结构动力学大作业
北航高等结构动力学(振动力学)大作业

《高等结构动力学》课程Case Study斜坡缓冲车辆的运动学模型与缓冲距离影响因素分析姓名: 班号: 学号:摘要: 为了计算无动力车辆在斜坡上的最小缓冲距离,本文建立了斜坡行驶车辆的半车模型的运动学方程,采用龙格库达法对微分方程求解,得到初始速度与斜坡角度对缓冲距离的影响规律。
1.引言为防止制动失灵的车辆冲下山谷, 盘山公路的下行方向每隔一定距离需要设置一个缓冲区,如图1所示。
缓冲区一般由一段具有上升坡度的渣土路面形成。
制动失灵的车辆驶入缓冲区后,其动能一部分转换成势能,一部分由车轮与路面的摩擦耗散。
图2所示为一车辆简化模型,车体高h=1.8m, 长b=5m 。
已知前轮刚度K 1=5.5*105N/m, 前轮阻尼系数C 1=8*104N •s/m, 后轮刚度K 2=8.5*105N/m, 后轮阻尼系数C 2=C 1; 车体按匀质记,总重10吨,质心距地面高度H=1.5m 。
摩擦力按下式计算:()()i i f t N t μ=⋅ i=1, 2 μ—摩擦系数,μ=0.3N i -- 车轮所受地面的正压力。
图1 盘山公路缓冲区示意图 图2 车辆简化模型假设: ① 车辆行驶过程中的车体变形很小,可忽略不计。
② 车轮质量与车身质量相比很小,可忽略不计。
分别给出缓冲区坡度为300和450时的车辆驶入速度与缓冲区长度的关系曲线以及车速为70Km/小时时缓冲区的最小长度。
2 斜坡行驶车辆的动力学模型斜坡行驶车辆的物理模型与力学模型分别如图3和图4所示。
图3 斜坡行驶车辆物理模型图4 斜坡行驶车辆力学模型2).图5 斜坡行驶车辆模型受力分析建立如图5所示的斜坡行驶车辆的力学模型,以质心C 点垂直方向坐标cy 和转角c θ为广义坐标,1y 和2y 分别为弹簧位置垂直方向坐标(均取在弹簧原长的位置处),采用达朗贝尔原理建立车辆运动的微分方程如下。
以C 点垂直斜面方向的力平衡方程:111222()()cos 0c my k y cy k y cy mg α++++-=(1)以C 点沿斜面方向的力平衡方程:111222()sin 0c mx k y cy k y cy mg μα+++++=(2)以质心C 点取矩的力矩平衡方程:111222111222()()()()()()022cc c L LJ cy k y cy k y H y k y cy H y k y cy θμμ-+-++-++-+=+(3)式中,车辆转动惯量22()12m J b h =+;A 点坐标12c c Ly y θ=-,B 点坐标12c c Ly y θ=+,坐标几何关系如图6所示。
结构动力学大作业2

结构动力学大作业班级:学号:姓名:目录1. Wilson-θ法原理简介 (2)2. Wilson-θ程序验算 (3)2.1△t的影响 (4)2.2 θ的影响 (5)3. 非线性问题求解 (5)4. 附录 (8)Wilson-θ法源程序 (8)1. Wilson -θ法原理简介图1-1Wilson-θ法示意图Wilson-θ法是基于对加速度a 的插值近似得到的,图1-1为Wilson-θ法的原理示意图。
推导由t 时刻的状态求t +△t 时刻的状态的递推公式:{}{}{}{}()t tt t t y y y y tτθτθ++∆=+-∆ (1-1)对τ积分可得速度与位移的表达式如下:{}{}{}{}{}2()2t t t t t t yy y y ytτθττθ++∆=++-∆ (1-2){}{}{}{}{}{}23()26t t t t t t t y y y y y ytτθτττθ++∆=+++-∆ (1-3)其中τ=θt ,由式(1-2)、(1-3)可以解出:{}{}{}{}{}266()2()t t t tt t t y y y y y t tθθθθ+∆+∆=---∆∆(1-4){}{}{}{}{}3()22t t t t t t t tyy y y y t θθθθ+∆+∆∆=---∆(1-5)将式(1-4)、(1-5)带入运动方程:[]{}[]{}[]{}{}m y C y k y P ++=(1-6)[]{}[]{}[]{}{}t t t t t t t tm y C y k y P θθθθ+∆+∆+∆+∆++= (1-7)注意到此时的式子为{{}t t y θ+∆}和上一个时刻{}t y 、{}t y、{}t y 以及t +θ△t 时刻的荷载{}t t P θ+∆相关,可以运用迭代的思想来求解,下图给出线弹性条件下Wilson -θ法的流程图:图1-2Wilson-θ法流程图2.Wilson-θ程序验算对线弹性条件下的Wilson-θ法进行MATLAB编程,源代码见附录。
高等结构动力学大作业

高等结构动力学大作业引言:高等结构动力学是土木工程中的重要学科,涉及到结构的振动和响应分析。
为了加深学生对该学科的理解和运用能力,设计一份详细具体的大作业是非常有益的。
本文将介绍一个高等结构动力学大作业的设计,包括作业目标、内容和评价方式。
一、作业目标1.理论掌握:通过大作业,学生需要巩固和应用所学的高等结构动力学理论,提高对结构振动和响应分析方法的理解和运用能力。
2.实践能力培养:作业要求学生进行实际案例的分析和计算,培养他们的实践能力和问题解决能力。
3.创新思考:作业鼓励学生从不同的角度进行创新性思考,提出改进或优化现有结构的方法或方案。
4.报告撰写能力:作业要求学生以报告形式呈现研究成果,培养他们的科学写作能力和沟通表达能力。
二、作业内容1.理论分析:作业可以要求学生选择一个特定的结构,如悬索桥、高层建筑等,进行结构振动和响应分析。
学生需要运用所学的高等结构动力学理论,计算结构的固有频率、模态形态等。
2.实验模拟:作业可以设计实验模拟任务,要求学生使用相关软件或设备进行结构的振动试验,获取结构的模态参数和响应曲线数据。
3.结构优化:作业可以要求学生对给定的结构进行优化设计,以降低结构的振动响应或改善结构的抗震性能。
学生需要提出具体的优化方案,并进行相应的计算和分析。
4.报告撰写:作业最终要求学生将研究成果整理成报告。
报告应包括问题陈述、理论分析或实验过程、计算方法和结果分析等内容,以及对结论和进一步研究的讨论。
三、评价方式1.报告评估:根据学生的报告内容、结构分析和计算准确性、结果分析等方面,评估学生对高等结构动力学的理解和应用能力。
可以采用定量评价指标和评分标准进行评估。
2.讨论与答辩:在评价阶段,可以组织学生进行讨论和答辩,让学生互相交流和分享研究成果,进一步加深对问题的理解和探讨。
3.同伴评价:可以引入同伴评价的方式,让学生互相评价和给出建议,促进学生之间的交流和学习。
4.教师评价:教师对学生的报告进行评价,包括对报告内容、分析思路和计算方法的评估,提供及时的反馈和指导。
高等结构动力学大作业

高等结构动力学大作业
摘要:
一、高等结构动力学的概念和意义
二、高等结构动力学的主要研究内容
三、高等结构动力学的应用领域
四、高等结构动力学的发展趋势
正文:
一、高等结构动力学的概念和意义
高等结构动力学是研究结构在动力载荷作用下的响应和稳定性的学科,它主要关注结构在振动、冲击、地震等外部激励下的反应。
高等结构动力学在现代工程技术中具有重要意义,因为它可以帮助我们设计和分析各种结构,以确保它们在地震、风、水等自然灾害或人为冲击下能保持稳定和安全。
二、高等结构动力学的主要研究内容
高等结构动力学主要研究以下几个方面的内容:
1.结构动力学的基本理论:包括结构的自由振动、强迫振动和随机振动等。
2.结构动力学的数值计算方法:包括常用的有限元法、有限体积法和有限差分法等。
3.结构动力学的建模和识别:包括结构的建模、参数识别和模型更新等。
4.结构动力学的分析和设计:包括结构的动力响应分析、稳定性分析和抗震设计等。
三、高等结构动力学的应用领域
高等结构动力学在许多工程领域都有广泛的应用,包括:
1.建筑结构:包括高层建筑、桥梁、隧道和机场等。
2.机械结构:包括汽车、飞机、火车和船舶等。
3.航空航天结构:包括火箭、卫星和空间站等。
4.核电站结构:包括核反应堆、冷却塔和燃料棒等。
四、高等结构动力学的发展趋势
随着计算机技术的发展,高等结构动力学的数值计算方法越来越精确,可以更准确地模拟结构的动力响应。
同时,随着大数据和人工智能技术的发展,结构动力学的建模和识别也将更加智能化和自动化。
《结构动力学》大作业 -2013

苏尚武 廉少森 徐宁波 冯留洋 欧阳禄 曾鹏 余岷燚 吴铭 陶峰 徐扬 司翔 宁泰 卢卫明
1200kN,1000kN 1200kN,1000kN 1200kN,1000kN 1250kN,1050kN 1250kN,1050kN 1250kN,1050kN 1250kN,1050kN 1250kN,1050kN 1300kN,1100kN 1300kN,1100kN 1300kN,1100kN 1300kN,1100kN 1300kN,1100kN
0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g
土木工程与力学学院结构力学教研室
结构动力学大作业
51 52 53 54 55 56 57 58 59 60 61 62 63
U201015173 U201015174 U201015175 U201015176 U201015177 U201015178 U201015179 U201015180 U201015181 U201015182 U201015183 U201015184 U201015185
由特征周期 Tg 查图 5.1.5 地震影响系数曲线即可得出水平地震
土木工程与力学学院结构力学教研室
《结构动力学》 影响系数α。 (其中η1=0.02、η2=1.0、 γ =0.9)
(5) 求内力,画内力图 作用在第 i 振型上的水平地震作用:
Fi j = α jγ jYi j Gi
3.6 3.9 4.2 3.0 3.3 3.6 3.9 4.2 3.0 3.3 3.6 3.9 4.2
400x400 400x400 400x400 400x400 400x400 400x400 400x400 400x400 400x400 400x400 400x400 400x400 400x400
最新结构动力学大作业

结构动力学大作业------------------------------------------作者xxxx------------------------------------------日期xxxx结构动力学大作业班级土木卓越1201班学号U201210323姓名陈祥磊指导老师叶昆2014。
12.30 结构动力学大作业-—SDO F体系在任意荷载作用下的动力响应 一、结构参数计算结构为右图所示的 1、kg m 3101000⨯=m N k /1020006⨯= 2、m m m m N =⋅⋅⋅⋅⋅⋅==21 k k k k N λ==⋅⋅⋅⋅⋅⋅==213、结构参数中5=N ;0.1=λ。
二、确定各阶频率和振型多自由度体系自由振动时的运动方程为012121111=+⋅⋅⋅+++n n y k y k y k y m 022221212=+⋅⋅⋅+++n n y k y k y k ym .。
..。
.12jN-1N02211=+⋅⋅⋅+++n nn n n n y k y k y k y m 写成矩阵形式即为[]{}[]{}{}0=+y K yM 假设此方程的解答为{}{}()αω+=t Y y sin ,带入到运动方程中得到振动方程[][](){}{}02=-Y M K ω此方程要有非零解必须满足频率方程[][]02=-M K ω,可解得各阶主频率i ω再根据 [][](){}(){}02=-i i Y M K ω可求出结构的主振型。
在主振型中,通常将最后一个位移值设定为1,只要在程序中加入下列语句:MDOF .YMa trix(:,i)=MDO F.YMat rix(:,i )/MDOF 。
YMatr ix(MD OF 。
ND,i)运行程序之后得到如下结果: 1、各阶频率i ω和周期i TW1 12.7290261 T1 0。
493610843W 2 37.15584832T 2 0。
华科结构动力学_大作业

[9, ]
[9, 1.2]
[9, 1.4]
Questions
1、确定各阶频率和振型; 2、试用能量法计算近似的一阶频率; 3、任选一条地震动并将地震动幅值调整为0.3g,使 用振型分解法计算相应的地震响应; 4、试用迭代法近似求解一阶频率和振型;
5、任选一条地震动并将地震动幅值调整为0.3g,计
算该条地震动的加速度反应谱;
Questions
6、利用振型分解反应谱法确定各质点的地震力大小
设防烈度为8度 设计加速度 0.3g 阻尼比 =5% II类(第1组)场地土 多遇地震: max 0.24 Tg 0.35s
N 5 6 7 8 9
0.6 0.8 1.0 1.2 1.4
Problem description
[N, λ] 组合
[5, 0.6] [6, 0.6] [7, 0.6] [8, 0.6] [5, 0.8] [6, 0.8] [7, 0.8] [8, 0.8] [5, 1.0] [6, 1.0] [7, 1.0] [8, 1.0] [5, 1.2] [6, 1.2] [7, 1.2] [8, 1.2] [5, 1.4] [6, 1.4] [7, 1.4] [8, 1.4]
3任选一条地震动并将地震动幅值调整为03g使用振型分解法计算相应的地震响应
Problem description
mN kN mN-1 mj kj m2 k2 m1 k1
m 1000 103 kg k 2000 106 N /m
m1 m2 k1 k2 mN m kN k
高等结构动力学大作业

Advanced Structural Dynamics ProjectThe dynamic response and stability analysis of the beam under vertical excitationInstructor:Dr. Li WeiName:Student ID:1.Problem description and the purpose of the project1.1 calculation modelAn Eular beam subjected to an axial force. Please build the differential equation of motion and use a proper difference method to solve this differential equation. Study the dynamic stability of the beam related to the frequency and amplitude of the force. As shown in the Fig 1.1.Fig1.11.2 purpose and process arrangementa.learning how to create mathematical model of the continuoussystem and select proper calculation method to solve it.b.learning how to build beam vibration equation and solve Mathieuequation.ing Floquet theory to judge vibration system’s stability andanalyze the relationship among the frequency and amplitude of the force and dynamic response.This project will introduce the establishment of the mathematical model of the continuous system in section 2, the movement equation and the numerical solution of using MATLAB in section 3, Applying Floquent theory to study the dynamic stability of the beam related to the frequency and amplitude of the force in section 4. In the last of the project, we get some conclusions in section 5.2. the mathematical model of the systemThe geometric model of the beam and force-simplified diagram is shown in Fig.2.1.We assume that its stiffness(EI) is constant and the deflection of the beam is small, and the boundary conditions is simply support. Now the beam subjected to an axial force. We assume the force is equal to 0cos P t ω. F=f 0coswt yxFig.2.1We select the length of x ∆ in any position of the beam, the free-body diagram is shown in Fig.2.2.Fig.2.2Using equations of movement equilibrium, that is to say:+↑()y y F m a ∑=∆ (1)0G M +∑= (2) From equation (1), we will get:22),(),(ty x A t x x S t x S ∂∂∆=∆+-ρ (3)Divide equation (3) by x ∆ and take the limit:22xy A x S ∂∂=∂∂-ρ (4) Then synthesize equation (2),we can get:0),()],(),([),(),(=∆∆+--∆++-∆+x t x x S t x y t x x y F t x M t x x M (5)Divide equation (5) by x ∆ and take the limit:S xy F x M =∂∂+∂∂ (6) Combine equation (4) with (6):0222222=∂∂+∂∂+∂∂ty A x y F x M ρ (7) And 22),(xy EI t x M ∂∂= (8) Combine equation (7) with (8):0)(22222222=∂∂+∂∂+∂∂∂∂ty A x y F x y EI x ρ (9) We know EI is a constant, so0)(222244=∂∂+∂∂+∂∂ty m x y t F x y EI (10) In equation (10), m is the mass of unit length. Now we will use assumed-modes method. Named lx n t T t x y n πsin )(),(=,so: 0sin )(22244422=⎥⎦⎤⎢⎣⎡-+l x n T l n t F T l n EI dt T d m n n n πππ (11) 0))(1(222=-+n non n T F t F P dt T d n=1,2,...... (12) In the equation (12)222222,l EI n F m EI l n P n on ππ==And t F t F ϖcos )(= ,so0)cos 1(222=-+n non n T t F F P dt T d ϖ n=1,2,...... (13) 0)cos (22=-+n n T t dtT d ϖεδ (14) In the equation (12)4)(L n A EI πρδ= 22)(Ln F πε= Equation (14) is the Mathieu equation. it is difficult to solve the analytical solution directly, thus, we use the approximate derivative namely an average acceleration method to get the numerical solution from the reference.3. Numerical solution3.1 using MATLAB to solve equationWe will use the Newmark-β method [1] to solve equation (14). We can use the initial condition 00u u 和to integrate the move equation:m 0u cu ku ++= (15)Fig.3.1As shown in Fig.3.1))(2(11+++∆+=i i i i i u u t u u (16) )(4121+++∆+∆+=i i i i i i i u u t t u u u (17) ()0cos =-+i i u wt u εδ (18)From equation (16), (17) and (18), we will get:()i i u t wn u ∆∆--=∆cos εδ (19)i i ii u u t u 2)2(-∆∆=∆ (20) ()()22]cos [44]cos [)(2tt wn t u t wn u t u i i i ∆∆-+∆+∆-∆-=∆εδεδ (21) When applying the MATLAB, we need discrete the processing time t, get time step 02.0=∆t .When solving the vibration stability interval, there are three variables to participate in the discussion, namely w c ,,δ. So take a particular w first and discuss the remaining two parameters.From Floquent theory [2],we can use parameter A to judge stability.Equation 0)()(22=++y t dt dy t dt y d ξξ(22) Take two sets of special solution:1)0(,0)0(0)0(,1)0(2211====yy yy (20) Parameter [2] )]()([2121T y T y A +=(21) If abs (A) is less than 1, the system is stability. And if abs (A) is greater than 1, the system is instability. When abs(A) is equal to 1, the system is critical state.We use MATLAB Codes to solve equations. We use ω=2 Math ieu Equation to judge the validity of the codes. From Fig.3.2 and Fig.3.3, wecan consider the codes are correct.In these follow figures, ω=2, the horizontal axis is δ, vertical axis is ε.Fig.3.2. stable domain in reference [3]and[2]Fig.3.3. stable domain in MATLAB solutionCompared Fig.3.2 with Fig.3.3, we can see that the stability domain of numerical solutions applying average acceleration method are consistent with the standard solutions. it can concluded that when the system have solution whose cycle is equal to π or 2π, )3,2,1(2 ==n n δThis chapter discusses the accuracy of the vibration stability determination with Floquent theory. The next chapter will discuss the numerical solution and stable domain and two parameters ’ influences on the stability for this question.4. Parameters influenceIn this part, we only consider two parameters, namely the frequency and amplitude of the force.4.1the influence of the force’s frequency4.1.1the stability of the systemWhen we discuss the stability of the system related to the frequency of the force, we should select some different frequencies, so we choose ω=1,2,4,6,8 and10. Using MATLAB codes, we can obtain the figs of the stability. We can know the stable region is bigger with the increase of the frequency in Fig.4.1.ω=1 ω=2ω=4 ω=6ω=8 ω=10Fig.4.1 stable domain with different ω4.1.2the response of the systemWhen we discuss the response of the system, the system should be stable. So we choose 7δ=,1ε=-,ω=2,4 and 6. In Fig.4.2, the cycle of the response increase and the range of the reactive amplitude is smaller with the increase of the frequency.Fig.4.2 responses of the system with different ω4.2the influence of the force’s amplitudeThe εis related to the force’s amplitude P. The cycle of the response a little increase and the range of the reactive amplitude is bigger with the increase of the force’s amplitude, in Fig.4.3.and Fig4.4.Fig.4.3 vibration response curve with different δThe red curve is w=2, δ=12,ε=1; the blue curve is w=2, δ=14, ε=1.This figure state that the vibration cycle is smaller and the amplitude have a little change with the increase of the δ.Fig.4.3 vibration response curve with different εThe red curve is w=2, δ=12,ε=1; the blue curve is w=2, δ=12, ε=5. This figure state that the amplitude is smaller and the vibration cycle have a little change with the increase of the ε.5. Conclusion(1) With the increase of the frequency, the stable region and the cycle of the response are bigger, but the range of the reactive amplitude is smaller.(2)With the incr ease of the force’s amplitude, the cycle of the response a little increase and the range of the reactive amplitude is much bigger. (3)Vibration in the stable region, the vibration cycle is smaller with the increase of the δ; the amplitude is smaller with the increase of the ε.AcknowledgementsThe author is grateful for upperclassman Li Yong, he give me much assistance. And the author is also grateful for Doctor Li Wei. In his classes, I felt very happy and can understand his class effectively. At last, the author is also grateful for classmates in the same laboratory, they give me much guidance and encourage. I gain a lot of knowledge through this study and I will work harder in the future.References1、ROY R.CRSIG, Jr. STRUCTURAL DYNAMICS. New York: John Wiley & Sons.2、王海期. 非线性振动. 北京: 高等教育出版社, 19923、顾志平. 非线性振动. 北京: 中国电力出版社, 2012。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构动力学大作业
问题描述
《建筑结构抗震设计》高振世P247
该建筑为一幢六层现浇钢筋混泥土框架房屋,屋顶有局部突出的楼梯间和水箱间。
混泥土强度等级:梁为C20,柱为C25。
混凝土密度为2500kg/m3
本题目将对该梁柱结构的框架房屋进行模态分析,求解出该结构的前8阶固有频率及其对应的模态振型。
框架的平、剖面见图1,图2。
构件尺寸参见表1、表2。
其材料为混凝土,相关参数为:杨氏模量C20为2.55e10N/m2,C25为2.8e10 N/m2。
图 1 平面视图
图 2 剖面图
表 1 梁的几何尺寸
部位断面
b×h (m×m)
跨度L (m)
屋顶梁0.25×0.60 5.7
楼层梁0.25×0.65 5.7
走道凉0.25×0.40 2.1
表 2 柱的几何尺寸
层次柱高(m)断面(m×m)
1 4 0.50×0.50 2,3,4,5,6 3.6 0.45×0.45
建模
利用有限元商业软件ANSYS8.0建模和有限元分析。
1单元类型(Element Type ): Beam4
图 3 单元BEAM4的特征
2材料模型:
本题目中所有材料都假定是各向同性线弹性体。
表 3 MARERIAL MODEL
No. 梁/柱混凝土标号弹性模量EX
N/m2
泊松比PXY
密度DENS
kg/ m3
1 柱C25 2.8e10 0.
2 2500
2 梁C20 2.55e10 0.2 2500
3单元实常数:
表 4 REAL CONSTANT
No. 部位
横截面面积
AREA(m2)
Z轴惯性矩
IZZ(m4)
Y轴惯性矩
IYY(m4)
高度
TKZ(m)
宽度
TKY(m)
1 底层柱0.25 5.208e-3 5.208e-3 0.5 0.5
2 其余柱0.2025 3.417e-
3 3.417e-3 0.45 0.45
3 走道梁0.1 1.333e-3 5.208e-
4 0.4 0.25
4 楼层梁0.162
5 5.721e-3 8.464e-4 0.65 0.25
5 屋顶梁0.15 0.45e-3 7.8125e-4 0.
6 0.25 4几何模型,网格划分,施加边界条件:
柱划为个6单元,走道梁划为3个单元,楼层梁划为5个单元,合计3029个单元
图 4
结果与讨论
模态分析:
得出结构的固有频率和前8阶振型。
SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE
1 0.14045 1 1 1
2 0.14057 1 2 2
3 0.14161 1 3 3
4 0.14162 1 4 4
5 0.14171 1 5 5
6 0.14186 1 6 6
7 0.14186 1 7 7
8 0.14190 1 8 8
第一阶振型:
第二阶振型:
第三阶振型:
第四阶振型:
地震波瞬态时程分析:
地震波:"LOMA PRIETA EARTHQUAKE - OAKLAND OUTER HARBOR WHARF"
"OCTOBER 17, 1989, 17:04 PDT"
"CORRECTED ACCELOGRAM, CHANNEL 1, 270 DEGREES, CDMG QL89A472 " " SOURCE: NISEE, U.C. BERKELEY, CALIFORNIA"
10
20
30
40
50
60
-300
-200
-100
100
200
300
a c e l l e r a t i o n ( c m /s e c .2
)
time / sec.
图 4 地震波
假设加速度施加在结构坐标的x方向:
一层跨中节点(30号节点)x方向位移时间历程图
FIG. 5 NODE30 X——DISPLACEMENT/TIME CURVE1
FIG. 6 NODE30 Y——DISPLACEMENT/TIME CURVE1 顶层跨中节点(1499号节点)位移时间历程图
FIG. 7 NODE1499 X——DISPLACEMENT/TIME CURVE1
FIG. 8 NODE1499 Y——DISPLACEMENT/TIME CURVE1 假设加速度施加在结构坐标的y方向:
一层跨中节点(30号节点)位移时间历程图
FIG. 9 NODE30 X——DISPLACEMENT/TIME CURVE2
FIG. 10 NODE30 Y——DISPLACEMENT/TIME CURVE2
顶层跨中节点(1499号节点)位移时间历程图
FIG. 11 NODE1499 X——DISPLACEMENT/TIME CURVE2
FIG. 12 NODE1499 Y——DISPLACEMENT/TIME CURVE2
注:
在完成该题目的过程中,一直希望可以和《建筑结构抗震设计》高振世P247页中的计算结果进行比较。
但是,《建筑结构抗震设计》中只考虑了图1中竖向梁的承载能力,没有考虑横向梁的承载能力;而本题目中把所有的竖向梁均作为楼层梁进行有限元分析。
因而,我认为,两中方法计算的结果没有太大的比较意义。