不是简单的整个分子的迁移,而是通过 链段的相继跃迁来实现的。形象地说,这种链段类似 于蚯蚓的蠕动。这种链段模型并不需要在聚合物熔体 中产生整个分子链那样大小的孔穴,而只要如链段大 小的孔穴就可以了。
时间(10min)所流出高聚物的克数 g/10min,表 示方法为
2F2B
表示改性情况
表示密度范围 1.ρ<0.922
2.=0.923~0.946
高分子物理---第九章聚合物的粘性流动
MFR=2
用途 Film
9.1.4 聚合物熔体的流动曲线
logloglog Kn loglogKnlog
log 第一牛顿区
高分子物理---第九章聚合物的粘性流动
聚合物的熔融指数 Melt index ——简称MI
在一定的温度下和规定负荷下, 10min内从 规定直径和长度的标准毛细管内流出的聚合物 的熔体的质量, 用MI表示, 单位为g/10min.
对于同种聚合物而言, 熔融指数越大, 聚合 物熔体的流动性越好. 但由于不同聚合物的测 定时的标准条件不同, 因此不具可比性.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.2 聚合物熔体的切粘度
9..2.1.2 毛细管粘度计 ( 1 )切应力表达式 在无限长的管中取一长度为L,二端压差为△P的液柱,在半 径为r的圆柱面上,在稳流时,阻碍流动的粘流阻力应予两端压差 所产生的促使液柱流动的推动力平衡,即:
2 r P 2 rL
2 r P 2 rL
2 ( r ) A / r
r—圆柱状液层离轴线的距离; L—内筒进入被测液体中的深度; A—仪器常数
M (r) 2 2 r L
9.2.2 影响因素及分子解释 9.2.2.1 分子结构与熔体结构
刚性及分子间相互作用增大,粘度变大 如:有极性、氢键等 分子量增加,分子间相互作用增大,粘度变大 分子量大,分子链长,易缠结 分子量及其分布 低时,分子量分布宽的试样粘度高于分子量分布窄的 当 分布宽的,长分子链相对较多,易缠结 高时,分子量分布宽的试样粘度低于分子量分布窄的 当 高时,缠结的较长的分子链容易被破坏,切力变稀 当 支链(分子量相等时) 长支链:主链和支链都发生缠结,粘度增大 短支链:增大分子间距,粘度小
9.1.2 非牛顿流体 (3)假塑性流体 (切力变稀) 流动曲线通过原点,随 的增加,σ增加的速率有 所降低,将曲线上的一点做切线,交于纵轴上都有一个 虚拟的σy ,将这样的流体称为假塑性流体
如:几乎所有的高分子熔体的浓溶液
幂律定律: 非牛顿指数 n = 1 牛顿流体 n < 1 假塑性流体 n > 1 胀塑性流体 ηa=k n-1 表观粘度: 0 非牛顿流体 不反应流体不可逆的难易程度,只大致比较流动性好坏 零切粘度: lim lim 0 a 0 0
(1)与温度的关系
T>Tf:满足Arrehnius方程: η = Ae∆Eη/RT ∆Eη——粘流活化能 分子链较刚硬,或分子间作用力大,流动活化能高,温 敏性高聚物 加工时,控温为主 如:PMMA 分子链较柔顺,流动活化能小,表观粘度随T变化不大 加工时,控温,还要改变剪切速率 如:PE、POM T<Tf:WLF方程 :
剪切速率增大,熔体的弹性效应增大;但如果剪切速率太 快,毛细管内的分子链来不及伸展,则出口膨胀不太明显. 例:PP
影响聚合物熔体弹性的因素
(2)温度 温度升高,高分子的松弛时间τ 变小,故熔体弹性减小 τ = τoe∆E/RT
9.2.2 影响因素及分子解释 9.2.2.1 分子结构与熔体结构 共聚(分子量相等时) 规整性被破坏,粘度降 聚合方式 悬浮聚合PVC---粘度大 乳液聚合PVC---粘度小 内残留小颗粒、疏松,易接触增塑剂,
小颗粒易滑动,降低粘度
9.2.2 影响因素及分子解释 9.2.2.2 共混 可采用混合对数法来计算共混物的粘度:
8 . 86 ( T T ) ( T ) 0 log log a T ( T ) 101 . 6 ( T T ) g 0
(8 T.86 ) (T Tg ) ( T ) (T T ) g6 101 . g
9.2.2.3 温度、切应力、切变速率和液压
(2)剪切速率 对粘度的影响 在 lgτ ~lg 曲线Ⅱ区上,取一点 lgη ,从该点发一条45°直 线,交横轴得到截距,做出lgη~lg 曲线 ↑时,ηa↓ 切力变稀现象 低时,高分子链缠结状态流动,ηo 高 当 ↑,高分子链解缠,再重建,为ηa 很大,全部解缠,不再重建,η∞ 低,恒定 刚性分子下降幅度小,如:PC 柔性分子下降幅度大
图9-3 各种类型流体的τ、η对γ的依赖性 N—牛顿流体, D—切粒增稠流体;S—切力变稀流体 iB—理想的宾汉体;pB—假塑性宾汉体
9.1 牛顿流体和非牛顿流体
9.1.2 非牛顿流体 (1)宾哈流体,也称塑性流体 即超过屈服应力σy以后才流动, 且产生牛顿流动的流体 宾汉方程:σ-σy = η (2)胀塑性流体 (切力增稠) 增加,σ显著增加,增大流体的 随 需要很大的 σ,这样的流体称为胀塑性流体(胀流性流体)
9.2 聚合物熔体的切粘度
9..2.1.2 毛细管粘度计 (3)非牛顿流体的修正
3 n1 w w 4 n
3 3 n 1 k w m m k n 4 4 n k w 0
式中n——非牛顿指数
3 n 1 n ] K K [( ) w w w 4 n
第 九 章 聚 合 物 的 流 变 性
9.1 牛顿流体和非牛顿流体
9.1.1 牛顿流体
牛顿流动定律:τ = η 牛顿流体:符合牛顿流动定律的流体 如:水、甘油
图9-1 切应力和切变速度的定义
图9-2 典型牛顿流体的流动曲线
9.1 牛顿流体和非牛顿流体
9.1.2 非牛顿流体
非牛顿流体:不满足τ = η 的流体,都为非牛顿流体
机理2:连在其所占据的管子长度范围内与时间有关的涨落;这 种涨落被认为是粘度对分子量长生差异的原因所在,也 是长支链阻止蛇行 松弛的主要机理
9.3 聚合物熔体的弹性表现
影响聚合物熔体弹性的因素 高聚物的弹性形变是由链段运动引起的 当τ 很小时,形变的观察时间t>>τ ,则形变以粘性流动为主 当τ 很大时,形变的观察时间t<<τ ,则形变以弹性流动为主 (1) 剪切速率
9.2.2.3 温度、切应力、切变速率和液压 (3)粘度与剪切应力σ的关系
与剪切速率γ的影响类似
(4)静压力的影响 静压力会导致物料体积收缩,分子链间相互作用增大, 熔体粘度增加,压力的增大,相当于温度的降低
9.2.2.4 分子解释——Rouse模型、管子及蛇形模型 (1) Rouse模型 Rouse模型认为: 聚合物链是由在粘性环境(溶液或熔体)中运动的、服从高斯 统计的完全柔性重复单元所组成; 每一重复单元受三种类型力的作用: M a.摩擦力,其值与重复单元对周围介质的相对速度成正比; b.同一分子中,相邻重复单元引起的力 c.布朗运动的无规作用力
2 s s 1
式中 K——仪器常数 t——小球由a到b所需的时间 η0————零切粘度 该法只能测定低切变速率下的粘度,故可视为零切粘度; 不能用落球粘度计来研究聚合物粘度的切变速率依赖性,但可 配合其他方法来测定聚合物在低切变速率下的粘度.
9.2 聚合物熔体的切粘度
9..2.1.2 毛细管粘度计 优点:结构简单、可以在较宽的范围调节切变速率和温度,得 到十分接近于加工条件的流变学物理量 常用的切变速率范围:10 1~10 6s-1 切应力范围:10 4~10 6N/m2
图9-7 聚合物熔体和溶液 的朴实流动曲线
9.1.3 聚合物的粘性流动 第二牛顿区:
lim lim a
a
a lim lim
强剪切,缠结全部破坏,粘度达最低值 熔融指数(MI):塑料工业 lim 恒定 T、P,单位时间熔体从毛 细管中的流出量 门尼粘度:橡胶工业 恒定T、r,未硫化胶对转子转动的 阻力 MI1003+4
lg lg lg 1 1 2 2
共混聚合物的粘度与共混比的关系有多种情况:
加入少量第二组分,有时可降低共混聚合物的熔体粘度
不相容两组分聚合物的共混物,其熔体粘度与其形态类型 (即分散形式)有关
9.2.2 影响因素及分子解释 9.2.2.3 温度、切应力、切变速率和液压
R 0 2 2 2 2 w
接着计算线速度v的分布和体积流率Q:
Q v(r)2 rdr
0
R
P 2 2 R4P w ( R r ) 2 rdr ww 4 L 8 L
2 P2 2 P R r2 v ( r ) ( R r) [ 1 ( )] 4 L 4 L R
(5) 流凝性流体: 所需的σ 维持恒定的 随t的增长而减少 如:一定下的饱和聚酯 (摇凝性)
图9-5 流体表观粘度与时间的关系
图9-6 触变体和流凝体的滞回流动曲线
9.1.3 聚合物的粘性流动
n:斜率 由幂律定律导出:lgτ = lgk+nlg
流动曲线可分为三个区域:
第一牛顿区:ηo: →0时的粘度 当 ↑时,n<1 缠结程度最大,粘度高 假塑性区:熔体成型区 ηa=б / 当 ↑时,ηa↓ 切力变稀 在σ作用下,发生构象变化,解缠,ηa 随 ↑而↓
4 P2 2 R P Q v ( r ) 2 rd r ( R r ) 2 rd r 0 0 4 L 8 L R R
w
P R 4Q 2 L R3
9.2 聚合物熔体的切粘度
9..2.1.2 毛细管粘度计
w (2)牛顿切变速率或表观切变速
8 . 86 ( T T ) ( T ) 0 log log a lim lim T a ( T ) . 6 ( T T ) 101 g 0
9.1.2 非牛顿流体 与时间有关的流体: (4) 触变性流体 所需的σ随t的 维持恒定的 增长而减少 如:涂料(摇溶性) 胶冻 油漆wdFra bibliotek2 p 3
K wn K [(
3n 1 ]n ) w 4n
4n
k0
又因为: 所以有:
lg K n lg w
Q
a
2 w p w lg 1 lg 1 2 lg 2
4
d
2 dp
w
4Q 3 3 R R
P r 则: 2L
P R 2 R w 2 F 2 L d p L dp——活塞杆的直径, w ——最大切应力
9.2 聚合物熔体的切粘度
9..2.1.2 毛细管粘度计