二元一次方程(组)全章导学案
第八章《二元一次方程组》8.1-8.2复习 导学案

第八章《二元一次方程组》8.1-8.2复习 导学案【学习目标】1、进一步认识二元一次方程,了解它的解,会求二元一次方程的正整数解;2、进一步认识二元一次方程组的概念,了解它的解,会解简单的二元一次方程组;3、通过独立思考,合作探究,进一步体会解二元一次方程组的消元转化的数学思想;4、激情投入,全力以赴,养成严谨、规范的数学思维习惯。
【重点】会用两种方法解简单的二元一次方程组【难点】能根据方程组的特点选择合适的方法解方程组【使用方法与学法指导】1、先精读一遍教材P87--98页,用红笔进行勾画;再针对预习案二次阅读教材,并回答问题,时间不超过15分钟;2、找出自己的疑惑和需要讨论的问题,随时记录在课本或导学案上,准备课上讨论质疑;3、预习后,A 层同学结合探究案进行探究、拓展提升,B 层力争完成探究点的研究,C 层同学力争完成例1、例2、例3,拓展提升选做。
预 习 案一、预习自学1、每个方程都含有 未知数(x 和y ),并且未含有末知数的项的 都是1,像这样的方程叫做二元一次方程. (P88)如:________________________2、一般地,使二元一次方程_______________________的两个未知数的值,叫做二元一次方程的解.(P89)如:_________________________________3、把两个二元一次方程___________,就组成了一个二元一次方程组. 这个方程组中有________个未知数,含有每个末知数的项的次数都是____次,并且一共有____个方程。
(P88)如:_____________________________4、一般地,二元一次方程组的两个方程的 叫做二元一次方程组的解。
(P89)如:_________________________5、解二元一次方程组的基本思想是 ____________(P91)把二元一次方程组中一个方程的一个未知数用含 的式子表示出来,再 另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称__________。
二元一次方程组全章上课用

类型一、和差倍分问题
为了把2014年全运会举办成一届绿色全运会,实验中学和 第一中学的同学积极参加绿化工程的劳动。两校共绿化了 4415平方米的土地,第一中学绿化的面积比实验中学绿化面 积的2倍少13平方米,这两所中学分别绿化了多少面积? 解:设实验中学绿化面积x平方米,第一中学绿化面积y平方米 X+y=4415 2x-13=y x=1476 y=2939
类型五:方程组中含比例的方程
方 解:由②得,3x = 4y ③ 法 二: 由①得,x = 5 + 4y ④ 根 将④代入③,得 据 内 3(5+4y)= 4y 向 y = 之 积 将 y = 代入④ 等 得 x = 于 外 项 之 积
方 法 一: 设 比 例 系 数 法
类型六:整体代入法
类型七:方程组解的应用
D
类型一:方程组中含一个未知数表示另一个未知数
1、 X+y=5 ①
Y=4x
②
解:把②代入① ,得 x+4x=5 5x=5 x=1 把x=1代入②得,y=4 所以 X=1 y=4
2、
代入时加括号!
类型二:方程组中未知数系数绝对值为1
X+y=7
① ②
3x+y=17
解: 由①得
y=7-x
③
x=5 所以 Y=2
类型四:各项系数不全是整数 x+1 y + ① 3 2 = 1 x + y ② 2 4 = 2
解:由①×6,得 2x+3y=4 ③ 由②×4,得 2x-y=8 ④ 由③-④得: y= -1 把y= -1代入② 解得: x 7 所以原方程组 x 2 的解是 y 1
7 2
类型一:二元一次方程组的识别
数学七年级下册苏教版第十章《二元一次方程组》全章教案

第十章二元一次方程组10.1 二元一次方程(一课时)一、教学目标:1、经历分析实际问题中数量关系的过程,进一步体会方程是刻画现实世界的有效数学模型。
2、了解二元一次方程的概念,并会判断一组数据是否是某个二元一次方程的解。
3、培养学生主动探索、敢于实践、勇于发现、合作交流的精神。
二、教学重难点:重点:二元一次方程的认识。
难点:探求二元一次方程的解。
三、教学方法:引导探索法,讲练结合,探索交流。
四、教学过程:(一)创设情境,感悟新知情境一根据篮球的比赛规则,赢一场得2分,输一场得1分,在某次中学生比赛中,一支球队赛了若干场后积20分,问该队赢了多少场?输了多少场?情境二某球员在一场篮球比赛中共得了35分(其中罚球得10分),问他分别投中了多少个两分球?多少个三分球?情境三小亮在“智力快车”竞赛中回答10个问题,小亮能答对几题、答错几题?(学生自己先思考5分钟后,再讨论。
最后由4个人一小组中的一位同学说出讨论结果.)(二)探索活动,揭示新知1、如果设该队赢了x场,输了y场,那么可得方程:()2、你能列出所有输赢的所有可能情况吗?3、如果设投中了()个两分球,()个三分球,根据题意可列方程:()4、请你设计一个表格,列出这名球员投中两分球和三分球的各种情况,根据你所列的表格回答下列问题:(1)这名球员最多投中了()个三分球(2)这名球员最多投中了()个球(3)如果这名球员投中了10个球,那么他投中了()个三分球,()个两分球列出上面三小题的方程:(1)设该队赢了x场,输了y场,2x+y=20(2)设赢了x场,输了y场,2x+3y=35-10(3)设答对x题,答错y题,x+y=10观察方程:(1)这三个方程有哪些共同的特点?(2)你能根据这些特点给它们起一个名称吗?引导学生和以前学过的一元一次方程相联系,观察方程中有几个未知数,未知数的次数是几次?含有未知数的项的次数是几次?得出结论:像这含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程。
第八章 二元一次方程组8.2消元——解二元一次方程组教案(3课时)

§ 8.2消元——解二元一次方程组(一)
课时
第1课时
课型
新授
教
学
目
标
知识
与
技能
1.知道消元思想和代入法的概念;
2.会用代入消元法解二元一次方程组。
过程
与
方法
1.通过探究,了解解二元一次方程的“消元”思想,初步体会数学的化归思想.
2.培养探索、自主、合作的意识,提高解题能力.
情感、态度
与价值观
1.在消元的过程中体会化未知为已知、化复杂为简单的化归思想,从而享受数学的化归美,提高学习数学的兴趣.
学生回答,教师点评,强调。
二、提出问题:
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?
在上述问题中,我们可以设出两个未知数,列出二元一次方程组.
这个问题能用一元一次方程解决吗?
三、讲授新课:
1、怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?
②代入(把变形好的方程代入到另一个方程,即可消元)
③求解(解一元一次方程,得一个未知数的值);
④回代(把求得的未知数代入变形的方程,求另一个未知数的值);
⑤写解(用x=a
y=b的形式写出方程组的解)。
⑥验算(把方程的解代回原方程组验算)
简记:变形→代入→求解→回代→写解→验算
四、例题分析:
例1、课本P91
课本P97习题8.2第2题
板书设计
消元——解二元一次方程组
1、基本思路:“消元”——把“二元”变为“一元”
2、主要步骤:变形→代入→求解→回代→写解→验算
教学反思
人教版七年级下册数学《二元一次方程组》全章学案

课题:8.1二元一次方程组课型:新授课时:1课时主备人:初一备课组学习目标1、使学生了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。
学习重点1、二元一次方程(组)的含义;2、用一个未知数表示另一个未知数。
学习难点检验一对数是否是某个二元一次方程(组)的解;篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。
某队为了争取较好名次想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?一、自主学习:二元一次方程概念1、我们来看一个问题:引言(课本P87问题)以上问题包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?______场数+______场数=总场数; ______积分+______积分=总积分,这两个条件可以用方程x+y=10,2x+y=16 表示。
观察:这两个方程有什么特点?与一元一次方程有什么不同?归纳:①定义___________________________________________________叫做二元一次方程②定义___________________________________________________叫做二元一次方程组二元一次方程的左边和右边都应是式二.合作探究:什么是二元一次方程组和它的解1.填表:对10 (1)216 (2)x yx y⎧+=⎨+=⎩,进行探究,的解。
②?二元一次方程组的解________________________________________练习:1.方程3x +2y =6,有______个未知数,且未知数所在项都是___次,因此这个方程是_____元_____次方程。
2.下列式子①3x+2y-1;②2(2-x)+3y+5=0;③3x-4y=z ;④x+xy=1;⑤y ²+3y=5x ;⑥4x-y=0;⑦2x-3y+1=2x+5;⑧1x +1y =7中;是二元一次方程的有_________(填序号) 3.若x ²m-1+5y 3n-2m =7是二元一次方程,则m=______,n=_______。
二元一次方程全章知识讲义加练习

二元一次方程(组)的相关概念(提高)知识讲解【学习目标】1.理解二元一次方程、二元一次方程组及它们的解的含义;2.会检验一组数是不是某个二元一次方程(组)的解.【要点梳理】要点一、二元一次方程含有两个未知数,并且含有未知数的项的次数都是1.像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式.要点二、二元一次方程的解 一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来如:2,5.x y =⎧⎨=⎩(2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.要点三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 要点诠释:组成方程组的两个方程不必同时含有两个未知数.例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.要点四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x ay b =⎧⎨=⎩的形式. (2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x y x y +=⎧⎨+=⎩无解,而方程组1222x y x y +=-⎧⎨+=-⎩的解有无数个.【典型例题】类型一、二元一次方程1.已知方程(m ﹣2)x n ﹣1+2y |m﹣1|=m 是关于x 、y 的二元一次方程,求m 、n 的值.【总结升华】二元一次方程和二元一次方程组中系数的求解,要同时考虑两个未知数的系数与次数,不管方程的形式如何变化,必须满足含有两个未知数,含未知数的项的次数是一次且方程左右两边都是整式这三个条件.举一反三:【变式1】已知方程3241252m n x y +--=是二元一次方程,则m= ,n= .【变式2】方程(1)(1)0a x a y ++-=,当______a a ≠=时,它是二元一次方程,当时,它是一元一次方程.类型二、二元一次方程的解2.若方程11123ax y -=-中,当x =1时,y =-1,求a 的值.举一反三:【变式】已知方程2x-y+m-3=0的一个解是11x m y m =-⎧⎨=+⎩,求m 的值.3.写出二元一次方程204=+y x 的所有正整数解.【思路点拨】可以把二元一次方程中的一个未知数看成已知数,先解关于另一个未知数的一元一次方程,当两个未知数的取值均为正整数才是方程的解,写时注意按一定规律写,做到不重、不漏.【总结升华】对题意理解,要注意两点:①要正确;②不重、不漏. 两个未知数的取值均为正整数才是符合题意的解. 举一反三: 【变式1】已知是关于x 、y 的二元一次方程ax ﹣(2a ﹣3)y=7的解,求a 的值.【变式2】在方程0243=-+y x 中,若y 分别取2、41、0、-1、-4,求相应的x 的值.类型三、二元一次方程组及解4. (淮阳)甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①②由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩.乙看错了方程②中的b .得到方程组的解为54x y =⎧⎨=⎩.试计算:20112010110a b ⎛⎫+- ⎪⎝⎭的值.【总结升华】一组数是方程的解,那么它一定满足这个方程,利用方程解的定义可以求出方程中其他字母的值,所以在今后的学习中要会灵活运用它.举一反三:【变式】已知关于,x y 的二元一次方程组41323x ay x by x y +==⎧⎧⎨⎨+==-⎩⎩的解是 ,求的值a b +.【巩固练习】一、选择题1.一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) A .5 个 B. 6 个 C.7 个 D.8 个2.下列方程组中,是二元一次方程组的是( )3. (20春•滑县期末)已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m 的值为( ) A .4B .﹣4C .D .﹣4.若5x -6y =0,且xy ≠0,则的值等于( )A .23 B. 32C.1D. -1 5.若x 、y 均为非负数,则方程6x =-7y 的解的情况是( )A .无解 B.有唯一一个解 C.有无数多个解 D.不能确定6.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x 元,包子每颗y 元,则下列哪一个二元一次联立方程式可表示题目中的数量关系? ( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩ B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=-⎧⎨+=÷⎩二、填空题 7.已知方程3241252m nxy +--=是二元一次方程,则m =________,n =_________. 8.(20•丹东模拟)若方程组的解为,则点P (a ,b)在第 象限.9.在13,72x y ⎧=⎪⎪⎨⎪=⎪⎩ 04x y =⎧⎨=⎩,21x y =⎧⎨=⎩,33x y =⎧⎨=⎩这四对数值中,是二元一次方程组32823x y x y +=⎧⎨-=⎩的解的是________ .10. 方程2x+3y=10 中,当3x-6=0 时,y=_________; 11. 方程|a |+|b |=2 的自然数解是_____________; 12.若二元一次方程组的解中,则等于____________.三、解答题13.(20秋•鞍山期末)已知121xy⎧=⎪⎨⎪=-⎩是方程组3151112ax yax by-=⎧⎪⎨+=⎪⎩的解,求24(4)3a b b--的值.14.甲、乙二人共同解方程组2623mx yx ny+=-⎧⎨-=-⎩①②由于看错了方程①中的m值,得到方程组的解为32xy=-⎧⎨=-⎩;乙看错了方程②中的n的值,得到方程组的解为52xy=-⎧⎨=⎩,试求代数式22m n m n++的值.15.某球迷协会组织36名球迷租乘汽车赴比赛场地,为中国国家男子足球队呐喊助威,可租用的汽车有两种:一种是每辆车可乘8人,另一种是每辆车可乘4人.要求租用的车子不留空座,也不超载.(1)请你给出三种不同的租车方案;(2)若8个座位的车子租金是300元/天,4个座位的车子租金是200元/天,请你设计费用最少的租车方案,并简述你的理由.二元一次方程组解法—代入法(提高)知识讲解【学习目标】1. 理解消元的思想;2. 会用代入法解二元一次方程组.【要点梳理】要点一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.要点二、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.要点诠释:(1)代入消元法的关键是先把系数较简单的方程变形为用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;(3)若方程组中所有方程里的未知数的系数都不是1或-1,选系数的绝对值较小的方程变形比较简便.【典型例题】类型一、用代入法解二元一次方程组1.用代入法解方程组:237 338x yx y+=⎧⎨-=⎩①②【思路点拨】比较两个方程未知数的系数,发现①中x的系数较小,所以先把方程①中x 用y表示出来,代入②,这样会使计算比较简便.【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.举一反三:【变式】m取什么数值时,方程组的解(1)是正数;(2)当m取什么整数时,方程组的解是正整数?并求它的所有正整数解.2.“整体代入”解方程组:10 4()5x yx y y--=⎧⎨--=⎩【总结】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.举一反三:【变式1】解方程组2320,2352y9.7x yx y--=⎧⎪-+⎨+=⎪⎩(2)45:4:3x yx y-=⎧⎨=⎩①②类型二、方程组解的应用3.(临清市期末)如果方程组的解是方程3x+my=8的一个解,则m=()A.1B.2C.3D.4【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.4.已知2564x yax by+=-⎧⎨-=-⎩①②和方程组35168x ybx ay-=⎧⎨+=-⎩③④的解相同,求2011(2)a b+的值.【总结升华】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.举一反三:【变式】(江都市模拟)小明和小文解一个二元一次组小明正确解得小文因抄错了c,解得已知小文除抄错了c外没有发生其他错误,求a+b+c的值.【巩固练习】 一、选择题 1.解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是( ).A .由①得743n m +=再代入② B .由②得25109nm +=再代入① C .由①得347m n =+再代入② D .由②得91025m n =-再代入①2. (20张店区一模)若二元一次方程式组的解为x=a ,y=b ,则a+b 等于( ) A .B .C .D .3.关于x ,y 的方程y kx b =+,k 比b 大1,且当12x =时,12y =-,则k ,b 的值分别是( ). A .13,23- B .2,1 C .-2,1D .-1,04.已知24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩都是方程y =ax+b 的解,则( ).A .125a b ⎧=⎪⎨⎪=⎩B .123a b ⎧=-⎪⎨⎪=⎩C .121a b ⎧=⎪⎨⎪=-⎩D .121a b ⎧=-⎪⎨⎪=-⎩5.如果二元一次方程组4x y ax y a +=⎧⎨-=⎩的解是二元一次方程3x -5y -30=0的一个解,那么a的值是( ).A .3B .2C .7D .6 6.一艘缉毒艇去距90海里的地方执行任务,去时顺水用了3小时,任务完成后按原路返回,逆水用了3.6小时,求缉毒艇在静水中的速度及水流速度.设在静水中的速度为x 海里/时,水流速度为y 海里/时,则下列方程组中正确的是( ).A .33903.6 3.690x y x y +=⎧⎨+=⎩ B .3 3.6903.6390x y y x +=⎧⎨+=⎩C .3()903()90x y x y +=⎧⎨-=⎩ D .33903.6 3.690x y x y +=⎧⎨-=⎩二、填空题7.已知51,62x t y t =+=-,用含y 的式子表示x ,其结果是_______.8.(20丹东模拟)若方程组的解为,则点P (a ,b )在第 象限.9.x ,y 满足方程组3496527ax y ax y +=⎧⎨+=⎩,那么3ax+y 的值是________. 10.若532y x a b +与2244x y a b --是同类项,则x = ________,y = ________.11.已知方程组3524x y ax y -=⎧⎨-=⎩的解也是方程47135x y x by -=⎧⎨-=⎩的解,则a = _____,b = ____ . 12.(淄博)关于,x y 的二元一次方程组1353x y m x y m +=-⎧⎨-=+⎩中,m 与方程组的解中的x y 或相等,则m 的值为 .三、解答题13.用代入法解方程组:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩ (2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩14.研究下列方程组的解的个数:(1)21243x y x y -=⎧⎨-=⎩; (2)2123x y x y -=⎧⎨-=⎩; (3)21242x y x y -=⎧⎨-=⎩. 你发现了什么规律?15.(20•沧州一模)若方程组的解是,求(a+b)2﹣(a﹣b)(a+b).16.已知关于x,y的二元一次方程组236x ayx y-=⎧⎨-=⎩①②当a为何整数值时,方程组的解均为整数?二元一次方程组解法(提高)知识讲解【学习目标】1. 掌握加减消元法解二元一次方程组的方法;2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;3.会对一些特殊的方程组进行特殊的求解.【要点梳理】要点一、加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.要点诠释:用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.要点二、选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.【典型例题】类型一、加减法解二元一次方程组1.(20春•澧县期末)用加减消元法解方程组3465923x y x y ++==【总结升华】先将每个式子化至最简,即形如ax+by=c 的形式再消元.举一反三:【变式】方程组201020092008200820072006x y x y -=⎧⎨-=⎩的解为: .2.已知关于x 、y 的方程组ax by c ex dy f+=⎧⎨+=⎩的解为31x y =⎧⎨=⎩,求关于x 、y 的方程组()()()()a x y b x y c e x y d x y f-++=⎧⎨-++=⎩的解.【总结升华】本例采用了类比的方法,若把其中的x+y 和x -y 分别看作整体,则第二个方程组与第一个方程组相同,即x+y =1,x -y =3.举一反三:【变式】三个同学对问题“若方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩, 求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是: .类型二、用适当方法解二元一次方程组3. 解方程组36101610x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩【总结升华】解一个方程组的方法一般有多种方法,我们要根据方程组的特点选择最简便的求解方法.【变式】4. 试求方程组27526x yx y⎧-=--⎪⎨-=-⎪⎩的解.【总结升华】解含有绝对值的方程组,一般先转化为含绝对值的一元一次方程,再分类讨论求出解.举一反三:【变式】(杭锦)若二元一次方程组和y=kx+9有相同解,求(k+1)2的值.一、选择题1.如果x:y =3:2,并且x+3y =27,则x 与y 中较小的值是( ).A .3B .6C .9D .122.(20•玉田县期末)下列各组数是二元一次方程组的解的是( )A .B .C .D .3.已知方程组54358x y m x y -=⎧⎨+=⎩中,x 、y 的值相等,则m 等于( ). A .1或-1 B .1 C .5 D .-54.如果324x y a x y -=⎧⎨+=⎩的解都是正数,那么a 的取值范围是( ). A .a<2; B.43a >-; C. 423a -<< ; D. 43a <- 5.小明在解关于x 、y 的二元一次方程组331x y x y +⊗=⎧⎨-⊗=⎩时得到了正确结果1x y =⊕⎧⎨=⎩.后来发现⊗、⊕处被墨水污损了,请你帮他计算出⊗、⊕处的值分别是( ).A .1、1B .2、1C .1、2D .2、26. 已知方程组有无数多个解,则a 、b 的值等于( ).A .a=-3,b=-14 B. a=3,b=-7 C. a=-1,b=9 D.a=-3,b=14二、填空题7.若32225a b a b x y --+-=是二元一次方程,则a =________,b =________.8.已知等腰三角形的周长是18,腰长比底边大3,则这个三角形的腰长_____,底边长___.9.已知3222341m n m n x y -++-+=是关于x 、y 的二元一次方程,则m =_______,n =_______;在自然数范围内,该方程的解是________.10.若|x-y-5|与|2x+3y-15|互为相反数,则x+y =________.11.对于实数x 和y ,定义一种新的运算“△”:x △y =ax+by ,其中a 、b 是常数,等式右边的运算是通常的加法和乘法运算,已知3△5=25,4△7=38,那么1△5=_________.12. (20沛县期末)已知方程组的解满足x+y=3,则k 的值为 .三、解答题13.解下列方程组:(1)2()1346()4(2)16x y x yx y x y-+⎧=-⎪⎨⎪+=-+⎩(2)133623218y xy yx x+⎧-=⎪⎪⎨⎛⎫⎛⎫⎪-=+⎪ ⎪⎪⎝⎭⎝⎭⎩14.(建昌县期末)解关于x、y的二元一次方程组时,小虎同学把c看错而得到,而正确的解是,试求a+b+c的值.实际问题与二元一次方程组(一)(提高)知识讲解【学习目标】1.以含有多个未知数的实际问题为背景,经历“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,体会方程组是刻画现实世界中含有多个未知数问题的数学模型;2. 熟练掌握用方程组解决和差倍分,配套,工程等实际问题.【要点梳理】要点一、常见的一些等量关系(一)1.和差倍分问题:增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量.2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价. 要点二、实际问题与二元一次方程组1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤:设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.【典型例题】类型一、和差倍分问题1.在一次数学测验中,甲、乙两校各有100名同学参加测试.测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率=()100%()⨯男女生优分人数男女生测试人数,全校优分率=100%⨯全校优分人数全校测试人数) (1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.【思路点拨】 (1)求甲校参加测试的男、女生人数需设两个未知数,故可建立二元一次方程组求解.(2)由于甲校男、女生的优分率相应高于乙校的男、女生的优分率,要使乙校的全校优分率比甲校的全校优分率高,此时,只有乙校的男生较多时,才能提高全校的优分率.【答案与解析】解:(1)设甲校参加测试的男生人数是x 人,女生人数是y 人.由题意可列方程组:10060%40%49.6%100x y x y +=⎧⎨+=⨯⎩ 解之得:4852x y =⎧⎨=⎩. 答:甲校参加测试的男生有48人,女生有52人.(2)如:乙校男生有70人,女生有30人,则乙校的全校优分率为7057%3037%100%51%100⨯+⨯⨯=.51%>49.6% (说明:只要所举例子中男生人数多于63人,且女生优分率合适,即可得全分.)【总结升华】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题的第(2)问也可以用不等式求出甲乙两校男生人数满足什么关系时,才满足甲校的全校优分率比乙校的全校的优分率低.举一反三:【变式】为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?【答案】解:(1)设政策出台前一个月销售的手动型汽车为x 辆,自动型汽车为y 辆,由题意可得:960(130%)(125%)1228x y x y +=⎧⎨+++=⎩解之得:560400x y =⎧⎨=⎩. 答:政策出台前一个月销售的手动型汽车为560辆,自动型汽车为400辆.(2)[560×(1+30%)×8+400×(1+25%)×9]×5%=516.2(万元)答:政策出台后的第一个月,政府对这1228台汽车用户共补贴了516.2万元.类型二、配套问题2. 某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68 个,扁担40 根,问这个班的男女生各有多少人?【答案与解析】解:设女生x 人,男生y 人,由题意得:3440232(4)682x y x y +⎧+-=⎪⎪⎨+⎪+-=⎪⎩ 解得:2132x y =⎧⎨=⎩答:这个班的男生有32人,女生有21人.【总结升华】两人抬土需要一根扁担,一只筐;一人挑土需要一根扁担,两只筐.题中的等量关系是:参加劳动的同学一共用去箩筐68个和40根扁担,从而列出方程组,解出即可.【高清课堂:实际问题与二元一次方程组(一)409143 例2练习】举一反三:【变式】某工厂有工人60人,生产某种由一个螺栓和两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?【答案】解:设分配x 人生产螺栓,y 人生产螺母,则根据题意可得:答:应分配25人生产螺栓,35人生产螺母.类型三、工程问题3. (2015春•定陶县期末)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)【思路点拨】(1)本题的等量关系是:甲做8天需要的费用+乙作8天需要的费用=3520元.6020142x y y x +=⎧⎪⎨=⎪⎩2535x y =⎧∴⎨=⎩甲组6天需付的费用+乙做12天需付的费用=3480元,由此可得出方程组求出解.(2)根据(1)得出的甲乙每工作一天,商店需付的费用,然后分别计算出甲单独做12天需要的费用,乙单独做24天需要的费用,让两者进行比较即可.(3)本题可将每种施工方法的施工费加上施工期间商店损失的费用,然后将不同方案计算出的结果进行比较,损失最少的方案就是最有利商店的方案.【答案与解析】解:(1)设:甲组工作一天商店应付x 元,乙组工作一天商店付y 元.由题意得解得 答:甲、乙两组工作一天,商店各应付300元和140元.(2)单独请甲组需要的费用:300×12=3600元.单独请乙组需要的费用:24×140=3360元.答:单独请乙组需要的费用少.(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元;甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;因为5120<6000<8160,所以甲乙合作损失费用最少.答:甲乙合作施工更有利于商店.【总结升华】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:甲做8天需要的费用+乙作8天需要的费用=3520元.列出方程组,再求解.类型四、利润问题4.甲乙两件服装的成本为500元,商店老板为获取利润,决定将甲种服装按50%的利润定价,乙种服装按40%的利润定价.实际出售时,两种服装均按九折出售,这样商店共获利157元.求甲乙两件服装的成本各是多少元?【答案与解析】解:设甲、乙两件服装的成本分别为x 元和y 元,由题意:解得:300200x y =⎧⎨=⎩答:甲、乙两件服装的成本分别为300元和200元【总结升华】本题也可以用一元一次方程的知识解答.举一反三:500[(150%)(140%)]90%500157x y x y +=⎧⎨+++⨯=+⎩【变式】(2015春•宁城县期末)为处理甲、乙两种积压服装,商场决定打折销售,已知甲、乙两种服装的原单价共位880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲、乙两种服装的原单价分别是多少?【答案】解:设甲、乙两种服装的原单价分别是x元、y元.根据题意,得:,解得:,即:甲、乙两种服装的原单价分别是480元、400元.【巩固练习】一、选择题1.某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元.该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠.若打烊后得知,此两款鞋共卖得1800元,还剩甲鞋x双、乙鞋y双,则依题意可列出下列哪一个方程式? () .A.200(30-x)+50(30-y) =1800 B.200(30-x)十50(30-x-y)=1800C.200(30-x)+50(60-x-y)=1800 D.200(30-x)十50[30-(30-x)-y]=18002.(2015春•承德校级月考)现有大、小两种船,1艘大船与4艘小船一次最多可以载客46名,2艘大船与3艘小船一次最多可以载客57名,某旅游点的船有3艘大船与6艘小船,一次最多可以载客的人数为()A.129B.120C.108D.963.欣平超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律九折;(3)一次性购物超过300元一律八折.王波两次购物分别付款80元、252元,如果王波一次性购买与上两次相同的商品,则应付款( ).A.288元B.322 元C.288元或316元D.332元或363元4.某次知识竞赛共出了25道试题.评分标准如下:答对一道题加4分;答错1道题扣1分;不答记0分,已知李刚不答的题比答错的题多2道,他的总分为74分,则他答对了().A.18道B.19道C.20道D.21道5.某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土,已知全班共用箩筐59个,扁担36根,若设抬土的学生x人,挑土的学生y人,则有().A.2592362yxxy⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎪+=⎪⎩B.2592362xyxy⎧+=⎪⎪⎨⎪+=⎪⎩C.2592236xyx y⎧+=⎪⎨⎪+=⎩D.259236x yx y+=⎧⎨+=⎩6.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系?()A. B.C. D.二、填空题7.一张方桌由一个桌面和四条桌腿组成,如果1 m3木料可制作方桌的桌面50个,或制作桌腿300条,现有5 m3木料,设用x cm3木料制作桌面,用y m3木料制作桌腿,恰好配成方桌,则可得方程组为________.8.如图所示,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为55cm,则木桶中水的深度是cm.9.(2015春•沂源县期末)一个水池有两个进水管,单独开甲管注满水池需2小时,单独开乙管注满水池需3小时,两个同时开注满水池的时间是小时.10.某商场出售茶壶和茶杯,茶壶每只15元,茶杯每只3元,商店规定买一只茶壶赠一只茶杯,某人共付款171元得茶壶、茶杯共36只(含赠品在内),其中茶壶________只,茶杯________只.11.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是________.12. 如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A 与________个砝码C的质量相等.三、解答题13.(2015春•自贡期末)某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:商品价格A B进价(元/件)12001000售价(元/件)13501200(总利润=单件利润×销售量)(1)该商场第1次购进A、B两种商品各多少件?。
第7章《一次方程组》导学案

总结归纳 随堂笔记,同步演练 一、随堂笔记: 1、 的方程叫做二元一次方程. 2、 叫做二元一次方程组. 3、 叫做二元一次方程组的解. 二、同步演练:
④ 5xy-1=0 ; ⑤ x +y=2 ; ⑥ 2x-y=3.• 其中是二元一次方程的有 例 2、 下列方程组中, 哪些是二元一 次方程组?为什么? (1)
(2) 习
2 x 3 y 10 5 x 4 y 2
例 2.解方程组 进
5 2( x y) x y 3 4 4 3( x y ) 2( x y ) 3
x y x y 6 (2) 3 2 3( x y) 2( x y) 28
3 x 4 y 10 5 x 6 y 42
3y
;
(3)若 2 x 3 y 6 ,则
二、同步演练: 解下列方程组 (1)
6x
解方程组 学
18
3x 2 y 6 2 x 3 y 17
3 x 4 y 10 5 x 6 y 42
2 x y 4 3x z 5
学
习
xy 7 (2) x y 8 1 x 7 (3) y 5 x 3 y 1 4 x y 5 ( 2 ) 题 中 存 在 几 个 个 未 知 (4) x 1 量?分别是 x 3 y 4 (3)题中有几个等量关系? (5) 分别是 3 x y 5
程
4
轻松学习,愉快学习,高效学习 7.2.4 学 习 目 标 学 习 流 程
资中二中初 2016 级备课组导学案 解一元一次方程组(加减消元法 2)
1、掌握用加减法解未知数系数的绝对值不等的二元一次方程组; 2、理解加减消元法所体现的“化未知为已知”的化归思想方法。 自主学习 自 学 指 导 预习 P33 例 5 填一填: (1)若 3a 4b , 则 9a (2)若 y 2 x 1 ,则 合作探究 知 识 形 成 及 应 用 例 1:解方程组 ; 总结归纳 随堂笔记,同步演练 一、随堂笔记: 用加 减消 元法 解 二元 一次方程组时,当未知数的 系数的绝对值不等时,应该
八数导学案第5章

【老师寄语】风筝是靠风送上蓝天的,理想是靠勤奋实现的!认识二元一次方程组——导学案主备人: 吴秀兰 审核:班级 组名 姓名【学习目标】1. 了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
2.通过对实际问题的分析,培养学生良好的数学应用意识。
【学习重点】 掌握二元一次方程及二元一次方程组的概念,理解它们解的含义;判断一组数是不是某个二元一次方程组的解。
【学习难点】从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想。
【导学过程】(一)情境引入1.阅读教材103页,回答下列问题:设老牛驮x 个包裹,小马驮y 个包裹 老牛的包裹数比小马多2个,由此得方程: 若老牛从小马背上拿来1个包裹,这时它们各有几个包裹? 得方程:2.上面所列方程有几个未知数?所含未知数的项的次数是多少?3.自学概念:含有 个未知数,并且所含未知数的 的方程叫做二元一次方程。
4.比一比看谁快:下列方程有哪些是二元一次方程?① 3x+y-9=0 ② x 2-2y+12=0 ③ 3a-4b=7 ④ 3x-y 1=1 ⑤ 2x(x-3y)=5 ⑥ 2m -5n=1 (二)自主预习(课前独学完成——课堂对学交流——对子互评)阅读教材104页,回答下列问题:设他们中有x 个成年人,有y 个儿童,在题目的条件中,我们可以找到的等量关系为:(1)(2)由此我们可以得到方程:和自学概念:含有 个未知数的 所组成的一组方程,叫二元一次方程组。
比一比看谁快:下列哪些方程组是二元一次方程组?X-2y=1 x=1 x-7y=3① ② ③3x+5y=12 y=2 3y+5z=1【老师寄语】风筝是靠风送上蓝天的,理想是靠勤奋实现的!x 2+y=1 x - y 2 2a-3b=1 ④ ⑤ ⑥X-3y=5 3x+8y=12 5ab+2b=3(三)合作交流(小组长组织交流——小组派代表展示——其他小组质疑、纠错、评价)1.做一做:(1)x=6,y=2 适合方程x+y=8吗?x=5,y=3 呢?x=4,y=4 呢?你还能找到其他x,y 值适合方程x+y=8吗?(2)x=5,y=3适合方程5x+3y=34吗?x=2,y=8 呢?2.自学概念:适合一个二元一次方程的 ,叫做这个二元一次方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡西市第十九中学学案
鸡西市第十九中学学案
二元一次方程解法预备习题
班级_______ 姓名________ 得分________
已知二元一次方程 3x +y =10.
(1)用关于x 的代数式表示y . (2)用关于y 的代数式表示x .
已知二元一次方程 3x +2y=10.
(1)用关于x 的代数式表示y . (2)用关于y 的代数式表示x .
把下列方程改写成用含x 的代数式表示y 的形式:
(1)5x -y =3; (2)2(x -y )=3;
(3)-2x +5
y
=1; (4)(2x -y )-3(x -2y )=12.
把下列方程改写成用含y 的代数式表示x 的形式:
(1)5x -y =3; (2)2(x -y )=3;
(3)-2x +5
y
=1; (4)(2x -y )-3(x -2y )=12. 鸡西市第十九中学学案
代入消元法习题
班级_______ 姓名________ 得分________
用代入法解方程组。
2x – y = 5 ① 3x +4y =2 ②
(小窍门:方程①中 的系数是1,用含x 的式子表示y ,比较简便。
) 解:
用代入法解下列方程组
⎩⎨
⎧=+-=8233
2y x x y ⎩⎨
⎧=++=9
573
y x x y
⎩⎨
⎧=+=-15255
3t s t s ⎩
⎨
⎧=-=+336516
43y x y x
⎩⎨
⎧-=+-=+1)(258
y x x y x ⎩⎨
⎧=-=+34532y x y x
⎩⎨
⎧=-+=-0133553y x y x ⎩⎨
⎧-=+-=+1)(258y x x y x
238355x y x y +=⎧⎨
-=⎩ 27
28x y x y +=⎧⎨+=⎩
325,
1;x y y x +=⎧⎨
=-⎩
23321y x x y =-⎧⎨+=⎩
35,
5223;x y x y -=⎧⎨+=⎩ ⎩⎨
⎧-=+=-1
4329m n n m
1.已知方程组4,2ax by ax by -=⎧⎨+=⎩
的解为2,
1,x y =⎧⎨=⎩,则2a-3b 的值为多少?
2.如果方程组326,
322
x y x y +=⎧⎨-=⎩的解也是方程4x+2a+y=0的解,则a 的值是( )
3.关于x ,y 的方程组3,
521x y m x y m -=⎧⎨+=+⎩
的解是否是方程2x+3y=1的解?为什么?
4.已知方程组23,
28x y x ky -=⎧⎨+=⎩
的解x 和y 的值相等,求k 的值.
鸡西市第十九中学学案
鸡西市第十九中学学案
加减消元法习题
班级_______ 姓名________ 得分________
用代入法解方程组。
23
853
5a b a b -=⎧⎨-=⎩
(小窍门:方程①②中 的系数是相同的,用减法消元 ,比较简便。
) 解:
用加减法解下列方程组
7
3x y x y +=⎧⎨
-=⎩ ⎩⎨⎧=+=+40
222y x y x
⎩⎨
⎧=+=-8312034y x y x 326,
322x y x y +=⎧⎨-=⎩
⎩⎨⎧=-=+810156.3104y x y x ⎩
⎨
⎧-=+-=+1329
2x y y x
⎩⎨⎧=+-=7
32,
43y x y x ⎩⎨⎧-==-1133932y x y x
① ②
加减消元法习题
班级_______ 姓名________ 得分________
⎩⎨
⎧=+=-8
230
34y x y x
解:
选择适当的方法解下列方程组
23328y x x y =-⎧⎨
-=⎩ 3
(2)3814x y x y -=⎧⎨
-=⎩
238355x y x y +=⎧⎨
-=⎩ 27
28x y x y +=⎧⎨+=⎩
⎩
⎨
⎧=-=+.732,
423t s t s
⎪⎪⎩⎪⎪⎨
⎧=+-=-.73
2,14
3n m n
m
⎩⎨
⎧⋅
-==-y x y x 2113,
23
⎩⎨
⎧-=++=-).
3(3)1(2),
3(2)1(5n m n m
① ②
二元一次方程文字综合题
班级_______ 姓名________ 得分________
【方程的解】1.已知方程组4,2ax by ax by -=⎧⎨+=⎩的解为2,
1,x y =⎧⎨=⎩,则2a-3b 的值为多少?
2.如果方程组326,
322x y x y +=⎧⎨-=⎩的解也是方程4x+2a+y=0的解,则a 的值是
3.已知⎩⎨⎧-==.2,
1y x 和⎩⎨⎧==.
0,2.y x 都是方程ax -by =1的解,则a =______,b =______.
4.方程组35,21ax y x by -=⎧⎨+=⎩中,如果1,21
x y ⎧
=⎪⎨⎪=-⎩是它的一个解,求3(a-b )-a 2
的值.
5.已知方程组23,
28x y x ky -=⎧⎨+=⎩的解x 和y 的值相等,求k 的值.
6.如果关于x ,y 的方程组⎪⎩⎪
⎨⎧-=-+=-321,
734k y x k y x 的解中,x 与y 互为相反数,求k 的值.
7.已知:关于x ,y 的方程组⎩⎨⎧=++=-02254,53by ax y x 与⎩⎨⎧-=+=-53,
8y x by ax 的解相同.求a ,b 的值.
【代入求值】
1.甲、乙两人同时解方程组⎩⎨
⎧-=-=+.23,2y cx by ax 甲正确解得⎩
⎨⎧-==;1,
1y x 乙因为抄错c 的值,错得
⎩⎨⎧-==.6,
2y x 求a ,b ,c 的值.
2.在解方程组2,78ax by cx y +=⎧⎨-=⎩时,哥哥正确地解得3,
2.x y =⎧⎨=-⎩,弟弟因把c 写错而解得
2,
2.x y =-⎧⎨
=⎩,求a+b+c 的值.
3.已知方程组⎩⎨⎧=--=-+01523,0172c a b c b a 其中c ≠0,求c b a c
b a -++-的值.
4.已知⎩⎨
⎧=+-=++②
①
.15232,
25c b a c b a 求b 的值.
【与其他章节综合题】
1.以方程组⎩⎨⎧-=+-=1,
2x y x y 的解为坐标的点(x ,y )在平面直角坐标系中的位置是第 象
限.
2.如图,将正方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大48°.设∠BAE 和∠BAD 的度数分别为x ,y ,那么x ,y 所适合的方程组是
3.已知∠A 、∠B 互余,∠A 比∠B 大30º. 设∠A 的度数为x º,∠B 的度数为y º.则方程组为
4.若x ∶y =3∶4,且x +3y =-10,则x ,y 的值为
【方程解的个数】
研究下列方程组的解的个数:
(1)⎩⎨
⎧=-=-.342,12y x y x (2)⎩⎨⎧=-=-.32,12y x y x (3)⎩
⎨⎧=-=-.242,
12y x y x
1.下列方程组中,只有一组解的是( ).
A ⎩⎨⎧=+=+.033,1y x y x
B ⎩⎨⎧=+=+.333,
0y x y x C
⎩
⎨
⎧=-=+.333,
1y x y x
D ⎩
⎨⎧=+=+.333,
1y x y x
2.当k ,m 分别为何值时,关于x ,y 的方程组⎩⎨⎧+-=+=4
)12(,
x k y m kx y 至少有一组解?
【恒成立问题】
1.已知等式(2A-7B )x+(3A-8B )=8x+10对一切实数x 都成立,•求A 、B 的值.
2.在方程(x +2y -8)+k (4x +3y -7)=0中,找出一对x ,y 值,使得k 无论取何值,方程恒成立.
鸡西市第十九中学学案
鸡西市第十九中学学案
鸡西市第十九中学学案
蔬菜品种
21。