直角三角形的性质判定习题

合集下载

八年级下册第一章《直角三角形》培优习题

八年级下册第一章《直角三角形》培优习题

八年级下册第一章《直角三角形》培优习题一、知识要点填空:1、直角三角形的性质:(1)直角三角形的两个锐角_________(2)直角三角形斜边上的中线等于斜边的_________;(3)直角三角形30°角所对的直角边是______的一半;(4)直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30°.2、直角三角形的判定方法:(1)有一个角是直角的三角形是直角三角形;(2)有两个角______的三角形是直角三角形;(3)如果一条边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、等腰直角三角形是特殊的直角三角形,它的两个底角都是_____,且两条直角边相等。

等腰直角三角形具有等腰三角形和直角三角形的所有性质,是很常见的特殊三角形。

二、练习题1、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则则∠1+∠2等于__________.2、设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中,能表示它们之间关系的是()A. B.C. D.3、如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是()A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE4、如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能的是()A.3.5 B.4.2 C.5.8 D.75、如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是() A.3 B.2 C.3 D.16、已知等腰△ABC 中,AD ⊥BC 于点D ,且AD=21BC ,则△ABC 底角的度数为___________________.7、四边形ABCD 由一个∠ACB=30°的Rt △ABC 与等腰Rt △ACD 拼成,E 为斜边AC 的中点,则∠BDE=__________.8、已知:在△ABC 中,∠BAC=90°,AD ⊥BC 于点D ,∠ABC 的平分线BE 交AD 于点F ,试说明AE=AF.9、在△ABC 中,∠A=90°,AB=AC ,∠ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点E .求证:CE =21BD10、一根长2a 的木棍(AB ),斜靠在与地面(OM )垂直的墙(ON )上,设木棍的中点为P .若木棍A 端沿墙下滑,且B 端沿地面向右滑行.木棍滑动的过程中,点P 到点0的距离不变化,在木棍滑动的过程中,△AOB 的面积最大为______________.11、如图在Rt △ABC 中,∠ACB=90°,CD 、CE 分别是斜边AB 边上的高与中线,CF 是∠ACB 的平分线,则∠1与∠2的大小关系是( )A .∠1>∠2 B. ∠1=∠2 C. ∠1<∠2 D.不能确定12、如图,在Rt △ABC 中,∠ACB=90°,AB=2BC ,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有( )A .4个B .5个C .6个D .7个13、如图,在直角三角形ABC 中,CM 是斜边AB 上的中线,MN ⊥AB ,∠ACB 的平分线CN 交MN 于N ,求证:CM=MN .14、如图,在斜边长为1的等腰直角三角形OAB 中,作内接正方形A 1B 1D 1C 1;在等腰直角三角形OA 1B 1中作内接正方形A 2B 2D 2C 2;在等腰直角三角形OA 2B 2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形A nB n D nC n的边长是_______________.15、下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形共有4个,图2中以格点为顶点的等腰直角三角形共有________个,图3中以格点为顶点的等腰直角三角形共有_________个,图4中以格点为顶点的等腰直角三角形共有_________个.16、如图,在△ABC中,∠B=90°,∠BAC=78°,过C作CF∥AB,连接AF于BC相交于G,若GF=2AC,则∠BAG=17、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②DE长度的最小值为4;③四边形CDFE的面积保持不变;④△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①③ C.①③④D.②③④18、如图,已知OA=a,P是射线ON上一动点(即P可以在射线ON上运动),∠AON=60°,填空:(1)当OP=_________时,△AOP为等边三角形;(2)当OP=__________时,△AOP为直角三角形;(3)当OP满足___________时,△AOP为钝角三角形.GF CB A。

直角三角形的性质习题

直角三角形的性质习题

直角三角形的性质 (一)1.在 直角三角形ABC 中,∠ACB=90度,CD 是AB 边上中线,若CD=5cm,则AB=_____ 三角形ABC 的面积=____________2. 在 直角三角形ABC 中,∠ACB=90度,CD 是AB 边上中线,图中有__________等腰三角形. 3.如图,在△ABC 中,∠B=∠C ,D 、E 分别是BC 、AC 的中点,AB=6,求DE 的长。

4.已知:四边形ABCD 中,∠ABC= ∠ADC=90度, E 、F 分别是AC 、BD 的中点。

求证:EF ⊥BD1、 如图,在△ABC 中,∠B= 2∠C ,点D 在 BC 边上,且AD ⊥AC.求证:CD=2AB19.8(2)直角三角形性质(二)1、 在直角三角形ABC 中,∠C=90°,∠BAC=30°,BC=10,则AB=________.2、 顶角为30度的等腰三角形,若腰长为2,则腰上的高__________,三角形面积是________E3、 等腰三角形顶角为120°,底边上的高为3,则腰长为_________4、 三角形ABC 中,AB=AC=6,∠B=30°,则BC 边上的高AD=_______________5、 Rt △ABC 中,∠C=90°,∠A=15°,AB 的垂直平分线交AC 于D,AB 于E,求证AD=2BC.6、 已知:△ABC 中,AB=AC ,∠B=30°,AD ⊥AB ,求证:2DC=BD7.如图,△ABC 中,∠C=90°,∠A=60 °,EF 是AB 的垂直平分线,判断CE 与BE 之间的关系19.8(3)直角三角形的性质(三)1.在直角三角形中,有一个锐角为52度,那么另一个锐角度数为 ;2、在直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为________.3、在△ABC 中, ∠ACB=90 °,CE 是AB 边上的中线,那么与CE 相等的线段有_________,与∠A 相等的角有_________,若∠A=35°,那么∠ECB= _________.DACBADEFCBA4、已知:∠ABC=∠ADC=90 度,E 是AC 中点。

八下第1章直角三角形1-1直角三角形的性质与判定Ⅰ1-1-2含30°角的直角三角形的性质及其应用习题

八下第1章直角三角形1-1直角三角形的性质与判定Ⅰ1-1-2含30°角的直角三角形的性质及其应用习题

解:过点D作DC⊥AB于点C.∵∠DAB=15°, ∠DBC=30°,∴∠ADB=15°,∴DB=AB=100 m, ∴在Rt△DBC中,DC= ×100=50(m). 答:河宽是50 m.
8.[临湘期中]如图,已知在△ABC中,∠C=90°,∠B=60°,D是BC上一点,过点D作DE∥AC,交AB于点E,若BD=3,CD=2,则AE的长为________.
D
6.[教材改编题]如图是某建筑物的屋顶架的示意图,D是斜梁AB的中点,立柱BC,DE都垂直于横梁AC,DE=2 m,∠A=30°,则AB等于________m.
8
【点拨】∵∠A=30°,DE⊥AC,∴DE= AD.又DE=2 m,∴AD=4 m.∵D是.[教材改编题]如图,吴敏在河岸的点A测得看对岸点D的视线与其所在河岸的直线成15°角,然后沿该直线行走100 m到达点B,此时测得看对岸点D的视线与前进方向成30°角,问河宽是多少米?
4
9.设计一张折叠型方桌如图所示,若AO=BO=50 cm,CO=DO=30 cm,将桌子放平后,要使AB离地面的高度为40 cm,则两条桌腿需要叉开的角度(∠AOB)应为( ) A.60° B.90° C.120° D.150°
C
【点拨】过点D作DE⊥AB交AB于点E.在Rt△ADE中,AD=OA+OD=50+30=80(cm),易知DE=40 cm,∴DE= AD.∴∠BAD=30°.∵OA=OB,∴∠ABC=∠BAD=30°.∴∠AOB=180°-2×30°=120°.故选C.
10.[邵阳洞口期中]如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于点D,DE是AB的垂直平分线,垂足为点E.若BC=9,则DE的长是( ) A.3 B.4 C.4.5 D.5

1.2 直角三角形的性质和判定(Ⅱ)(3)

1.2 直角三角形的性质和判定(Ⅱ)(3)

山东星火国际传媒集团
解 (1)∵62+82=100,102=100,∴62+82=102.
∴这个三角形是直角三角形. (2)∵122+152=369,202=400,
∴122+152≠202.
∴这个三角形不是直角三角形.
满足a2+b2=c2的三个正整数称为勾股数.
山东星火国际传媒集团
判断由a、b、c组成的三角形是不是直角三角形: (1)a=1,b=2,c=
3 ;
(2)a:b:c=3::5.
解:(1)∵12+( 3)2=1+3=4, 22=4, ∴ 12+( 3)2=22. ∴这个三角形是直角三角形. (2)设a=3x, b=4x, c=5x,则 ∵(3x)2+(4x )2=25x2, (5x)2= 25x2, ∴ (3x)2+(4x )2 = (5x)2. ∴这个三角形是直角三角形
山东星火国际传媒集团
1.2
直角三角形的性质和判定(Ⅱ) (3 )
山东星火国际传媒集团
(1)在Rt△ABC,∠C=90°,a=8,b=15,则c=
17
.
c为斜边
c 8 15 289 17
2 2
(2)在Rt△ABC,∠B=90°,a=3,b=4,则c=
7 .
b为斜边
c 4 2 32 7
17 8 15.
2
2
山东星火国际传媒集团
1、下列各组线段中,能够围成直角三角形的是 ( A、1、2、3 C、4、5、6 B、15、20、25 D、18、9、10
B

2、下列各组线段中,不能够围成直角三角形是 ( A、9、12、15 C、7、24、25 B、8、15、17 D、6、8、9

直角三角形的性质与判定(2)

直角三角形的性质与判定(2)

C
解:找AB的中点D,连接CD。
1 ∴CD= AB=BD=AD 2
B
30 °
D
A
∵ ∠A=30° ∠BCA=90° ∴ ∠B=60 ° ∴ ⊿CBD为等边三角形
1 ∴BC=BD= AB 2
归纳结论
C 30
直角三角形性质定理2:
B
D
A
在直角三角形中,如果一个锐角等 于30°,那么它所对的直角边等于 斜边的一半。
A
D C B
2.如图,在⊿ABC中, ∠CBA=90°, D是AC的中 点,AB=3 ,∠CBD=30°, 求AC的长
C
30 B
D A
小结: 直角三角形性质定理
在 直 角 三 角 形 中
斜边上的中线等于斜边的一半 30°角所对直角边等于斜边的一半
一条直角边等于斜边的一半,那么 这条直角边所对的角等于30°。
动脑筋 1.取线段AB的中点D,连接CD,即CD为 Rt⊿ABC斜边AB上的中线,则可得到哪 C 些相等的线段? CD=BD=AD A B D 2.由∠A=30°可知∠B等于多少度? ∠B=60° 3.⊿CBD是什么三 角形? 等边三角形 现在你能说出直角边BC与斜边AB的关 系,并写出推理过程吗? 30
作业: 教材P93,3题 4题
问题:试着把上述性质的条件与结论 调换,仍然成立吗?
探究
如图,在Rt⊿ABC中, ∠BCA=90°,如果 1 BC= AB,那么∠A等于多少? 2 C
分析: 同上可知⊿BCD是等边三角形 ∴ ∠B=60° ∴ ∠A=30°
B
D
A
归纳结论
直角三角形性质定理3:
在直角三角形中,如果一条直角边等于斜边的 一半,那么这条直角边所对的角等于30°。

八下第1章直角三角形1-1直角三角形的性质和判定Ⅰ第2课时含30°角的直角三角形的性质习题新版湘教版

八下第1章直角三角形1-1直角三角形的性质和判定Ⅰ第2课时含30°角的直角三角形的性质习题新版湘教版
一个等腰三角形模型(示意图如图所示),它的顶角为120°,
腰长为12 m,则底边上的高是( B
A.4 m
B.6 m
C.10 m
D.12 m
)
(第6题)
7.(母题:教材P8习题T6)如图,在△ABC中,∠C=90°,点
E是边AC上的点,且∠1=∠2,DE垂直平分边AB,垂足
为点D.若EC=3 cm,则AE的长为 6 cm

∴∠B=30°,∴∠BAC= (180°-∠B)=75°.
②如图(b),AC=BC,AD⊥BC交BC的延长线于点D,

AD在三角形的外部,∴∠CAB=∠B.由题意知AD= BC=


AC,∴∠ACD=30°=∠B+∠CAB.


∵∠B=∠CAB,∴∠BAC= ∠ACD=15°.

③如图(c),AC=AB,AD⊥BC,BC边为等腰三角形底
交BC于点D,E为AB上一点,连接DE,则下列说法错误的
是( D
)
A.∠CAD=30°
B.AD=BD
C.BD=2CD
D.CD=ED
3.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC
绕点C按顺时针方向旋转一定角度得到△DEC,点D恰好在
AB上.
(1)若AC=4,求DE的长度;
【解】在△ABC中,∠ACB=90°,
形状
12. [新考法 分类判断法]如图,在Rt△ABC中,∠C=90°,
∠A=30°,BC=12 cm.动点P从点A出发,沿AB向点B运
动,动点Q从点B出发,沿BC向点C运动.如果动点P以2
cm/s,动点Q以1 cm/s的速度同时出发,设运动时间为t
s,解答下面的问题:

直角三角形的性质和判定(1)(教案练习)

直角三角形的性质和判定(1)(教案练习)

1.2.1直角三角形的性质与判定练习题一、选择题1.如图,带阴影的矩形面积是()平方厘米.A.9 B.24 C.45 D.512、已知直角三角形两边的长为3和4,则此三角形的周长为().A.12B.7+7C.12或7+7D.以上都不对3.等腰三角形的腰长为10,底长为12,则其底边上的高为()A.13 B.8 C.25 D.644.如果一个直角三角形的两条直角边分别为n2﹣1,2n(n>1),那么它的斜边长是()A.2n B.n+1 C.n2﹣1 D.n2+15.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25 B.7 C.5和7 D.25或76.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是().A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm7.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2 B.8cm2 C.10cm2 D.12cm2二、填空题8.在直角三角形ABC中,斜边AB=2,则AB2+AC2+BC2= .9.如图,△ABC中,AC=6,AB=BC=5,则BC边上的高AD=______.10.如图,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,阴影部分的面积是.11.直角三角形的三边长为连续偶数,则其周长为 cm.12.如图,△ABC中,∠C=90°,AB垂直平分线交BC于D.若BC=8,AD=5,则AC等于.三、解答题13.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和是多少?14. 如图所示,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5 cm,求AB的长.15.去年某省将地处A、B两地的两所大学合并成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2.732km的A、B两地之间修筑一条笔直公路(即图中的线段AB),经测量,在A地的北偏东60°方向、B地的西偏北45°方向C处有一个半径为0.7km的公园,问计划修筑的这条公路会不会穿过公园?为什么?(3≈1.732)答案:1. C分析:根据勾股定理先求出直角边的长度,再根据长方形的面积公式求出带阴影的矩形面积.解:∵=15厘米,∴带阴影的矩形面积=15×3=45平方厘米.故选C.2.C(提示:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或7,所以直角三角形的周长为3+4+5=12或3+4+7=7+7)故选C;3. B分析:先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度.解:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B.4. D分析:根据勾股定理直接解答即可.解:两条直角边与斜边满足勾股定理,则斜边长是:===n2+1.故选D.5. D分析:分两种情况:①当3和4为直角边长时;②4为斜边长时;由勾股定理求出第三边长的平方即可.解:分两种情况:①当3和4为直角边长时,由勾股定理得:第三边长的平方,即斜边长的平方=32+42=25;②4为斜边长时,由勾股定理得:第三边长的平方=42﹣32=7;综上所述:第三边长的平方是25或7;故选:D .6. D (提示:筷子在杯中的最大长度为22815+=17cm ,最短长度为8cm ,则筷子露在杯子外面的长度为24-17≤h ≤24-8,即7cm ≤h ≤16cm ,)故选D .7. A分析:首先根据翻折的性质得到ED=BE ,再设出未知数,分别表示出线段AE ,ED ,BE 的长度,然后在Rt △ABE 中利用勾股定理求出AE 的长度,进而求出AE 的长度,就可以利用面积公式求得△ABE 的面积了.解:∵长方形折叠,使点B 与点D 重合,∴ED=BE ,设AE=xcm ,则ED=BE=(9﹣x )cm ,在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+x 2=(9﹣x )2,解得:x=4,∴△ABE 的面积为:3×4×=6(cm 2).故选:A .8.分析:由三角形ABC 为直角三角形,利用勾股定理根据斜边AB 的长,可得出AB 的平方及两直角边的平方和,然后将所求式子的后两项结合,将各自的值代入即可求出值. 解:∵△ABC 为直角三角形,AB 为斜边,∴AC 2+BC 2=AB 2,又AB=2,∴AC 2+BC 2=AB 2=4,则AB 2+BC 2+CA 2=AB 2+(BC 2+CA 2)=4+4=8.故答案为:89. 3.6(提示:设DC =x ,则BD =5-x .在Rt △ABD 中,AD 2=52-(5-x )2,在Rt △ADC 中,AD 2=62-x 2,∴52-(5-x )2=62-x 2,x =3.6.故AD =226.36-=4.8);10. 分析:在直角三角形ABE 中,由AE 与BE 的长,利用勾股定理求出AB 的长,由正方形面积减去直角三角形面积求出阴影部分面积即可.解:∵AE⊥BE,∴∠AEB=90°,在Rt△ABE中,AE=3,BE=4,根据勾股定理得:AB==5,则S阴影=S正方形﹣S△ABE=52﹣×3×4=25﹣6=19,故答案为:19.11.分析:设直角三角形的三边边长分别为2n﹣2,2n,2n+2,由勾股定理得:两直角边的平方和等于斜边的平方,据此列出关于n的方程,求出符合题意n的值,即求出了直角三角形的三边长,之后求出周长即可.解:设直角三角形的三边边长分别为2n﹣2,2n,2n+2.由勾股定理得:(2n﹣2)2+(2n)2=(2n+2)2,解得:n1=4,n2=0(不合题意舍去),即:该直角三角形的三边边长分别为6cm,8cm,10cm.所以,其周长为6+8+10=24cm.12.分析:根据线段垂直平分线的性质可求得BD的长,从而求得CD的长,再根据勾股定理即可求得AC的长.解:∵AB垂直平分线交BC于D,AD=5,∴BD=AD=5,∵BC=8,∴CD=BC﹣BD=3,∴AC==4,故答案是:4.13.分析:根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A ,B ,C ,D 的面积之和=49cm 2.故答案为:49cm 2. 14.解:.∵在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,∴∠ABD=∠CBD=30°.∴AD=DB.又∵Rt △CBD 中,CD=5 cm ,∴BD=10 cm.∴BC=22BD CD -=22105-=53(cm).∴AB=2BC=103 cm.15. 解 如图所示,过点C 作CD ⊥AB ,垂足为点D ,由题意可得∠CAB =30°,∠CBA =45°,在Rt △CDB 中,∠BCD =45°,∴∠CBA =∠BCD ,∴BD =CD .在Rt △ACD 中,∠CAB =30°,∴AC =2CD .设CD =DB =x ,∴AC =2x .由勾股定理得AD =22CD AC -=224x x -=3x .∵AD +DB =2.732,∴3x +x =2.732,∴x ≈1.即CD ≈1>0.7,∴计划修筑的这条公路不会穿过公园.。

(完整版)直角三角形的判定和性质

(完整版)直角三角形的判定和性质

直角三角形全等的判定【知识点总结】直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)【典型例题讲解】例1:已知:如图△ABC中,BD⊥AC,CE⊥AB,BD、CE交于O点,且BD=CE 求证:OB=OC.例2:已知:Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB的垂线交AC于E,求证:CD⊥BE:例3:已知△ABC中,CD⊥AB于D,过D作DE⊥AC,F为BC中点,过F作FG⊥DC求证:DG=EG。

【随堂练习】1.选择:(1)两个三角形的两条边及其中一条边的对角对应相等,则下列四个命题中,真命题的个数是()个①这两个三角形全等; ②相等的角为锐角时全等③相等的角为钝角对全等; ④相等的角为直角时全等A.0 B.1 C.2 D.3(2)在下列定理中假命题是()A.一个等腰三角形必能分成两个全等的直角三角形B.一个直角三角形必能分成两个等腰三角形C.两个全等的直角三角形必能拼成一个等腰三角形D.两个等腰三角形必能拼成一个直角三角形(3)如图,Rt△ABC中,∠B=90°,∠ACB=60°,延长BC到D,使CD=AC则AC:BD=()A.1:1 B.3:1 C.4:1 D.2:3(4)如图,在Rt△ABC中,∠ACB=90°,CD、CE,分别是斜边AB上的高与中线,CF 是∠ACB的平分线。

则∠1与∠2的关系是()A.∠1<∠2 B.∠1=∠2; C.∠1>∠2 D.不能确定(5)在直角三角形ABC中,若∠C=90°,D是BC边上的一点,且AD=2CD,则∠ADB 的度数是()A.30°B.60°C.120°D.150°2.解答:(1已知:如图AB⊥BD,CD⊥BD,AB=DC求证:AD//BC.(2)如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E、F 求证:CE=DF.B MC【课后习题】一、填空题:(每题5分,共20分)1.有________和一条________对应相等的两个直角三角形全等,简写成“斜边直角边”或用字母表示为“___________”. 2.如图,△ABC 中,∠C=90°,AM 平分∠CAB,CM= 20cm, 那么M 到AB 的距离是____cm.3.已知△ABC 和△A ′B ′C ′,∠C=∠C ′=90°,AC=A ′C ′,要判定△ABC ≌△A ′B ′C ′,必须添加条件为①________或②________或③________或④_________. 4.如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F,DE ⊥BC 于E,AB=DC,BE=CF, 若要说明AB ∥CD,理由如下:∵AF ⊥BC 于F,DE ⊥BC 于E(已知)∴△ABF,△DCE 是直角三角形∵BE=CF(已知)∴BE+_____=CF+_______(等式性质) 即_______=___________(已证)∴Rt △ABF ≌Rt △DCE( )二、选择题:(每题5分,共25分) 5.两个直角三角形全等的条件是( )A.一锐角对应相等;B.两锐角对应相等;C.一条边对应相等;D.两条边对应相等 6.要判定两个直角三角形全等,需要满足下列条件中的()①有两条直角边对应相等; ②有两个锐角对应相等; ③有斜边和一条直角边对应相等; ④有一条直角边和一个锐角相等; ⑤有斜边和一个锐角对应相等; ⑥有两条边相等. A.6个 B.5个 C.4个 D.3个7.如图,AB ∥EF ∥DC,∠ABC=90°,AB=DC,那么图中有全等三角形( ) A.5对; B.4对; C.3对; D.2对8.已知在△ABC 和△DEF 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF9.如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的依据是( )A.AASB.SASC.HLD.SSS三、解答题:(共55分)10.如图,△ABC 中,∠C=90°,AB=2AC,M 是AB 的中点,点N 在BC 上,MN ⊥AB.求证:AN 平分∠BAC.(7分)BA21N MCB A E FC B AEF C D11已知:如图,AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:CF=DF.(8分)B AE F D12知如图,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD⊥AE于D,CE ⊥AE于E,求证:BD=DE+CE.(8分)BAE CD13已知如图,在△ABC中,∠BAC=2∠B,AB=2AC,求证:△ABC是直角三角形?( 8分)C14已知如图,在△ABC中,以AB、AC为直角边, 分别向外作等腰直角三角形ABE、ACF,连结EF,过点A作AD⊥BC,垂足为D,反向延长DA交EF于点M.(1)用圆规比较EM与FM的大小.(2)你能说明由(1)中所得结论的道理吗?(8分)B AE MFC D直角三角形的性质【知识点精讲】直角三角形的性质定理及其推论:①直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半; ②推论:(1)在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,则这条直角边所对的角为30°.【典型例题讲解】例1:已知,Rt △ABC 中,∠ACB=90°,AB=8cm ,D 为AB 中点,DE ⊥AC 于E ,∠A=30°,求BC ,CD 和DE 的长例2:已知:△ABC 中,AB=AC=BC (△ABC 为等边三角形)D 为BC 边上的中点, DE ⊥AC 于E.求证:AC CE 41.例3:已知:如图AD ∥BC ,且BD ⊥CD ,BD=CD ,AC=BC. 求证:AB=BO.【随堂练习】1.△ABC 中,∠BAC=2∠B ,AB=2AC ,AE 平分∠CAB 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直角三角形习题
一、填空题
1、直角三角形中一个锐角为30°,斜边和最小的边的和为12cm,则斜边长为 .
2、等腰直角三角形的斜边长为3,则它的面积为 .
3、等腰三角形一腰上的高等于该三角形一条边长度的一半,则其顶角为 .
4、已知在△ABC 中,∠ACB=90°,CD 是高,∠A=30°,AB=4cm,则BC=_______cm,∠BCD=_______,BD=_______cm ,AD=________cm ;
5、已知三角形的的三个内角的度数之比为1:2:3,且最短边是3厘米,则最长边上的中线等于____________;
6、在△ABC 中,∠C=90°,∠A 、∠B 的平分线相交于O ,则∠AOB=_________;
7、等边三角形的高为2,则它的面积是 。

8、直角三角形两直角边分别为6cm 和8cm
9、如图,有一块直角三角形纸片,两直角边AC=6cm ,
BC=8cm ,现将直角边AC 沿直线 AD 折迭,
使E 它落在斜边AB 上,且与AE 重合,则CD 等于 。

二、选择题
10、在△ABC 中, ∠A: ∠B: ∠C=1:2:3,CD ⊥AB 于D,AB=a ,则DB 等于( ) A.2a
B.3a
C.4
a D.以上结果都不对
11、 下列各组数为边长的三角形中,能构成直角三角形的有 组
(1)7,24,25 (2)2
2
2
3,4,5 (3)
35,2,22 (4)8,15,17 (5)10,15,20 12、下列命题错误的是( )
A .有两个角互余的三角形一定是直角三角形;
B .三角形中,若一边等于另一边一半,则较小边对角为30°
C .直角三角形斜边上的中线等于斜边的一半;
D .△ABC 中,若∠A :∠B :∠C=1:4:5,则这个三角形为直角三角形。

13、如果三角形的两条边上的垂直平分线的交点在第三条边上,那么这个三角形是( )
A.锐角三角形
B.等腰三角形
C.直角三角形
D.钝角三角形 14、将一张长方形纸片ABCD 如图所示折叠,使顶点C 落在C ′点. 已知AB=2,∠DEC ′
=30°,
则折痕DE 的长为( )A 、2 B 、32 C 、4 D 、1
15. 两个三角形的两条边及其中一条边的对角对应相等,则下列四个命题中,真命题的个数是()个
①这两个三角形全等; ②相等的角为锐角时全等
③相等的角为钝角对全等; ④相等的角为直角时全等
A.0 B.1 C.2 D.3
16. 在下列定理中假命题是()
A.一个等腰三角形必能分成两个全等的直角三角形
B.一个直角三角形必能分成两个等腰三角形
C.两个全等的直角三角形必能拼成一个等腰三角形
D.两个等腰三角形必能拼成一个直角三角形
17 ,如图,Rt△ABC中,∠B=90°,∠ACB=60°,延长BC到D,使CD=AC则
AC:BD=()
A.1:1 B.3:1 C.4:1 D.2:3
18 。

如图,在Rt△ABC中,∠ACB=90°,CD、CE,分别是斜边AB上的高与中
线,CF是∠ACB的平分线。

则∠1与∠2的关系是()
A.∠1<∠2 B.∠1=∠2; C.∠1>∠2 D.不能确定
(17) (18)
19 。

在直角三角形ABC中,若∠C=90°,D是BC边上的一点,且AD=2CD,则∠ADB的度数是()
A.30°B.60°C.120°D.150°
三、解答题
1、如图,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC
E A
C B
D 于点F.求证:BF=2CF.
2、小明站在高为20米的楼上C 处,测得一条河边一点A 的俯角为30°,河对岸一点B 的俯角为15°,问河宽约多少米?
AD 是高,AE 是斜边上的中线,且DC=2
1
AC ,求
3、在△ABC 中,∠BAC=90°,AC=5cm ,∠B 的度数及AE 的长。

、 4. 如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是多少米?.

5、如图,AD ⊥CD ,AB =13,BC =12,CD =3,AD =4,则∠ACB 为多少?
A
B E A B
C
B
D C A
6、如图,△ABC 中,AD 是高,CE 是中线,DC =BE ,DG ⊥CE 于G 。

(1)求证:G 是CE 的中点; (2)∠B =2∠BCE 。

7、如图,等腰梯形ABCD 中,AD ∥BC ,腰长为8cm ,AC 、BD 相交于O 点,且∠AOD =600,设E 、F 分别为CO 、AB 的中点,则EF = 。

8.已知,如图,在△ABC 中,∠B=∠C ,AD ⊥BC 于D ,E 为AC 的中点,AB=6,求DE 的长。

9. 已知:如图△ABC 中,BD ⊥AC ,CE ⊥AB ,BD 、CE 交于O 点,且BD=CE 求证:OB=OC.
C B A 第
2 G
E
D
题第7题图
F E O
D
C
B A。

相关文档
最新文档