苏科版九年级数学上册第二章 对称图形 圆

合集下载

苏科版 九年级上册 第2章 对称图形——圆有关的知识点

苏科版 九年级上册  第2章 对称图形——圆有关的知识点

圆圆的定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径。

以点O 为圆心的圆记作“⊙O ”,读作“圆O ” 注意:圆的的位置由圆心决定,圆的大小由圆的半径决定。

圆是平面内到定点的距离等于定长的点的集合,定点是圆心,定长是半径。

图文:点和圆的位置关系:设⊙O 的半径是r ,点P 到圆心O 的距离为d ,则有: d<r ⇔点P 在⊙O 内; d=r ⇔点P 在⊙O 上; d>r ⇔点P 在⊙O 外。

图文:点P 在圆O 内 d <r 点P 在圆O 上 d=r 点P 在圆O 外 d>rAOrPO d r Odr POdr PA A A圆的有关概念:同心圆:圆心相同,半径不相等的圆;等 圆:能够互相重合的圆叫等圆;(或者半径相等的圆); 弦: 连接圆上任意两点的线段 ;直 径:过圆心且的端点在圆上的线段叫直径。

(或者过圆心的弦); 弧: 圆上任意两点间的部分叫做圆弧,简称弧,用符号“⌒”表示; 优 弧:大于半圆的弧; 劣 弧:小于半圆的弧; 圆心角:顶点在圆心的角;圆周角:顶点在圆上,并且两边都和圆相交的角; 弓 形:由弦及其所对的弧组成的图形; 弦心距:从圆心到弦的距离;注意:1、同圆或等圆的半径都相等,或者半径相等的圆叫等圆或同圆;2、直径是最长的弦,直径是弦,但是弦不一定直径;3、弧可以分为优弧、劣弧和半圆;优弧大于劣弧;4、半圆是弧,但是弧不一定是半圆;5、能够互相重合的弧叫等弧,若只是说度数或长度相等都不叫等弧;6、圆周角必须要强调角的两边与圆有交点,而圆心角不需要;图文:同心圆 等圆 弦:弦CD ,弦AB 圆周角:∠BAC 直径:AB 圆O 的直径 圆心角:∠BOC 优弧:错误! 劣弧:⌒BDC 弦心距:OEO R rO 1O 2OABC DE OCBA圆的对称性圆的对称性:1、一个圆绕圆心旋转任何角度后,都能与自身重合。

苏教版九年级数学上册第2章对称图形——圆最新PPT课件

苏教版九年级数学上册第2章对称图形——圆最新PPT课件

法一:连接 OA
A
B
O
法二:延长 CO交⊙O于D,连
接DA
D
A
B
O
C
C
『要点』通过辅助线的添加,建立同弧所对的
圆周角及圆心角或直径所对的圆周角,实现所
求对象的转换。
2.如图2,在⊙O中,弦AB=1.8cm,圆周角 ∠ACB=30°,则⊙O的直径等于__3_._6__cm。
连接AO,并延长交⊙O于D, A 连接BD,
∵OC⊥AB,
O
∴在△AOC中,AO2-OC2=AC2,
∴S圆环面积=π(AO2-OC2)=πAC2,A C B
『要点』遇到相切问题经常需要作出过切点 的半径,垂径定理往往需要建立的直角三角 形,并利用勾股定理求解三边。
5.如图,过圆外一点O作⊙O′的两条切线OA、
OB,A、B是切点,且OO' 圆O半径长两倍,则 ∠AOB=__6_0__°_
在同圆或等圆中,如果两
个圆心角,两条 弧,两条 弦, 中有一组量 相等 ,那么它们 B′ 所对应的其余各组量都分 别 相等 .
A′ B
·
O
A
圆周角定理
同弧或等弧所对的圆周角 相等 ,都等于 它所对弧的圆心角 度数的一半 。
直径所对的圆周角是 直角 ,90°所对 的弦是 直径 。
C
·
O
C 2
C1
C
3
∵l是⊙O的切线, 切点为A,OA是⊙O的直径, ∴OA⊥l
·O
A
l
圆的切线的判定
·O
经过 半径 的外端,并且 垂直于A这条 l 半径 的直线是圆的切线。
∵OA是⊙O的半径,l⊥OA于A, ∴l是⊙O的切线。
切线长定理

苏教版九年级上册数学第二章对称图形圆【1】圆

苏教版九年级上册数学第二章对称图形圆【1】圆
大于半圆的弧叫做优弧,如记作 ⌒ (用三个字母).
ADB
即时考你:
P
如图(1)直径是_______; (2)弦是_____________; (3) PQ是直径吗?______;
E
G O.
FB
(4)线段EF、GH 是弦吗?_______.
AH
C
K
在圆中有长度不等的弦, 注 意: Q
直径是圆中最长的弦。 1、弦的两个端点在圆上
2、⊙O的半径6cm,
当OP=6cm时,点P在 圆上 ;
当OP <6cm 时, 点P在圆内; 当OP >6cm 时, 点P在圆外。
【活动一】尝试与交流
1、作矩形ABCD,使边AB=3cm,AD=4cm;
2、以点A为圆心,4cm为半径作⊙A;
则点B、C、D与⊙A的位置关系为:
点B在 ⊙A内
点D在 ⊙A上 点C在 ⊙A外
2、直径是弦,是过圆心的弦 3、半径不是弦,因为圆心不在圆周上
1.如图,
A
A⌒BC A⌒CB B⌒CA 它们一样吗?
B
O●
2 .劣弧有: A⌒B B⌒C
C
优弧有: A⌒CB B⌒AC
你知道优弧与劣弧的区别吗?
判断:半圆是弧,但弧不一定是半圆.( )
3.圆心角定义
圆心角: 顶点在圆心的角叫做 圆心角。
A
B
O
D
C
通过本节课的学习, 你学到了什么?
作业
P40练习
2.1 圆(2)
复习:什么是圆?
1、用运动的观点
P
把线段OP绕着端点O在平 面内旋转1周,端点P运动

所形成的图形叫做圆.
2、用集合的观点 圆可以看作是( 到定点的距离等于定长的)点 的集合;

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、如图,点A,B,C在上,BO的延长线交AC于点D,∠A=40°,∠C=25°,则∠ADB的度数为().A.110°B.115°C.120°D.125°2、已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.不能确定3、如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交PA,PB于D,E.若△PDE的周长为12,则PA的长为()A.12B.6C.8D.44、下列命题中,正确的是()A.任意三点确定一个圆B.平分弦的直径垂直于弦C.圆既是轴对称图形又是中心对称图形D.垂直弦的直线必过圆心5、如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤56、下列命题错误的是()A.等弧对等弦B.三角形一定有外接圆和内切圆C.平分弦的直径垂直于弦D.经过切点且垂直于切线的直线必经过圆心7、如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1B.3C.5D.1或58、如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为()A.12B.15C.16D.189、过圆上一点可以作出圆的最长弦的条数为()A.1条B.2条C.3条D.无数条10、思考下列命题:(1)等腰三角形一腰上的高线等于腰长的一半,则顶角为75度;(2)两圆圆心距小于两圆半径之和,则两圆相交;(3)在反比例函数y= 2 x 中,如果函数值y<1时,那么自变量x>2;(4)圆的两条不平行弦的垂直平分线的交点一定是圆心;(5)三角形的重心是三条中线的交点,而且一定在这个三角形的内部;其中正确命题的有几个()A.1B.2C.3D.411、过⊙O内一点P的最长弦长为10cm,最短弦长为8cm,那么OP的长为()A.9B.C.6D.312、如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.2B.4C.D.13、如图,圆锥形冰淇淋的母线长是13cm,高是12cm,则它的侧面积是()A.10πcm 2B.25πcm 2C.60πcm 2D.65πcm 214、如图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于()A.20B.10C.18D.2015、如图,已知AB是⊙O的直径,弦CD⊥AB于点E,G是弧AB的中点,连结AD,AG,CD,则下列结论不一定成立的是()A.CE=DEB.∠ADG=∠GABC.∠AGD=∠ADCD.∠GDC=∠BAD二、填空题(共10题,共计30分)16、如图,量角器的O度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________cm。

苏科版2022年九年级数学上册 《圆的对称性》教材预习辅导讲义(附解析)

苏科版2022年九年级数学上册 《圆的对称性》教材预习辅导讲义(附解析)

2.2 圆的对称性圆的对称性圆是轴对称图形,过圆心的任意一条直线都是它的对称轴;圆是中心对称图形,圆心是它的对称中心. 【点拨】圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合. 弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【点拨】(1)一个角要是圆心角,必须具备顶点在圆心这一特征; (2)注意关系中不能忽视“同圆或等圆”这一前提. (3)圆心角的度数与它所对的弧的度数相等. 垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 【点拨】(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例题1】已知:如图,⊙O 中弦AB CD .求证:AD=BC .看例题,涨知识教材知识总结【例题2】如图,在⊙O 中,弧AB =弧AC ,∠A =120°,求∠ABC 的度数.【例题3】如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若BE =5,CD =6,求AE 的长.【例题4】如图,在O 中,AB 是直径,弦EF ∥AB .(1)请仅用无刻度.....的直尺画出劣弧EF 的中点P ;(保留作图痕迹,不写作法) (2)在(1)的条件下,连接OP 交EF 于点Q ,10AB =,6EF =,求PQ 的长度.一、单选题1.下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④2.如图,在⊙O中,弦AB的长为8cm,M是AB上任意一点,且OM的最小值为3,则⊙O的半径为()A.4cm B.5cm C.6cm D.8cm3.下列命题是真命题的是()A.在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等4.如图,CD为⊙O的直径,弦AB CD⊥,垂足为E,1CE=,10AB=,则CD的长为()A.20 B.24 C.25 D.265.如图,在O中,⊥OD AB于点D,AD的长为3cm,则弦AB的长为()A.4cm B.6cm C.8cm D.10cm课后习题巩固一下6.如图,AB是O的直径,弦CD AB⊥于点E,如果20CD=,那么线段OE的长为()AB=,16A.4 B.6 C.8 D.97.如图,AB为圆O的一弦,且C点在AB上.若6BC=,AB的弦心距为3,则OC的长度为何?AC=,2()A.3 B.4 C11D138.如图,AB是O的直径,OD垂直于弦AC于点D,DO的延长线交O于点E.若42DE=,AC=4则BC的长是()A.1 B2C.2 D.49.如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°10.如图,在半径为5的A 中,弦BC ,DE 所对的圆心角分别是BAC ∠,DAE ∠.若6DE =,180BAC DAE ∠+∠=︒,则弦BC 的弦心距为( ).A 41B 34C .4D .3二、填空题11.在⊙O 中,弦AB =16cm ,弦心距OC =6cm ,那么该圆的半径为__cm .12.如图,AB 为⊙O 的弦,半径OC ⊥AB 于E ,AB =8,CE =2,则⊙O 的半径为_____.13.已知⊙O 的半径为6cm ,弦AB =6cm ,则弦AB 所对的圆心角是________度.14.如图,在O 中,AB BC CD ==,连接AC ,CD ,则AC __2CD (填“>”,“ <”或“=” ).15.如图,AB ,CD 是O 的直径,弦CE AB ,CE 所对的圆心角为40°,则AOC ∠的度数为______.16.如图,A 、B 、C 、D 为⊙O 上的点,且 AB BC CD ==.若∠COD =40°,则∠ADO =______度.三、解答题17.如图,O的弦AB、CD相交于点E,且AB CD=.求证:BE DE=.18.如图,在⊙O中,直径AB=10,弦AC=8,连接BC.(1)尺规作图:作半径OD交AC于E,使得点E为AC中点;(2)连接AD,求三角形OAD的面积.∠,求19.如图,已知AB是O的直径,P是AO上一点,点C、D在直径两侧的圆周上,若PB平分CPD 证:劣弧BC与劣弧BD相等.20.如图,已知弓形的弦长AB=8,弓高CD=2(CD⊥AB并经过圆心O).求弓形所在⊙O的半径r的长.21.如图,正方形ABCD 内接于⊙O , AM DM =,求证:BM =CM .22.如图,AB 为圆O 的直径,点C 在圆O 上.(1)尺规作图:在BC 上求作一点E ,使OE AC ∥(不写作法,只保留作图痕迹); (2)探究OE 与AC 的数量关系.23.如图,在⊙O 中,AB 、AC 是互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E . (1)求证:四边形ADOE 是正方形; (2)若AC=2cm ,求⊙O 的半径.24.如图,在扇形AOB 中,90AOB ∠=︒,C 、D 是AB 上两点,过点D 作DE OC ∥交OB 于E 点,在OD 上取点F ,使OF DE =,连接CF 并延长交OB 于G 点. (1)求证:OCF DOE ≌△△; (2)若C 、D 是AB 的三等分点,23=OA ①求OGC ∠;②请比较GE 和BE 的大小.2.2 圆的对称性解析教材知识总结圆的对称性圆是轴对称图形,过圆心的任意一条直线都是它的对称轴;圆是中心对称图形,圆心是它的对称中心.【点拨】圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【点拨】(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.(3)圆心角的度数与它所对的弧的度数相等.垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.【点拨】(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(4)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(5)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(6)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例题1】已知:如图,⊙O中弦AB CD=.求证:AD=BC.【答案】见解析【分析】先根据等弦所对的劣弧相等得到AB CD=,从而得到AD AB BD CD BD BC=-=-=,再由等弧所对的弦相等即可得到AD BC=.【解析】证明:∵AB=CD,∴AB CD=,∴AD AB BD CD BD BC=-=-=,∴AD BC=.【例题2】如图,在⊙O中,弧AB=弧AC,∠A=120°,求∠ABC的度数.【答案】30°【分析】根据同圆中,相等的弧所对的弦相等,再根据等腰三角形的性质即可求解.【解析】解:∵在⊙O中,弧AB=弧AC,∴AB=AC,∵∠A=120°,∴∠ABC=()1801203012⨯︒-︒=︒.【例题3】如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,CD=6,求AE的长.看例题,涨知识【答案】95【分析】如图,连接OC ,设OE x =,由垂径定理知132CE CD ==,5OC BE OE x =-=-,在Rt OCE 中,由勾股定理知222CE OC OE =-,解出x 的值,由2AE BE OE =-,计算求解即可. 【解析】解:如图,连接OC ,设OE x =由垂径定理知132CE CD ==5OC BE OE x =-=-在Rt OCE 中,由勾股定理知222CE OC OE =- ∴()22235x x =-- 解得85x =92525AE BE OE x =-=-=∴AE 的长为95.【例题4】如图,在O 中,AB 是直径,弦EF ∥AB .(1)请仅用无刻度.....的直尺画出劣弧EF的中点P;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接OP交EF于点Q,10AB=,6EF=,求PQ的长度.【答案】(1)见解析;(2)1【分析】(1)如图,连接BE,AF,BE交AF于C,作直线OC交EF于点P,点P即为所求.(2)利用垂径定理结合勾股定理求得OQ=4,进一步计算即可求解.【解析】(1)解:如图中,点P即为所求.(2)解:连接OF,由作图知OP⊥EF,EQ=QF=12EF=3,∵AB=10,∴OF=OP=12AB=5,∴OQ222254OF QF-=-,∴PQ= OP-OQ=1,∴PQ的长度为1.一、单选题1.下列说法正确的是()①平分弧的直径垂直平分弧所对的弦课后习题巩固一下②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④【答案】D【分析】根据垂径定理及其推论进行判断.【解析】解:根据垂径定理,①正确;②错误.平分弦(不是直径)的直径平分弦所对的弧;③错误.垂直于弦且平分弦的直线必过圆心;④正确.故选:D.2.如图,在⊙O中,弦AB的长为8cm,M是AB上任意一点,且OM的最小值为3,则⊙O的半径为()A.4cm B.5cm C.6cm D.8cm【答案】B【分析】根据垂线段最短知,当OM⊥AB时,OM有最小值.根据垂径定理和勾股定理求解.【解析】解:根据垂线段最短知,当OM⊥AB时,OM有最小值,此时,由垂径定理知,点M是AB的中点,AB=4,连接OA,AM=12由勾股定理知,OA2=OM2+AM2.即OA2=42+32,解得:OA=5.所以⊙O的半径是5cm.故选:B.3.下列命题是真命题的是()A.在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等【答案】C【分析】利用圆的有关性质、垂径定理、平行四边形的判定方法及平行线的性质分别判断后即可确定正确的选项.【解析】A 、在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧不一定相等,故原命题错误,是假命题,不符合题意;B 、平分弦(不是直径)的直径垂直于弦,故原命题错误,是假命题,不符合题意;C 、如图,四边形ABCD ,AB ∥CD ,∠A=∠C ,∵AB ∥CD ,∴∠A +∠D =180°,又∵∠A =∠C ,∴∠C +∠D =180°,∴AD ∥BC ,∴四边形ABCD 是平行四边形,故一组对边平行且一组对角相等的四边形是平行四边形,正确,是真命题,符合题意;D 、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意.故选:C .4.如图,CD 为⊙O 的直径,弦AB CD ⊥,垂足为E ,1CE =,10AB =,则CD 的长为( )A .20B .24C .25D .26【答案】D 【分析】连接OA ,设圆的半径为x ,则OE =x -1,由垂径定理可得AB ⊥CD ,AE =5,Rt △OAE 中由勾股定理建立方程求解即可;【解析】如图,连接OA ,设圆的半径为x ,则OE =x -1,由垂径定理可得AB ⊥CD ,AE =BE =12AB =5,Rt △OAE 中,OA 2=AE 2+OE 2,x 2=25+(x -1)2,解得:x =13,,∴CD =26, 故选: D .5.如图,在O 中,⊥OD AB 于点D ,AD 的长为3cm ,则弦AB 的长为( )A .4cmB .6cmC .8cmD .10cm【答案】B 【分析】根据垂径定理求出AD =BD =3cm 即可.【解析】解:∵AB 为非直径的弦,⊥OD AB ,∴AD =BD =3cm ,∴AB =AD +BD =6cm .故选B .6.如图,AB 是O 的直径,弦CD AB ⊥于点E ,如果20AB =,16CD =,那么线段OE 的长为( )A .4B .6C .8D .9【答案】B 【分析】连接OD ,那么OD =OA =12AB ,根据垂径定理得出DE =12CD ,然后在Rt △ODE 中,根据勾股定理求出OE .【解析】解:如图,∵弦CD ⊥AB ,垂足为E∴CE =DE =1116822CD =⨯=, ∵OA 是半径∴OA =11201022AB =⨯=, 在Rt △ODE 中,OD =OA =10,DE =8,22221086OE OD DE =--=,故选:B .7.如图,AB 为圆O 的一弦,且C 点在AB 上.若6AC =,2BC =,AB 的弦心距为3,则OC 的长度为何?( )A .3B .4C 11D 13【答案】D 【分析】作⊥OD AB 于点D ,由垂径定理得4AD BD ==,Rt OCD △中勾股定理即可求解.【解析】解:作⊥OD AB 于点D ,如图所示,由题意可知:6AC =,2BC =,3OD =, 8AB ∴=,4AD BD∴==,2CD∴=,在Rt OCD△中22223213OC OD CD∴+=+故选:D.8.如图,AB是O的直径,OD垂直于弦AC于点D,DO的延长线交O于点E.若42AC=4DE=,则BC的长是()A.1 B2C.2 D.4【答案】C【分析】根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.【解析】设OD=x,则OE=OA=DE-OD=4-x.∵AB是O的直径,OD垂直于弦AC于点,42AC=∴1222AD DC AC===∴OD是△ABC的中位线∴BC=2OD∵222OA OD AD=+∴222(4)(22)x x-=+,解得1x=∴BC=2OD=2x=2故选:C9.如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°【答案】C【分析】过点O 作OP ⊥AB 于点P ,OQ ⊥AC 于点Q ,OK ⊥BC 于点K ,由于DE =FG =MN ,所以弦的弦心距也相等,所以OB 、OC 是角平分线,根据∠A =50°,先求出180130ABC ACB A ∠+∠=︒-∠=︒,再求出,进而可求出∠BOC .【解析】解:过点O 作OP ⊥AB 于点P ,OQ ⊥AC 于点Q ,OK ⊥BC 于点K ,∵DE =FG =MN ,∴OP =OK =OQ ,∴OB 、OC 平分∠ABC 和∠ACB , 12OBC ABC ∴∠=∠,12OCB ACB ∠=∠, ∵∠A =50°,∴180130ABC ACB A ∠+∠=︒-∠=︒,∴1122OBC OCB ABC ACB ∠+∠=∠+∠ ()12ABC ACB =∠+∠ 65=︒,∴∠BOC =()180OBC OCB ︒-∠+∠18065=-︒115=︒故选:C .10.如图,在半径为5的A 中,弦BC ,DE 所对的圆心角分别是BAC ∠,DAE ∠.若6DE =,180BAC DAE ∠+∠=︒,则弦BC 的弦心距为( ).A41B 34C.4 D.3【答案】D【分析】作AH⊥BC于H,作直径CF,连接BF,先利用等角的补角相等得到∠DAE=∠BAF,再利用圆心角、弧、弦的关系得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,则AH为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=3.【解析】作AH⊥BC于H,作直径CF,连接BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴DE BF=,∴DE=BF=6,∵AH⊥BC,∴CH=BH,而CA=AF,∴AH为△CBF的中位线,∴AH=12BF=3,故选:D.二、填空题11.在⊙O中,弦AB=16cm,弦心距OC=6cm,那么该圆的半径为__cm.【答案】10【分析】根据题意画出相应的图形,由OC垂直于AB,利用垂径定理得到C为AB别的中点,由AB的长求出BC的长,再由弦心距OC的长,利用勾股定理求出OB的长,即为圆的半径.【解析】解:如图所示:过点O作OC AB⊥于点C,∵AB=16cm,OC⊥AB,∴BC=AC12=AB=8cm,6OC cm=,在Rt△BOC中,2210.OB OC BC cm∴=+故答案为:10.12.如图,AB为⊙O的弦,半径OC⊥AB于E,AB=8,CE=2,则⊙O的半径为_____.【答案】5【分析】如图,连接OA,设OA=r.在Rt△AOE中,根据OA2=OE2+AE2,构建方程即可解决问题;【解析】解:如图,连接OA,设OA=r.∵OC⊥AB,∴AE=EB=4,∠AEO=90°,在Rt△AOE中,∵OA2=OE2+AE2,∴r2=42+(r﹣2)2,∴r=5,故答案为:5.13.已知⊙O的半径为6cm,弦AB=6cm,则弦AB所对的圆心角是________度.【答案】60【分析】连接OA、OB,可证得△OAB是等边三角形,由此得解.【解析】如图,连接OA、OB,∵OA=OB=AB=6,∴△OAB是等边三角形∴∠AOB=60°故弦AB所对的圆心角的度数为60°.故答案为:60.14.如图,在O中,AB BC CD==,连接AC,CD,则AC__2CD(填“>”,“ <”或“=” ).【答案】<【分析】根据AB BC CD==推出AB=BC=CD,利用三角形三边关系得到答案【解析】解:∵AB BC CD==,AB BC CD∴==,<+,AC AB BCAC CD∴<,2故答案为:<.∠的度数为______.15.如图,AB,CD是O的直径,弦CE AB,CE所对的圆心角为40°,则AOC【答案】70°【分析】连接OE,由弧CE的所对的圆心角度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE ,根据平行线的性质即可得到∠AOC 的度数.【解析】解:连接OE ,如图,∵弧CE 所对的圆心角度数为40°,∴∠COE =40°,∵OC =OE ,∴∠OCE =∠OEC ,∴∠OCE =(180°-40°)÷2=70°,∵CE //AB ,∴∠AOC =∠OCE =70°,故答案为:70°.16.如图,A 、B 、C 、D 为⊙O 上的点,且 AB BC CD ==.若∠COD =40°,则∠ADO =______度.【答案】30【分析】先根据圆心角定理可得40AOB BOC COD ∠=∠=∠=︒,从而可得120AOD ∠=︒,再根据等腰三角形的性质即可得.【解析】解:∵AB BC CD ==,40COD ∠=︒,∴40AOB BOC COD ∠=∠=∠=︒,∴120AOD ∠=︒, 又OA OD =,∴1(180)302ADO OAD AOD ∠=∠=︒-∠=︒, 故答案为:30.三、解答题17.如图,O 的弦AB 、CD 相交于点E ,且AB CD =.求证:BE DE =.【答案】详见解析【分析】由弧、弦、圆心角的关系进行证明,结合等角对等边,即可得到结论成立.【解析】证明:AB CD=,CAB D∴=,AB AC CD AC∴-=-,即AD BC=,B D∴∠=∠,BE DE∴=;18.如图,在⊙O中,直径AB=10,弦AC=8,连接BC.(1)尺规作图:作半径OD交AC于E,使得点E为AC中点;(2)连接AD,求三角形OAD的面积.【答案】(1)见解析;(2)10【分析】(1)过点O作OD⊥AC,交AC于点E,交⊙O于点D;(2)由题意可得OD=5,由(1)得:OE⊥AC,点E为AC中点,继而可得118422AE AC==⨯=,然后根据三角形的面积公式即可求得答案.【解析】(1)解:如图,点E即为所求;(2)解:如图,连接AD,∵⊙O的直径是10,∴OD=5,由(1)得:OE⊥AC,点E为AC中点,∴118422AE AC==⨯=,∴11541022OADS OD AE=⋅=⨯⨯=.19.如图,已知AB是O的直径,P是AO上一点,点C、D在直径两侧的圆周上,若PB平分CPD∠,求证:劣弧BC与劣弧BD相等.【答案】见详解【分析】过点O分别作OE⊥PC,OF⊥PD,垂足分别为E、F,连接OC、OD,由题意易得OE=OF,然后可得BOC BOD∠=∠,进而问题可求证.【解析】证明:过点O分别作OE⊥PC,OF⊥PD,垂足分别为E、F,连接OC、OD,如图所示:∵PB 平分CPD ∠,∴OE =OF ,∵OC =OD ,∴EOC FOD △≌△(HL ),∴C D ∠=∠,∴BOC BOD ∠=∠,∴BC BD =.20.如图,已知弓形的弦长AB =8,弓高CD =2(CD ⊥AB 并经过圆心O ).求弓形所在⊙O 的半径r 的长.【答案】r =5.【分析】先由垂径定理得AD =4,由于OD =r -2,则利用勾股定理得到62+(r -2)2=r 2,然后解方程即可.【解析】CD AB ⊥并经过圆心O ,∴118422AD BD AB ===⨯=,2OD OC CD r =-=-, 在Rt △OAD 中,2224(2)r r +-=,解得r =5.21.如图,正方形ABCD 内接于⊙O , AM DM =,求证:BM =CM .【答案】见解析【分析】根据圆心距、弦、弧之间的关系定理解答即可.【解析】证明:∵四边形ABCD是正方形,∴AB=CD,∴AB CD=,∵AM DM=,∴AB AM CD DM+=+,即BM CM=,∴BM=CM.22.如图,AB为圆O的直径,点C在圆O上.∥(不写作法,只保留作图痕迹);(1)尺规作图:在BC上求作一点E,使OE AC(2)探究OE与AC的数量关系.【答案】(1)见解析;(2)AC=2OE【分析】(1)过点O作OE⊥BC即可.(2)利用三角形中位线定理证明即可.【解析】(1)如图所示,点E即为所求的点.(2)结论:AC=2OE.理由:由作图得:OE⊥BC∴BE=CE,即点E为BC的中点,∴OE为△ABC的中位线,∴AC=2OC.23.如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.【答案】(1)见解析;2cm【分析】(1)根据AC ⊥AB ,OD ⊥AB ,OE ⊥AC ,可得四边形ADOE 是矩形,由垂径定理可得AD=AE ,根据邻边相等的矩形是正方形可证;(2)连接OA ,由勾股定理可得.【解析】(1)证明:∵AC ⊥AB ,OD ⊥AB ,OE ⊥AC ,∴四边形ADOE 是矩形,12AD AB =,12AE AC =, 又∵AB=AC ,∴AD=AE ,∴四边形ADOE 是正方形.(2)解:如图,连接OA ,∵四边形ADOE 是正方形,∴112OE AE AC ===cm , 在Rt △OAE 中,由勾股定理可得:22+2OA OE AE , 即⊙O 2cm .24.如图,在扇形AOB 中,90AOB ∠=︒,C 、D 是AB 上两点,过点D 作DE OC ∥交OB 于E 点,在OD 上取点F ,使OF DE =,连接CF 并延长交OB 于G 点.(1)求证:OCF DOE ≌△△; (2)若C 、D 是AB 的三等分点,23=OA①求OGC ∠; ②请比较GE 和BE 的大小.【答案】(1)证明见解析(2)①∠OGC=90°;②BE>GE【分析】(1)先由平行线得出∠COD=∠ODE,再用SAS证△OCF≌△DOE即可;(2)①先由C、D是AB的三等分点,∠AOB=90°,求得∠AOC=∠COD=∠BOD=30°,由(1)知△OCF≌△DOE,所以∠OCF=∠DOE=30°,即可由三角形内角和求解;②由①∠OGC=90°,∠OCF=∠DOE=30°,利用直角三角形的性质和勾股定理即可求得3OG OF=2,又∠OCF=∠COF=30°,所以CF=OF,又由△OCF≌△DOE,所以OE=CF=OF=2,即可求得23GE= 232BE=,再比较即可得出结论;=OC,【解析】(1)解:∵DE AB2AC∴∠COD=∠ODE,∵OC=OD,OF=DE,∴△OCF≌△DOE(SAS);(2)解:①∵C、D是AB的三等分点,∠AOB=90°,∴∠AOC=∠COD=∠BOD=30°,∵△OCF≌△DOE,∴∠OCF=∠DOE=30°,∵∠COG=∠COD+∠DOB=60°,∴∠OGC=90°.②∵23===,OA OC OB∴3OG又∵∠DOE=30°,∴OF=2,∵∠OCF=∠COF=30°,∴CF=OF,∵△OCF≌△DOE,∴OE=CF=OF=2,∴23GE OE OG=-=232=-=,BE OB OE∵3340-,BE GE=>∴BE>GE.。

苏科版九年级数学上册第2章《对称图形—圆》 培优提升测评 【含答案】

苏科版九年级数学上册第2章《对称图形—圆》 培优提升测评 【含答案】

苏科版九年级数学上册第2章《对称图形—圆》培优提升测评一.选择题(共10小题,每小题3分,共计30分)1.如图,⊙O的半径为5,弦AB=8,点C是AB的中点,连接OC,则OC的长为()A.1B.2C.3D.42.如图,△ABC内接于⊙O,D是BC的中点,连接OD并延长交⊙O于点E,连接EC,若∠OEC=65°,则∠A的大小是()A.50°B.55°C.60°D.65°3.如图,点A的坐标为(﹣3,2),⊙A的半径为1,P为坐标轴上一动点,PQ切⊙A于点Q,在所有P点中,使得PQ长最小时,点P的坐标为()A.(0,2)B.(0,3)C.(﹣2,0)D.(﹣3,0)4.如图,点A,B,C,D均在⊙O上,直径AB=4,点C是的中点,点D关于AB对称的点为E,若∠DCE=100°,则弦CE的长是()A.2B.2C.D.15.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠ACE=20°,则∠BDE的度数为()A.90°B.100°C.110°D.120°6.如图,正方形ABCD的边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分的面积()A.4﹣πB.4πC.16﹣πD.8﹣π7.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD是⊙O的直径,若AD=3,则BC=()A.2B.3C.3D.48.如图,P A,PB是⊙O的切线,A,B是切点,若∠P=70°,则∠ABO=()A.30°B.35°C.45°D.55°9.如图,从一块直径是2的圆形铁片上剪出一个圆心角为90°的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是()A.B.C.D.110.如图,在⊙O中,点C在优弧上,将沿BC折叠后刚好经过AB的中点D,连接AC,CD.则下列结论中错误的是()①AC=CD;②AD=BD;③+=;④CD平分∠ACBA.1B.2C.3D.4二.填空题(共10小题,每小题3分,共计30分)11.如图,⊙O的直径AB和弦CD垂直相交于点E,CD=4,CF⊥AD于点F,交AB 于点G,且OG=1,则⊙O的半径长为.12.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为8cm,扇形的圆心角θ=90°,则圆锥的底面圆半径r为cm.13.如图,在拧开一个边长为a的正六角形螺帽时,扳手张开的开口b=20mm,则边长a =mm.14.如图,在平面直角坐标系中,⊙M与x轴相切于点A,与y轴分别交点为B,C,圆心M的坐标是(4,5),则弦BC的长度为.15.点O是△ABC的外心,若∠BOC=110°,则∠BAC为°.16.点P是非圆上一点,若点P到⊙O上的点的最小距离是4cm,最大距离是9cm,则⊙O 的半径是.17.如图,将△ABC绕点C顺时针旋转120°得到△A'B'C,已知AC=3,BC=2,则线段AB扫过的图形(阴影部分)的面积为.18.如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=1,∠A=45°,则的长度为.19.如图,AB是⊙O的直径,弦CD⊥AB于点E,且AE=CD=6,则⊙O的半径为.20.如图,在平面直角坐标系中,点A的坐标为(4,0),点B是第一象限内的一个动点并且使∠OBA=90°,点C(0,3),则BC的最小值为.三.解答题(共6小题,每小题10分,共计60分)21.已知,如图,点A,C,D在⊙O上,且满足∠C=45°.连接OD,AD,过点A作直线AB∥OD,交CD的延长线于点B.(1)求证:AB是⊙O的切线;(2)如果OD=CD=2,求AC边的长.22.如图,AC是⊙O的直径,OD与⊙O相交于点B,∠DAB=∠ACB.(1)求证:AD是⊙O的切线.(2)若∠ADB=30°,DB=2,求直径AC的长度.23.如图,已知AB是⊙O的直径,CD与⊙O相切于C,过点B作BE⊥DC,交DC延长线于点E.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.24.如图,△ABC内接于⊙O,∠ACB=60°,BD是⊙O的直径,点P是BD延长线上一点,且P A是⊙O的切线,A是切点.(1)求证:AP=AB;(2)若PD=,求阴影部分的面积.25.已知AB是⊙O的直径,CD为⊙O的弦,∠CAB=26°,连接BC.(1)如图1,若BD平分∠ABC,求∠ABC和∠ACD的大小;(2)如图2,若点D为弧AC的中点,过点D作⊙O的切线交BA的延长线于点P,求∠P的大小.26.已知,ABCD为菱形,点A,B,D在⊙O上.(Ⅰ)如图①,若CB,CD为⊙O的切线,求∠C的大小;(Ⅱ)如图②,BC,CD与⊙O分别交于点E,点F,连接BF,若∠BDC=50°,求∠CBF的度数.答案一.选择题(共10小题,每小题3分,共计30分)1.解:∵⊙O的半径为5,弦AB=8,点C是AB的中点,∴OC⊥AB,AC=BC=4,OA=5,∴OC===3,故选:C.2.解:∵∠OEC=65°,OE=OC,∴∠EOC=180°﹣2×65°=50°,∵D是BC的中点,∴OE⊥BC,∴,∴∠EOB=50°,∴∠BOC=100°,∴∠A=50°,故选:A.3.解:连接AQ、P A,如图,∵PQ切⊙A于点Q,∴AQ⊥PQ,∴∠AQP=90°,∴PQ==,当AP的长度最小时,PQ的长度最小,∵AP⊥x轴时,AP的长度最小,∴AP⊥x轴时,PQ的长度最小,∵A(﹣3,2),∴此时P点坐标为(﹣3,0).故选:D.4.解:连接AD、AE、OD、OC、OE,过点O作OH⊥CE于点H,∵∠DCE=100°,∴∠DAE=180°﹣∠DCE=80°,∵点D关于AB对称的点为E,∴∠BAD=∠BAE=40°,∴∠BOD=∠BOE=80°,∵点C是的中点,∴∠BOC=∠COD=40°,∴∠COE=∠BOC+∠BOE=120°,∵OE=OC,OH⊥CE,∴EH=CH,∠OEC=∠OCE=30°,∵直径AB=4,∴OE=OC=2,∴EH=CH=,∴CE=2.故选:A.5.解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠ACE=20°,∴∠ADE=∠ACE=20°,∴∠BDE=∠ADB+∠ADE=110°,故选:C.6.解:∵四边形ABCD为正方形,∴AB=BC=4,∴OB=2,∴S阴影=S△ABC﹣S扇形OBE=×4×4﹣=8﹣π.故选:D.7.解:过点O作OE⊥BC于点E,如图所示:∵∠BAC=120°,AB=AC,∴∠ABC=∠ACB=30°,又∵对应圆周角为∠ACB和∠ADB,∴∠ACB=∠ADB=30°,而BD为直径,∴∠BAD=90°,在Rt△BAD中,∠ADB=30°,AD=3,∴BD=2,∴OB=,又∵∠ABD=90°﹣∠ADB=90°﹣30°=60°,∠ABC=30°,∴∠OBE=30°,又∵OE⊥BC,∴△OBE为直角三角形,∴BE=,由垂径定理可得:BC=2BE=2×=3,故C正确,故选:C.8.解:连接OA,∵P A,PB是⊙O的切线,A,B是切点,∴∠PBO=∠P AO=90°,∵∠P=70°,∴∠BOA=360°﹣∠PBO﹣∠P AO﹣∠P=110°,∵OA=OB,∴∠ABO=∠BAO=(180°﹣∠BOA)=(180°﹣110°)=35°,故选:B.9.解:∵⊙O的直径为2,则半径是:1,∴S⊙O=π×12=π,连接BC、AO,根据题意知BC⊥AO,AO=BO=1,在Rt△ABO中,AB==,即扇形的对应半径R=,弧长l==,设圆锥底面圆半径为r,则有2πr=,解得:r=.故选:B.10.解:过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;∵点D是AB的中点,∴AD=BD,∵AC=CD',故②正确;∴=,由折叠得:=,∴+=;故③正确;延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:A.二.填空题(共10小题,每小题3分,共计30分)11.解:连接AC,BC,OC,∵⊙O的直径AB和弦CD垂直相交于点E,CD=4,∴CE=DE=2,=,∠ACB=90°,∴∠B+∠CAB=90°,∠CAB=∠DAB,∵CF⊥AD,∴∠GF A=90°,∴∠DAB+∠AGF=90°,∴∠B=∠AGF,∵∠CGB=∠AGF,∴∠B=∠CGB,∴BC=CG,∵AB⊥CD,∴GE=EB,设OE=x,∵OG=1,∴GE=BE=x+1,∴OC=OB=x+x+1=2x+1,在Rt△OCE中,由勾股定理得:OC2=CE2+OE2,即(2x+1)2=(2)2+x2,解得:x=1(x=﹣舍去),∴OC=2×1+1=3,即⊙O的半径长为3,故3.12.解:∵扇形的圆心角为90°,母线长为8cm,∴扇形的弧长为=4π,设圆锥的底面半径为rcm,则2πr=4π,解得:r=2,故答案为2.13.解:如图,连接OC、OD,过O作OH⊥CD于H.∵∠COD==60°,OC=OD,∴△COD是等边三角形,∴∠COH=90°﹣60°=30°,∵OH⊥CD,∴CH=DH=CD,OH=b=10(mm),∴CH=(mm),∴a=2CH=(mm),故.14.解:如图,连接BM、AM,作MH⊥BC于H,则BH=CH,∴BC=2BH,∵⊙M与x轴相切于点A,∴MA⊥OA,∵圆心M的坐标是(4,5),∴MA=5,MH=4,∴MB=MA=5,在Rt△MBH中,由勾股定理得:BH===3,∴BC=2×3=6,故6.15.解:①△ABC是锐角三角形,如图,∵∠BOC=110°,∴∠BAC=55°;②△A′BC是钝角三角形,如图,∵∠BAC+∠BA′C=180°,∴∠BA′C=125°.故55°或125.16.解:分为两种情况:①当点在圆内时,如图1,∵点到圆上的最小距离PB=4cm,最大距离P A=9cm,∴直径AB=4cm+9cm=13cm,∴半径r=6.5cm;②当点在圆外时,如图2,∵点到圆上的最小距离PB=4cm,最大距离P A=9cm,∴直径AB=9cm﹣4cm=5cm,∴半径r=2.5cm;故6.5cm或2.5cm.17.解:∵△ABC绕点C旋转120°得到△A′B′C,∴△ABC≌△A′B′C,∴S△ABC=S△A′B′C,∠BCB′=∠ACA′=120°.∵AB扫过的图形的面积=S扇形ACA′+S△ABC﹣S扇形BCB′﹣S△A′B′C,∴AB扫过的图形的面积=S扇形ACA′﹣S扇形BCB′,∴AB扫过的图形的面积=﹣=.故.18.解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=1,∵AC=BD=1,OC=OD=1,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=π,故.19.解:∵CD⊥AB,∴CE=DE=CD,∵AE=CD=6,∴CE=DE=3,∵OD=OB=OA,OE=AE﹣OA,在Rt△ODE中,由勾股定理可得:OD2=DE2+(AE﹣OA)2,即:OD2=32+(6﹣OD)2,解得:OD=,∴⊙O的半径为:,故.20.解:如图,以OA为直径作⊙D,连接CD,交⊙D于B,此时BC长最小,∵A(4,0),C(0,3),∴OC=3,OA=4,∴OD=DB=2,∴CD===,∴BC=CD﹣BD=﹣2,故﹣2.三.解答题(共6小题,每小题10分,共计60分)21.(1)证明:如图,连接OA,∵∠C=45°,∴∠DOA=90°,∴AO⊥OD,∵AB∥OD,∴OA⊥AB,OA是半径,∴AB是⊙O的切线;(2)如图,过点D作DE⊥AC于点E,∵∠C=45°,CD=2,∴CE=DE=CD=,∵∠AOD=90°,OA=OD=2,∴AD==2,∴AE===,∴AC=AE+EC=+.答:AC边的长为+.22.(1)证明:∵AC是⊙O的直径,∴∠ABC=90°,∴∠ACB+∠CAB=90°,又∵∠ACB=∠DAB,∴∠DAB+∠CAB=90°,即∠OAD=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)解:由(1)可知∠OAD=90°,∵∠ADB=30°,∴OA=OD=(OB+BD),∵OA=OB,BD=2,∴OA=2,∴AC=2OA=4.23.(1)证明:∵CD与⊙O相切于C,∴OC⊥DC,∵BE⊥DC,∴BE∥OC,∴∠EBC=∠OCB,∵OC=OB,∴∠OCB=∠OBC,∴∠EBC=∠OBC,即BC是∠ABE的平分线;(2)解:过C作CM⊥BD于M,∵BC是∠ABE的平分线,BE⊥CE,∴CE=CM,∵OC⊥DC,∴∠OCD=90°,∵DC=8,OC=OA=6,∴OD===10,∵S△DCO==,∴8×6=10×CM,解得:CM=4.8,即CE=CM=4.8.24.(1)证明:连接OA,AD,∵∠ACB=60°,∴∠ADB=∠ACB=60°,∵BD为⊙O的直径,∴∠BAD=90°,∴∠ABD=90°﹣∠ADB=30°,∵OB=OA,∴∠OAB=∠ABD=30°,∴∠AOP=∠ABD+∠OAB=60°,∵P A切⊙O于A,∴∠P AO=90°,∴∠P=90°﹣∠AOP=30°,即∠P=∠ABD,∴AB=AP;(2)解:过O作OQ⊥AB于Q,∵∠P AO=90°,∠P=30°,∴OP=2AO,∵PD=,OA=OD,∴OD+=2OA,解得:OA=OD==OB,在Rt△BQO中,∠OQB=90°,∠ABO=30°,∴OQ=OB=,由勾股定理得:BQ===,∵OA=OB,OQ⊥AB,∴AB=2BQ=2×=,∵∠ABO=∠OAB=30°,∴∠AOB=180°﹣30°﹣30°=120°,∴阴影部分的面积S=S扇形AOB﹣S△AOB=﹣×=﹣.25.解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=26°,∴∠ABC=90°﹣∠CAB=64°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=32°,∴∠ACD=∠ABD=32°,即∠ABC=64°,∠ACD=32°;(2)连接BD,DO,由(1)知:∠ABC=64°,∵D为的中点,∴∠ABD=∠CBD=64°=32°,∵OB=OD,∴∠ODB=∠ABD=32°,∴∠POD=∠ABD+∠ODB=32°+32°=64°,∵PD切⊙O于D,∴∠ODP=90°,∴∠P=90°﹣∠POD=90°﹣64°=26°.26.解:(Ⅰ)如图①,连接OB、OD,∵四边形ABCD为菱形,∴∠A=∠C,由圆周角定理得,∠BOD=2∠A,∴∠BOD=2∠C,∵CB,CD为⊙O的切线,∴OB⊥BC,OD⊥CD,∴∠BOD+∠C=180°,∴2∠C+∠C=180°,∴∠C=60°;(Ⅱ)如图②,∵四边形ABCD为菱形,∠BDC=50°,∴∠BDA=∠BDC=50°,AB=AD,∴∠DBA=∠BDA=50°,∴∠A=180°﹣50°﹣50°=80°,同理,∠C=80°,∵四边形ABFD是⊙O内接四边形,∴∠BFC=∠A=80°∴∠CBF=180°﹣∠C﹣∠BFC=20°.。

苏科版数学九上第二章轴对称图形--圆复习

苏科版数学九上第二章轴对称图形--圆复习
A.150°
B.130°
C.120°
D.60°
2.5.直线与圆的位置关系
一、直线与圆的位置关系
r
O
┐d

相交
r
O
┐d

相切
1、直线和圆相交
d < r.
2、直线和圆相切
d = r.
3、直线和圆相离
d > r.
r
O
d


相离
2.5 直线与圆的位置关系
二、切线的判定定理
经过半径的外端,并且垂直于这条半径的直线是圆的切线
线平分两条切线的夹角.
A
∵PA,PB切⊙O于A,B
∴PA=PB ∠1=∠2
P
1
2
O

B
练习
1、已知:如图1,△ABC中,AC=BC,以BC为直径 的⊙O交
AB于点D,过点D作DE⊥AC于点E,交 BC的延长线于点F.
求证:(1)AD=BD;(2)DF是⊙O的切线.
A
A
D
E
B
O
C
P
F
C
图1
B
图2
2、如图2,PA、PA是圆的切线,A、B为切点,AC为

练习
三、选择题:
下列命题正确的是( C )
A、三角形外心到三边距离相等
B、三角形的内心不一定在三角形的内部
C、等边三角形的内心、外心重合
D、三角形一定有一个外切圆
四、一个三角形,它的周长为30cm,它的内切圆半径为2cm,则这个三
30
角形的面积为______.
2.5直线与圆的位置关系
七、圆线与圆的位置关系
⌒ ⌒

苏科版数学初三上册第2章对称图形圆知识点总结

苏科版数学初三上册第2章对称图形圆知识点总结

苏科版数学初三上册第2章对称图形圆知识点总结圆是轴对称图形,每一条直径都是它的对称轴,因此圆有无数条对称轴。

初中频道为大家编辑了对称图形圆知识点,希望对大家有帮助。

2.1 圆1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

想要获取更多详细知识点请点击苏科版初三数学上册圆知识点2.2 圆的对称性(1)圆是满足x轴对称的,这样只需要计算原来的1/2点的位置;(2)圆是满足y轴对称的,这样只需要计算原来的1/2点的位置;(3)圆是满足y = x or y = -x轴对称的,这样只需要计算原来的1/2点的位置;想要获取更多详细知识点请点击初三苏科版数学上册圆的对称性知识点2.3 确定圆的条件1.定理:不在同一直线上的三个点确定一个圆.定理中不在同一直线这个条件不可忽略,确定一词应理解为有且只有 .2.通过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心为三角形的外心,这个三角形叫圆的内接三角形.只要三角形确定,那么它的外心和外接圆半径也随之确定了.想要获取更多详细知识点请点击苏科版九年级数学上确定圆的条件知识点2.4 圆周角圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。

证明(分类思想,3种,半径相等)①圆周角度数定理:圆周角的度数等于它所对的弧的度数的一半。

②同圆或等圆中,同弧或等弧所对的圆周角相等,相等圆周角所对的弧也相等。

(不在同圆或等圆中其实也相等的。

注:仅限这一条。

)想要获取更多详细知识点请点击九年级苏科版数学上圆周角知识点讲解2.5 直线与圆的位置关系①直线和圆无公共点,称相离。

AB与圆O相离,d r。

②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。

AB与⊙O相交,d③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷第二章对称图形圆第1课时圆的有关概念1.如图,在5×5的正方形网格中,如果一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( )A.点P B.点Q C.点R D.点M2.如图,⊙O过点B,C,圆心O在等腰直角三角形ABC的内部,若∠BAC=90°,OA=1,BC=6,则⊙O的半径为( )A.6 B.13 C.13D.2 13,∠A=30°,则∠B=( )3.如图,在⊙O中,若AB ACA.150°B.75°C.60°D.15°4.如图所示是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水的最大深度为2cm,那么该输水管的半径为( )A.3cm B.4cm C.5cm D.6cm5.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为点P,若BP:AP=1:5,则CD的长为( )A.42B.82C.25D.456.在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为( )A.10 B.430C.10或430D.10或21657.在如图所示的⊙O中,若∠BAC=∠CDA=20°,则∠ABO=_______.8.如图,AB是⊙O的弦,OH⊥AB,垂足为点H,点P是优弧上一点,若AB=23,OH=1,则∠APB=_______.9.如图,过A,C,D三点的圆的圆心为E,过B,F,E三点的圆的圆心为D,如果∠A=63°,那么∠B=_______.10.某施工工地安放了一个圆柱形饮水桶的木制支架(图1),若不计木条的厚度,其俯视图如图2所示.若AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是_______cm.11.在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),若直线y=kx-3k+4与⊙O交于B,C两点,则弦BC的长的最小值为_______.12.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°,若动点E以2cm/s的速度从点A出发沿着A→B→A的方向运动,设运动时间为t(s)(0≤t<3),连接EF,则当t为_______s时,△BEF是直角三角形.13.在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为AD上的一点,BC=AF,延长DF与BA的延长线交于点E.(1)求证:△ABD为等腰三角形;(2)求证:AC·AF=DF·FE.14.如图,⊙O的圆心在坐标原点,半径为2,直线y=x+b(b>0)与⊙O交于A,B两点,点O关于直线y=x+b的对称点为O'.(1)求证:四边形OAO'B是菱形;(2)当点O'落在⊙O上时,求b的值.参考答案1.B 2.C 3.B 4.C 5.D 6.D 7.50°8.60°9.18°10.30 11.2412.1或1.75或2.25 13.略14.(1) 略(2)b第2课时直线与圆的位置关系1.若直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是( ) A.r<6 B.r=6 C.r>6 D.r≥62.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以点C为圆心,r为半径作圆,若OC与直线AB相切,则r的值为( )A.2cm B.2.4cm C.3cm D.4cm3.下列命题是假命题的是( )A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形 D.圆的切线垂直于经过切点的半径4.直线AB与⊙O相切于点B,C是⊙O与OA的交点,点D是⊙O上的动点(点D与B,C不重合),若∠A=40°,则∠BDC的度数是( )A.25°或155°B.50°或155°C.25°或130°D.50°或130°5.如图,已知线段OA交⊙O于点B,且OB=AB,如果点P是⊙O上的一个动点,那么么OAP的最大值是( )A.30°B.45°C.60°D.90°6.如图,⊙I是△ABC的内切圆,D,E,F为三个切点,若∠DEF=52°,则∠A的度数为( )A.76°B.68°C.52°D.38°7.如图,以等边三角形ABC的边BC为直径画半圆,分别交AB,AC于点E,D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( ) A.4 B.33C.6 D.238.已知⊙O的半径为5,若圆心O直线AB的距离为2,则⊙O上有且只有_______个点到直线AB的距离为3.9.如图,PA,PB分别切⊙O于点A,B,若∠P=70°,则∠C=_______.10.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=23,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=_______.11.如图,直线AB与⊙O相切于点A,AC,CD是⊙O的两条弦,且CD∥AB,若⊙O的,CD=4,则弦AC=_______.半径为5212.如图,一个宽为2cm的刻度尺(单位:cm),放在圆形玻璃杯的杯口上.如果刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为_______cm.13.如图,在△ABC中,BA=BC,以AB为直径作半圆⊙O,交AC于点D.连接DB,过点D作DE⊥BC,垂足为点E(1)求证:DE为⊙O的切线;(2)求证:DB2=AB·BE.14.如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD分别交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径r.15.如图,以△ABC的边BC上一点O为圆心的圆,经过A,B两点,且与边BC交于点E,D为BE的下半圆弧的中点,连接AD交BC于点F,若AC=FC.(1)求证:AC是⊙O的切线;(2)若BF=8,DF=40,求⊙O的半径r.参考答案1.C2.B3.B4.A5.A6.A7.B8.39.35°10.2 11.2 12.1013.略14.(1)略(2)6 15.(1)略(2)r=2第3课时圆与圆的位置关系1.如图,⊙O1,⊙O2的圆心O1,O2在直线l上,⊙O1的半径为2cm,⊙O2的半径为3cm,O1O2=8cm.⊙O1以1cm/s的速度沿直线l向右运动,7s后停止运动,在此过程中,⊙O1与⊙O2没有出现的位置关系是( )A.外切B.相交C.内切D.内含2.已知两圆外切,圆心距为5cm.,若其中一个圆的半径是3cm,则另一个圆的半径是( ) A.8cm B.5cm C.3cm D.2cm3.若相切两圆的半径是一元二次方程x2-7x+12=0的两个根,则这两个圆的圆心距是( )A.7 B.1或7 C.1 D.64.若两个半径不相等的圆外切,圆心距为6cm,大圆半径是小圆半径的2倍,则小圆半径为( )A.2cm或6cm B.6cm C.4cm D.2cm5.若两圆的半径是方程x2-5x+6=0的两个根且圆心距为5,则这两个圆的位置关系是( )A.内切B.相交C.外切D.外离6.如图,⊙O1,⊙O2相交于A,B两点,两圆的半径分别为6cm和8cm,若两圆的连心线O1O2的长为10cm,则弦AB的长为( )A.4. 8cm B.9.6cm C.5.6cm D.9.4cm7.如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A,B两点,若P是⊙M上异于A,B的一动点,直线PA,PB分别交y轴于点C,D,以CD为直径的⊙N与x轴交于点E,F,则EF的长( )A.等于42B.等于43C.等于6 D.随P点位置的变化而变化8.若外切两圆的圆心距是7,其中一圆的半径是4,则另一圆的半径是( ) A.11 B.7 C.4 D.39.在平面直角坐标系中,如果⊙O的圆心在原点,半径为3,⊙A的圆心A的坐标为(-3,1),半径为1,那么⊙O与OA的位置关系是_______.10.两圆的半径之比为5:3,若这两个圆外切时,圆心距为16cm,则这两个圆内切时,圆心距为_______cm.11.在平面直角坐标系xOy中,已知点A(0,2),⊙A的半径是2,⊙P的半径是1,满足与⊙A及x轴都相切的⊙P有_______个.12.如图,在边长为3的正方形ABCD中,若⊙O1与⊙O2外切,且⊙O1分别与边DA,DC相切,⊙O2分别与边BA,BC相切,则圆心距O1O2为_______.13.如图,小圆的圆心在原点,半径为3,大圆的圆心坐标为(a,0),半径为5.如果两圆内含,那么a的取值范围是_______.14.若⊙O1的半径为3,⊙O2的半径为r,⊙O1和⊙O2只能画出两条不同的公共切线,且O1O2=5,则⊙O2的半径r的取值范围是_______.15.已知⊙A的半径为2cm,AB=3cm.若以B为圆心作⊙B,使得⊙A与⊙B外切,则⊙B的半径是_______cm.16.如图,点A,B在直线MN上,AB=11cm,⊙A,⊙B的半径均为1cm.⊙A以2cm/s 的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(s)之间的关系式为r=1+t(t≥0).(1)试写出点A,B之间的距离d(cm)与时间t(s)之间的函数表达式;(2)问点A出发后多少秒两圆相切?(x>0)图象上的17.如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数y=12x任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A,B.(1)求证:线段AB为⊙P的直径;(2)求△AOB的面积;(x>0)图象上异于点P的另一个点,以Q为圆心,(3)如图2,Q是反比例函数y=12x上QO为半径画圆与坐标轴分别交于点C,D,求证:DO·OC=BO·OA.参考答案1.D2.D3.B4.D5.C6.B7.C8.D 9.内切10.4 11.4 12.6-213.-2<a<2 14.2<r<8 15.1 16.(1)d=2t-11 (2)点A出发后3s,s,11s,13s 两圆相切17.(1)略(2)24 (3)略第4课时正多边形与圆1.若正多边形的一个内角为135°,则该正多边形的边数为( )A.9 B.8 C.7 D.42.若一个多边形的内角和与外角和相等,则这个多边形是( )A.四边形 B.五边形C.六边形D.八边形3.每个外角都是18°的正多边形的对称轴的条数为( )A.24 B.12 C.20 D.104.只用下列图形中的一种,能够进行平面镶嵌的是( )A.正十边形B.正八边形C.正六边形D.正五边形5.用下列一种多边形不能铺满地面的是( )A.正方形 B.正十边形 C.正六边形 D.等边三角形6.如图,在正六边形ABCDEF中,若AB=2,点P是ED的中点,连接AP,则AP的长为( )A.23B.4 C.13D.117.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域.若设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为( )A.2a2B.3a2C.4a2D.5a28.一个多边形的每一个外角都等于18°,它是_______边形.9.若一个圆的半径为5cm,则它的内接正六边形的边长为_______.10.△OAB是以正多边形相邻的两个顶点A,B与它的中心O为顶点的三角形,若△OAB 的一个内角为70°,则该正多边形的边数为_______.11.如图,在正八边形ABCDEFGH中,若四边形BCFG的面积为20cm2,则正八边形的面积为_______cm2.12.如图,平面直角坐标系中有一个正六边形ABCDEF,其中C,D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A,B,C,D,E,F中,会过点(45,2)的是点_______.13.如图,已知图中的圆均为等圆,且相邻两圆外切,圆心连线构成正三角形,记各阴影部分的面积从左到右依次为S1,S2,S3,…,S n,则S12:S4=_______.14.我们把正六边形的顶点及其对称中心称作如图1所示基本图的特征点,显然这样的基本图共有7个特征点.将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图2、图3、….(1)观察以上图形并完成下表:猜想:在图n中,特征点的个数为_______;(用含n式子表示)(2)如图,将图n放在平面直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1=_______,图2013的对称中心的横坐标为_______.参考答案1.B2.A3.C4.C5.B6.C7.A 8.二十9.5cm 10.9 11.40 12.A 13.19:714.(1)22 5n +2 (2)3 20133第5课时 圆的有关计算1.钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是 ( )A .12πB .14πC .18π D .π2.如果一个扇形的半径是1,弧长是3π,那么此扇形的圆心角的大小为 ( ) A .30°B .45°C .60°D .90° 3.若一个圆锥的底面积为47πcm 2,高为42cm ,则该圆锥的侧面展开图中圆心角的度数为 ( )A .40°B .80°C .120°D .150°4.若圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为 ( )A .48πcm 2B .48πcm 2C .120πcm 2D .60πcm 25.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB'C',点B 经过的路径为BB',若∠BAC =60°,AC =1,则图中阴影部分的面积是 ( )A .2π B .3π C .4π D .π6.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,此正圆锥侧面展开图的圆心角是( )A .90°B .120°C .150°D .180°7.若Rt △ABC 的一条直角边AB =12cm ,另一条直角边BC =5cm ,则以AB 为轴旋转一周,所得到的圆锥的表面积是 ( )A .90πcm 2B .209πcm 2C .155πcm 2D .65πcm 28.如图,用邻边分别为a ,b(a<b)的矩形硬纸板裁出以a 为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的小圆,把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a与b 满足的关系式是 ( )A .3b a =B .512b a +=C .52b a =D .2b a =9.如图,AB 切⊙O 于点B ,OA =2,∠OAB =30°,弦BC ∥OA ,劣弧BC 的弧长为_______.(结果保留π)10.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是_______°.11.已知一个扇形的半径为60cm ,圆心角为150°.如果用它围成一个圆锥的侧面,那么圆锥的底面半径为_______cm .12.如图,CD 是⊙O 的直径,弦AB ⊥CD ,垂足为点M ,AB =20,若分别以DM ,CM 为直径作两个大小不同的⊙O 1和⊙O 2,则图中所示的阴影部分的面积为_______.(结果保留π)13.若用半径为10cm ,圆心角为216°的扇形作一个圆锥的侧面,则这个圆锥的高是_______cm.14.如图,要制作一个母线长为8cm,底面圆的周长为12πcm的圆锥形小漏斗,若不计损耗,则所需纸板的面积是_______cm2.15.如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD,垂足为点D.(1)求证:AE平分∠DAC.(2)若AB=3,∠ABE=60°,①求AD的长;②求出图中阴影部分的面积.参考答案10.180 11.25 12.50 13.8 1.A 2.C 3.C 4.D 5.A 6.D 7.A 8.D 9.314.4815.(1)略。

相关文档
最新文档