数值计算(数值分析)实验4-分段三次埃尔米特(hermite)插值【c程序实现+流程图】
课程设计---Hermite 插值法的程序设计及应用

课程设计说明书题目:Hermite 插值法的程序设计及应用学生姓名:学院:班级:指导教师:2012年 1月 5日摘要Hermite 插值是数值分析中的一个重要内容,在相同的节点下得到比拉格朗日插值更高次的插值多项式,而且,相应的曲线在部分节点处也更光滑.在我们所学课程中,只给出了当所有节点处一阶导数均已知时的Hermite 插值.但在实际应用中,并不是所有节点处的一阶导数都是已知的.为此,通过查阅文献、学习总结,给出了更具一般性的Hermite 插值公式.已有的Hermite 插值公式成为本文所得结果的一个特例.本次课程设计,对Hermite 插值法进行了总结,包括Hermit插值法的理论推导,不同情形下的例,以及在解决实际问题中的应用.同时也给出了Hermite插值公式的Matlab算法.关键词Hermite 插值;Matlab 实现;数值分析引言 (1)第一章 Hermite插值 (2)§1.1 Hermite插值的概念 (2)§1.2 Hermite插值简单情形 (3)§1.2.1简单情形解的存在性 (3)§1.2.2 简单情形解的存在唯一性 (5)§1.2.3插值余项 (5)§1.3 Hermite插值其他情形................................ . (5)第二章 Hermite插值的Matlab实现 (9)§2.1 导数完全情形Hermite插值的Matlab实现................... ..9 §2.2导数不完全情形Hermite插值的Matlab实现.. (10)§2.3 Hermite插值在实际问题中的应用 (13)参考文献 (15)附录A (16)附录B (17)附录C (19)在实际工作中, 人们得到的一些数据通常是一些不连续的点, 在土木工程、流体力学、经济学和空气动力学等学科中经常要遇到这样的问题. 此时, 这些数据如果不加以处理, 就难以发现其内在的规律性. 如果用户想得到这些分散点外的其他数值, 就必须运用这些已知的点进行插值.因此,对近似公式的构造产生了插值问题.在实际问题中,两个变量的关系)(x f y =经常要靠实验和观测来获得,而在通常的情况下只能得到)(x f 在有限个点上的值.,,1,0),(n i x f y i ==人们希望找到)(x f 的一个近似函数)(x y φ=,使得i i y x =)(φ,.,,1,0n i = ○1 此时,)(x f 称为被插值函数,点n i x x x ,,,0 称为插值结点,)(x φ称为插值函数,○1为插值条件. 常用的插值法有Lagrange 插值、Newton 插值、最近邻插值、Hermite 插值和三次样条插值插值法等. Lagrange 插值在向量X 区域内的插值较准确, 但向量X 区域之外则不太准确.Newton 插值仅适用于等距节点下的牛顿向前(后) 插值. 最近邻插值是最简便的插值, 在这种算法中, 每一个插值输出像素的值就是在输入图像中与其最临近的采样点的值, 当图像中包含像素之间灰度级变化的细微结构时, 最近邻插值法会在图像中产生人工的痕迹. 最近邻插值的特点是简单、快速, 缺点是误差较大; 三次样条插值一阶和二阶连续可导, 插值曲线光滑, 插值效果比较好, 应用较广Newton 插值和Lagrange 插值虽然构造比较简单,但都存在插值曲线在节点处有尖点、不光滑、插值多项式在节点处不可导等缺点.为了保证插值多项式)(x p n 能更好地逼近)(x f , 对)(x p n 增加一些约束条件, 例如要求)(x p n 在某些结点处与)(x f 的微商相等, 这样就产生了切触插值问题.切触插值即为Hermite 插值.它与被插函数一般有更高的密合度.本课程设计主要对Hermite 插值法进行总结,对其一般情况,特殊情况进行更进一步的学习,尽量实现其在Matlab 及C++上的程序运行.第一章 Hermite 插值实际问题中应用较广为Newton 插值和Lagrange 插值,虽然这辆种插值法构造比较简单, 但都存在插值曲线在节点处有尖点、不光滑、插值多项式在节点处不可导等缺点.为了克这些缺点,我们引入了Hermite 插值.§1.1 Hermite 插值的概念定义1.1 许多实际插值问题中,为使插值函数能更好地和原来的函数重合,不但要求二者在节点上函数值相等,而且还要求相切,对应的导数值也相等,甚至要求高阶导数也相等.这类插值称作切触插值,或埃尔米特(Hermite)插值.该定义给出了Hermite 插值的概念,由此得出Hermite 插值的几何意义,如图1.1.定义1.2 满足上述要求的插值多项式是埃尔米特插值多项式.记为H (x ). 定义1.3 求一个次数不大于1++r n 的代数多项式 H(x) ,满足:).(,,2,1),()(.,,2,1),()(n r r i x f x H n i x f x H i i i i ≤='='== (1-1) 则(1-1)为Hermite 插值条件.定义1.4 令 ),(22y x ),(33y x ),(44y x),(11y x),(00y x xy图1.1 Hermite 插值多项式的几何意义含义.)()()()()(00∑∑=='+=rk k k n k k k x f x x f x x H βα (1-2)其中,),,1,0)(x (),,1,0)((k n k n k x k ==βα和都是1++r n 次待定多项式并且它们满足如下条件:⎩⎨⎧=01)(i k x α k i k i ≠= .,,1,0,n k i = .,,1,0,,,1,0,0)('r i n k x i k ===α⎩⎨⎧='01)(i k x β k i k i ≠= .,,1,0,r k i = .,,1,0,,,1,0,0)(n i r k x i k ===β称(1-2)为Hermite 插值公式.解决Hermite 插值问题,就是在给定结点处函数值与导数值的基础上根据插值公式构造Hermite 插值多项式,并根据已知条件解出多项式系数.§1.2 Hermite 插值简单情形已知函数表: x0x 1x 2x … m x … n x )(x f0y 1y 2y … m y … n y )(x f ' 0'y 1'y 2'y … m y ' … n y '求一个插值多项式,使其满足条件数表.由于数表中包含22+n 个条件,所以能够确定次数不大于12+n 的代数多项式 )(12x H n +.此情形为导数个数与函数值个数相等的情形,即 Hermite 插值问题的最简单也是最常用情形.1.2.1简单情形解的存在性由于Hermite 插值公式(1-2)已给出,接下来只需构造出)(x k α及)(x k β,即认为其存在.在此简介Lagrange-Hermite 插值法构造插值多项式.Step1 构造)(x k α(n k ,,1,0 =)由条件)(0)(')(k i x x i k i k ≠==αα知),,,1,0(k i r i x i ≠= 是)(x k α的二重零点.已知Lagrange 插值基函数)(x l k 是n 次多项式,且具有性质⎩⎨⎧=≠==i k i k x l ki i k ,1,0)(δ, 则2n 次多项式[]2)(x k k 也具有性质[]ki i k x l δ=2)(,而[]2)(x l k 的一阶导数在)(k i x i ≠处的值[]()0)()(2)(2='='i k i k i k x l x l x l 所以当k i ≠时,i x 也都是[]2)(x k k的两重零点.注意到)(x h k 是12+n 次多项式,而[]2)(x l k 是n 2次多项式,因此可设),,2,1,0)(()()(2n k x l b ax x k k =+=α其中b a ,为待定常数.显然k i ≠时满足0)(')(==i k i k x x αα,现只要求出b a ,满足k i =时,满足0)(',1)(==k k k k x x αα即可.由此得到确定b a ,的两个方程:)(2)())(()(2)(1)()()()(22=+'=++'='=+=+=a x l x al b ax x l x l x b ax x l b ax x k k k k k k k k k k k k k k k k k αα解出 k k kk k x x l b x l a ⋅'+='-=)(21)(2 于是[])())((21)(2x l x x x l x k k k kk -'-=α. Step2 构造)(x k β ),,1,0(n k =由条件)(0)(')(k i x x i k i k ≠==ββ知),,,1,0(k i r i x i ≠= 是)(x k β的二重零点.因此可设)(x k β也含因子)(2x l k ,又0)(=k k x β,所以)(x k β还含有因式)(k x x -,因此设)()()(2x l x x A x k k k -=β,其中A 为待定常数.显然)(x k β是12+n 次多项式,且当k i ≠时满足0)(')(==i k i k x x αα,由,1)(='k kx β可确定A 如下: 1)()(2)()()(2=='⋅⋅-+='A x l x l x x A x Al x k kk k k k k k k β所以 )()()(2x l x x x k k k -=β.到此为止,Hermite 插值问题的解)(12x H n +为[],)()()())((21)(2020k k nk k k kn k k k k f x l x x f x l x x x l x H '-+-'-=∑∑== 特别地,当=n 1时,满足113003113003)(,)(,)(,)(y x H y x H y x H y x H '=''='==的三阶Hermite 插值多项式为+⎪⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡'-+⎪⎪⎭⎫ ⎝⎛--+=21010000103)(21)(x x x x y x x y x x x x x H 2010111101)(21⎪⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡'-+⎪⎪⎭⎫ ⎝⎛--+x x x x y x x y x x x x .§1.2.2 简单情形解的存在唯一性为了简便理解,下面用流程图来说明解的存在唯一性.详见附录A.§1.2.3 插值余项定理 1.1 设)(x f 在包含1+n 个插值结点的最小区间[b a ,]上22+n 次连续可微,则存在与x 有关的ξ,b a <<ξ,使得),()!22()()()(222x w n f x H x f n +=-+ξ 其中∏=-=n0j )()(j x x x w .由此可得到三阶Hermite 插值多项式的误差为:,)()(!4)()()()(212043x x x x f x H x f x R --=-=ξ ξ在0x 与1x 之间.§1.3 Hermite 插值其他情形已知函数表:x 0x1x … m x … n x y0y 1y … m y … n yy ' 0y ' 1y ' … m y '求一个插值多项式,使其满足条件数表.该问题中,导数个数与函数值个数不相等.我们称之为Hermite 插值中其他情形.在此简介Newton-Hermite 插值法构造插值多项式.先分析插值条件的个数:2++m n 个,那么,所构造的多项式的次数一般不能超1++m n .于是,按牛顿差值的思想,可设);())(()(),()()()(1011n n n m n x x x x x x x x x P x N x H ---=+=++ ωω其中,)(x N n 为n 次牛顿差值多项式;)(x P m 为待定的次数不超过m 次的多项式. 显然:n i x f x N x H i i n i ,,2,1,0),()()( ===为确定)(x P m ,对)(x H 求导:)()()()()()(11x x P x x P x N x H n m n m n++'+'+'='ωω 根据插值条件)()(i i x f x H '=',有)()()()()()()()()(111i n i m i ni n i m i n i m i n i x x P x N x x P x x P x N x H +++'+'='+'+'='ωωω 得到m i x x N x f x P i ni n i i m ,,2,1,0,)()()()(1 =''-'=+ω 于是,把求)(x P m 的问题转化为又一个插值问题已知)(x P m 的函数表 x1x 2x … m x )(x P m )(1x P m )(2x P m … )(m m x P确定一个次数不超过m 的插值多项式)(x L m ,使其满足)()(i m i m x P x L =. 根据牛顿差值公式.)())(](,,[)](,[)()(10000100----++-+=m m m m m m x x x x x x x x P x x x x P x P x P将上式带回,即得到满足条件;,,2,1,0),()(;,,2,1,0),()(m k x f x H n k x f x H k k k k ='='==的Newton-Hermite 插值多项式.例1.1 已知函数表: x 0x1x y 0y1y y ' 0'y求一个插值多项式H (x ),使其满足条件:),()(),()(),()(001100x f x H x f x H x f x H '='==该问题中,导数个数与函数值个数不相等.我们称之为Hermite 插值中其他情形.在此简介Newton-Hermite 插值法构造插值多项式.先由函数表xx 0 x 1 yy 0 y 1作线性插值,即为 []()01001,)()(x x x x f x f x P -+= 再注意到H (x )与P 1 (x )在节点x 0, x 1上函数值相同,即:11110010)()()()(y x P x H y x P x H ====于是,它们的差可以设为 ))(()()(101x x x x K x P x H --=-其中K 为待定常数,上式又可记为:))(()()(101x x x x K x P x H --+= (1-3)为确定K ,对上式求导:)()()(101x x x x K x P x H -+-+'='令x = x 0,代入上式,并且注意到插值条件00)(y x H '='得: []010*******)(,)()()(y x x K x x f x x K x P x H '=-+=-+'='于是有[]01010x x y x x f K -'--=将上式代入(1-3)得[]))(()()(10010101x x x x x x y x x f x P x H ---'--+=[][]))(()(,)(10010100100x x x x x x y x x f x x x x f x f ---'--+-+= (1-4)可以验证(1-4)所确定的H (x )确实满足插值条件(1-1).同时也可以看到,构造牛顿——埃米尔特插值多项式,完全采用牛顿插值的构造思想.最后,也可以把(1-4)式整理成拉格朗日形式:1001112010001101010)()(y x x xx x x y xx x x y xx x x x x x x x x x H '-⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛----+-=插值余项为()()120)3(2!3)()(x x x x f X R --=ξ, ξ在0x 与1x 之间.第二章 Hermite 插值的Matlab 实现§2.1 导数完全情形Hermite 插值的Matlab 实现在实际应用中,应用最广也是最简单的Hermite 插值情形即为导数完全的情况下,Hermite 插值多项式的拟合.我们首先讨论该情形下的Matlab 程序.在给出程序之前,我们首先给出该公式所应用的Hermite 插值公式. 定理2.1 设在节点b x x x a n ≤<<≤≤ 21上,,)(,)(j j j j y x f y x f '='=,其中n j ≤≤1,则函数)(x f 在结点处n x x x ,,,21 处的Hermite 插值多项式为∑=+--=ni i i i i i i y y y a x x h x y 1])2)([()(其中 ∑∏≠=≠=-=--=nij j ji i nij j ji j i x x a x x x x h 1211;)(.该定理的证明详见文献.该情形下对应的Matlab 程序及流程图详见附录B . 为验证该程序的正确性与有效性,下面给出例2.1. 例2.1 设有如下数据表:x0 0.5 1 1.5 2 2.5 3 3.5)sin(x y = 0 0.4794 0.8145 0.9975 0.9093 0.5985 0.1411 -0.3508 )cos(x y =' 1 0.8776 0.5403 0.0707 -0.4161 -0.8011 -0.9900 -0.9365在Matlab 工作台输入如下命令:>> x0=[0,0.5,1,1.5,2,2.5,3,3.5];y0=[0,0.4794,0.8415,0.9975,0.9093,0.5985,0.1411,- 0.3508]; y1=[1,0.8776,0.5403,0.0707,-0.4161,-0.8011,-0.9900,-0.9365]; x=x0;y=hermite(x0,y0,y1,x); yplot(x,y) y2=sin(x); hold onplot(x,y2,'*r') 则输出结点处的插值:y =0 0.4794 0.8415 0.9975 0.9093 0.5985 0.1411 -0.3508)sin(x y =的Hermite 插值多项式的拟合图像如图:§2.2导数不完全情形Hermite 插值的Matlab 实现在实际应用中,并不是所有节点处的一阶导数都是已知的,为此,我们给出了更具一般性的Hermite 插值公式及其算法实现,已有的Hermite 插值公式成为本文所得结果的一个特例.在此首先给出求解Hermite 插值问题的一般性公式。
分段三次埃尔米特插值

分段三次埃尔米特插值分段线性插值函数的导)(I x h 数是间断的,若在节点k x (k =0,1,…,n )上除已知函数值外还给k f 出导数值k k m f ='(k =0,1,…,n ),这样就可构造一个导数连续的分段插值函数)(I x h ,它满足条件:(1).[][]),(,)(I 11b a C b a C x h ∈代表区间一[]b a ,阶导数连续的函数集合. (2)k k h f x =)(I ,'')(I k k h f x -(k =0,1,…n ). (3))(I x h 在每个小区间上是三次[]1,+k k x x 多项式.由两点三次插值多项式可以知道在)(I x h 区间上表达[]1,+k k x x 式为'21111211211)()(21*)()21()()(I k k k k k k k k k k k k k k k k k k h f x x x x x x x x x x x x x x f x x x x x x x x x ---+--+--+--+--=++--++++)(+'1121)(+++---k k kk k f x x x x x x )(.分段三次埃尔米特插值比分段线性插值效果明显改善,但这种插值要求给出节点上的导数值,所要提供的信息太多,其光滑度也不高(只有一阶导数连续),改进这种以克服其缺点就导致三次样条插值的提出.三次样条插值上面讨论的分段插值函数都有一致收敛性,但光滑性比较差,对于像告诉飞机的机翼形线,船体放样等型值线往往要求有二阶光滑度,即有二阶连续导数.早起工程师制图是,把富有弹性的细长木条(所谓样条)用压铁固定在样点上,在其他地方让它自由的弯曲,然后画下长条的曲线,称为样条曲线.样条曲线实际上有分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从而数学上加以概括就得到数学样条这一概念.三次样条函数定义 若函数[]b a C x S ,)(2∈,并且在每个小区间上是[]1,+j j x x 三次多项式,其中是给定b x x x a n =<<<= 10节点,则称是节点)(x S 0x ,1x ,…,n x 上的三次样条函数.若在节点上j x 给定函数值)(j j x f y =(j =0,1,…,n ),并且成立j j y x S =)( (j =0,1,…,n ),(1.1) 则称为三次)(x S 样条插值函数.由定义知道要求出)(x S ,在每个小区间上要确定[]1,+j j x x 4个待定系数,一共有个小n 区间,所以应该确定4个参数n .根据在上二)(x S []b a ,阶导数的连续性,在节点j x (j =1,2,…,n -1)处应该满足连续性的条件)0()0(+=-j j x S x S ,)0()0(''+=-j j x S x S (1.2))0()0(''''+=-j j x S x S .一共有3n -3个条件,再加上要满)(x S 足插值条件(1.1),共有4n -2个条件,因此还需要2个条件才能确定)(x S .通常可以在区间[]b a ,端点0x a =,n x b =上各加上一个条件(称为边界条件),可根据实际问题要求给定.常见的有以下3种;(1)已知两端的一阶导数值,即'00')(f x S =,;')(n n f x S =. (1.3)(2)两端的二阶导数已知,即''00'')(f x S =,'''')(n n f x S =, (1.4)其特殊情况为0)()(''0''==n x S x S . (1.5)(3)当)(x f 是以n x -0x 为周期的周期函数时,则要求也是)(x S 周期函数.这时边界条件应满足)0()0(0-=+n x S x S ,)0()0('0'-=+n x S x S , )0()0(''0''-=+n x S x S . (1.6)而此时(1.1)中n y y =0.这样确定的样条函数称)(x S 为周期样条函数. 埃尔米特插值不少实际问题的插值问题不但要求在节点上函数值相等,而且还要求对应的导数值也相等,甚至要求高阶导数也相等,满足这种要求插值的多项式就是埃尔米特(Hermi t e )插值多项式.下面只讨论函数值与导数值个数一样的情况.设在节点上b x x x a n ≤<<<≤ 10,)(i i x f y =,)('j j x f m =(j =0,1,…,n ),要求插值多项式)(x H ,满足条件j j y x H =)(,j j m x H =)('(j =0,1,…,n ). (1.1)这里给出了2n +2个条件,可唯一确定一个次数不超过2n +1的多项式)()(12x H x H n =+,其形式为12121012)(++++++=n n n x a x a a x H .如果根据条件(1.1)来确定2n +2个系数0a ,1a ,…,12+n a ,显然非常复杂,因此,我们依旧采用拉格朗日插值多项式的基函数的方法.先求插值基函数)(x j α及)(x j β(j =0,1,…,n ),一共有2n +2个,每一个基函数都是2n +1次多项式,且满足条件⎪⎪⎭⎪⎪⎬⎫====⎩⎨⎧=≠==).,,1,0,()(,0)(;0)(,,1,,0)(''n k j x x x k j k j x jk k j k j k j jk k j δββαδα (1.2)于是满足条件(1.1)的插值多项式可以写成)()(12x H x H n +=用插值基函数表示的形式[]∑=-+=nj j j j j n x m x y x H 012)()()(βα. (1.3)由条件(1.2)可以知道,有k k n y x H =-)(12,kn m x H =+)('12,(k =0,1,…,n ).下面的问题就是求满足条件(1.2)的基函数以)(x j α及)(x j β.所以,我们可以利用拉格朗日插值基函数)(x l j .令)()()(2x l b ax x a j j +=,由条件(1.2)有1)()()(2=+=j j j j j x l b ax x α,[]0)()(2)()()(''=++=j j j j j j j j j x l b ax x al x l x α,整理得⎩⎨⎧=+=+0)(21'j j j x l a b ax . 解出)(2'j j x l a -=,)(21'j j j x l x b +=.由于)())(()()())(()()(110110n j j j j j j n j j j x x x x x x x x x x x x x x x x x l --------=+-+- ,利用两边取对数再求导数,有∑≠=-=njk k kj j jx x x l 0'1)(,所以有)()1)(21()(20x l x x x x x a j njk k kj j j ∑≠=---=. (1.4)同理,可以得到)()()(2x l x x x j j j -=β. (1.5)同时还证明满足条件(1.1)的插值多项式是唯一的.用反证法,假设及都满)(12x H n +)(12x H n +足条件(1.1),所以有)()()(1212x H x H x n n ++-=ϕ在每个节点上均有二重根,即)(x ϕ有2n +2重根.但是是不高)(x ϕ于2n +1次的多项式,所以0)(≡x ϕ.唯一性得到证明.。
课程设计---Hermite 插值法的程序设计及应用

课程设计说明书题目:Hermite 插值法的程序设计及应用学生姓名:学院:班级:指导教师:2012年 1月 5日摘要Hermite 插值是数值分析中的一个重要内容,在相同的节点下得到比拉格朗日插值更高次的插值多项式,而且,相应的曲线在部分节点处也更光滑.在我们所学课程中,只给出了当所有节点处一阶导数均已知时的Hermite 插值.但在实际应用中,并不是所有节点处的一阶导数都是已知的.为此,通过查阅文献、学习总结,给出了更具一般性的Hermite 插值公式.已有的Hermite 插值公式成为本文所得结果的一个特例.本次课程设计,对Hermite 插值法进行了总结,包括Hermit插值法的理论推导,不同情形下的例,以及在解决实际问题中的应用.同时也给出了Hermite插值公式的Matlab算法.关键词Hermite 插值;Matlab 实现;数值分析引言 (1)第一章 Hermite插值 (2)§1.1 Hermite插值的概念 (2)§1.2 Hermite插值简单情形 (3)§1.2.1简单情形解的存在性 (3)§1.2.2 简单情形解的存在唯一性 (5)§1.2.3插值余项 (5)§1.3 Hermite插值其他情形................................ . (5)第二章 Hermite插值的Matlab实现 (9)§2.1 导数完全情形Hermite插值的Matlab实现................... ..9 §2.2导数不完全情形Hermite插值的Matlab实现.. (10)§2.3 Hermite插值在实际问题中的应用 (13)参考文献 (15)附录A (16)附录B (17)附录C (19)在实际工作中, 人们得到的一些数据通常是一些不连续的点, 在土木工程、流体力学、经济学和空气动力学等学科中经常要遇到这样的问题. 此时, 这些数据如果不加以处理, 就难以发现其内在的规律性. 如果用户想得到这些分散点外的其他数值, 就必须运用这些已知的点进行插值.因此,对近似公式的构造产生了插值问题.在实际问题中,两个变量的关系)(x f y =经常要靠实验和观测来获得,而在通常的情况下只能得到)(x f 在有限个点上的值.,,1,0),(n i x f y i ==人们希望找到)(x f 的一个近似函数)(x y φ=,使得i i y x =)(φ,.,,1,0n i = ○1 此时,)(x f 称为被插值函数,点n i x x x ,,,0 称为插值结点,)(x φ称为插值函数,○1为插值条件. 常用的插值法有Lagrange 插值、Newton 插值、最近邻插值、Hermite 插值和三次样条插值插值法等. Lagrange 插值在向量X 区域内的插值较准确, 但向量X 区域之外则不太准确.Newton 插值仅适用于等距节点下的牛顿向前(后) 插值. 最近邻插值是最简便的插值, 在这种算法中, 每一个插值输出像素的值就是在输入图像中与其最临近的采样点的值, 当图像中包含像素之间灰度级变化的细微结构时, 最近邻插值法会在图像中产生人工的痕迹. 最近邻插值的特点是简单、快速, 缺点是误差较大; 三次样条插值一阶和二阶连续可导, 插值曲线光滑, 插值效果比较好, 应用较广Newton 插值和Lagrange 插值虽然构造比较简单,但都存在插值曲线在节点处有尖点、不光滑、插值多项式在节点处不可导等缺点.为了保证插值多项式)(x p n 能更好地逼近)(x f , 对)(x p n 增加一些约束条件, 例如要求)(x p n 在某些结点处与)(x f 的微商相等, 这样就产生了切触插值问题.切触插值即为Hermite 插值.它与被插函数一般有更高的密合度.本课程设计主要对Hermite 插值法进行总结,对其一般情况,特殊情况进行更进一步的学习,尽量实现其在Matlab 及C++上的程序运行.第一章 Hermite 插值实际问题中应用较广为Newton 插值和Lagrange 插值,虽然这辆种插值法构造比较简单, 但都存在插值曲线在节点处有尖点、不光滑、插值多项式在节点处不可导等缺点.为了克这些缺点,我们引入了Hermite 插值.§1.1 Hermite 插值的概念定义1.1 许多实际插值问题中,为使插值函数能更好地和原来的函数重合,不但要求二者在节点上函数值相等,而且还要求相切,对应的导数值也相等,甚至要求高阶导数也相等.这类插值称作切触插值,或埃尔米特(Hermite)插值.该定义给出了Hermite 插值的概念,由此得出Hermite 插值的几何意义,如图1.1.定义1.2 满足上述要求的插值多项式是埃尔米特插值多项式.记为H (x ). 定义1.3 求一个次数不大于1++r n 的代数多项式 H(x) ,满足:).(,,2,1),()(.,,2,1),()(n r r i x f x H n i x f x H i i i i ≤='='== (1-1) 则(1-1)为Hermite 插值条件.定义1.4 令 ),(22y x ),(33y x ),(44y x),(11y x),(00y x xy图1.1 Hermite 插值多项式的几何意义含义.)()()()()(00∑∑=='+=rk k k n k k k x f x x f x x H βα (1-2)其中,),,1,0)(x (),,1,0)((k n k n k x k ==βα和都是1++r n 次待定多项式并且它们满足如下条件:⎩⎨⎧=01)(i k x α k i k i ≠= .,,1,0,n k i = .,,1,0,,,1,0,0)('r i n k x i k ===α⎩⎨⎧='01)(i k x β k i k i ≠= .,,1,0,r k i = .,,1,0,,,1,0,0)(n i r k x i k ===β称(1-2)为Hermite 插值公式.解决Hermite 插值问题,就是在给定结点处函数值与导数值的基础上根据插值公式构造Hermite 插值多项式,并根据已知条件解出多项式系数.§1.2 Hermite 插值简单情形已知函数表: x0x 1x 2x … m x … n x )(x f0y 1y 2y … m y … n y )(x f ' 0'y 1'y 2'y … m y ' … n y '求一个插值多项式,使其满足条件数表.由于数表中包含22+n 个条件,所以能够确定次数不大于12+n 的代数多项式 )(12x H n +.此情形为导数个数与函数值个数相等的情形,即 Hermite 插值问题的最简单也是最常用情形.1.2.1简单情形解的存在性由于Hermite 插值公式(1-2)已给出,接下来只需构造出)(x k α及)(x k β,即认为其存在.在此简介Lagrange-Hermite 插值法构造插值多项式.Step1 构造)(x k α(n k ,,1,0 =)由条件)(0)(')(k i x x i k i k ≠==αα知),,,1,0(k i r i x i ≠= 是)(x k α的二重零点.已知Lagrange 插值基函数)(x l k 是n 次多项式,且具有性质⎩⎨⎧=≠==i k i k x l ki i k ,1,0)(δ, 则2n 次多项式[]2)(x k k 也具有性质[]ki i k x l δ=2)(,而[]2)(x l k 的一阶导数在)(k i x i ≠处的值[]()0)()(2)(2='='i k i k i k x l x l x l 所以当k i ≠时,i x 也都是[]2)(x k k的两重零点.注意到)(x h k 是12+n 次多项式,而[]2)(x l k 是n 2次多项式,因此可设),,2,1,0)(()()(2n k x l b ax x k k =+=α其中b a ,为待定常数.显然k i ≠时满足0)(')(==i k i k x x αα,现只要求出b a ,满足k i =时,满足0)(',1)(==k k k k x x αα即可.由此得到确定b a ,的两个方程:)(2)())(()(2)(1)()()()(22=+'=++'='=+=+=a x l x al b ax x l x l x b ax x l b ax x k k k k k k k k k k k k k k k k k αα解出 k k kk k x x l b x l a ⋅'+='-=)(21)(2 于是[])())((21)(2x l x x x l x k k k kk -'-=α. Step2 构造)(x k β ),,1,0(n k =由条件)(0)(')(k i x x i k i k ≠==ββ知),,,1,0(k i r i x i ≠= 是)(x k β的二重零点.因此可设)(x k β也含因子)(2x l k ,又0)(=k k x β,所以)(x k β还含有因式)(k x x -,因此设)()()(2x l x x A x k k k -=β,其中A 为待定常数.显然)(x k β是12+n 次多项式,且当k i ≠时满足0)(')(==i k i k x x αα,由,1)(='k kx β可确定A 如下: 1)()(2)()()(2=='⋅⋅-+='A x l x l x x A x Al x k kk k k k k k k β所以 )()()(2x l x x x k k k -=β.到此为止,Hermite 插值问题的解)(12x H n +为[],)()()())((21)(2020k k nk k k kn k k k k f x l x x f x l x x x l x H '-+-'-=∑∑== 特别地,当=n 1时,满足113003113003)(,)(,)(,)(y x H y x H y x H y x H '=''='==的三阶Hermite 插值多项式为+⎪⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡'-+⎪⎪⎭⎫ ⎝⎛--+=21010000103)(21)(x x x x y x x y x x x x x H 2010111101)(21⎪⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡'-+⎪⎪⎭⎫ ⎝⎛--+x x x x y x x y x x x x .§1.2.2 简单情形解的存在唯一性为了简便理解,下面用流程图来说明解的存在唯一性.详见附录A.§1.2.3 插值余项定理 1.1 设)(x f 在包含1+n 个插值结点的最小区间[b a ,]上22+n 次连续可微,则存在与x 有关的ξ,b a <<ξ,使得),()!22()()()(222x w n f x H x f n +=-+ξ 其中∏=-=n0j )()(j x x x w .由此可得到三阶Hermite 插值多项式的误差为:,)()(!4)()()()(212043x x x x f x H x f x R --=-=ξ ξ在0x 与1x 之间.§1.3 Hermite 插值其他情形已知函数表:x 0x1x … m x … n x y0y 1y … m y … n yy ' 0y ' 1y ' … m y '求一个插值多项式,使其满足条件数表.该问题中,导数个数与函数值个数不相等.我们称之为Hermite 插值中其他情形.在此简介Newton-Hermite 插值法构造插值多项式.先分析插值条件的个数:2++m n 个,那么,所构造的多项式的次数一般不能超1++m n .于是,按牛顿差值的思想,可设);())(()(),()()()(1011n n n m n x x x x x x x x x P x N x H ---=+=++ ωω其中,)(x N n 为n 次牛顿差值多项式;)(x P m 为待定的次数不超过m 次的多项式. 显然:n i x f x N x H i i n i ,,2,1,0),()()( ===为确定)(x P m ,对)(x H 求导:)()()()()()(11x x P x x P x N x H n m n m n++'+'+'='ωω 根据插值条件)()(i i x f x H '=',有)()()()()()()()()(111i n i m i ni n i m i n i m i n i x x P x N x x P x x P x N x H +++'+'='+'+'='ωωω 得到m i x x N x f x P i ni n i i m ,,2,1,0,)()()()(1 =''-'=+ω 于是,把求)(x P m 的问题转化为又一个插值问题已知)(x P m 的函数表 x1x 2x … m x )(x P m )(1x P m )(2x P m … )(m m x P确定一个次数不超过m 的插值多项式)(x L m ,使其满足)()(i m i m x P x L =. 根据牛顿差值公式.)())(](,,[)](,[)()(10000100----++-+=m m m m m m x x x x x x x x P x x x x P x P x P将上式带回,即得到满足条件;,,2,1,0),()(;,,2,1,0),()(m k x f x H n k x f x H k k k k ='='==的Newton-Hermite 插值多项式.例1.1 已知函数表: x 0x1x y 0y1y y ' 0'y求一个插值多项式H (x ),使其满足条件:),()(),()(),()(001100x f x H x f x H x f x H '='==该问题中,导数个数与函数值个数不相等.我们称之为Hermite 插值中其他情形.在此简介Newton-Hermite 插值法构造插值多项式.先由函数表xx 0 x 1 yy 0 y 1作线性插值,即为 []()01001,)()(x x x x f x f x P -+= 再注意到H (x )与P 1 (x )在节点x 0, x 1上函数值相同,即:11110010)()()()(y x P x H y x P x H ====于是,它们的差可以设为 ))(()()(101x x x x K x P x H --=-其中K 为待定常数,上式又可记为:))(()()(101x x x x K x P x H --+= (1-3)为确定K ,对上式求导:)()()(101x x x x K x P x H -+-+'='令x = x 0,代入上式,并且注意到插值条件00)(y x H '='得: []010*******)(,)()()(y x x K x x f x x K x P x H '=-+=-+'='于是有[]01010x x y x x f K -'--=将上式代入(1-3)得[]))(()()(10010101x x x x x x y x x f x P x H ---'--+=[][]))(()(,)(10010100100x x x x x x y x x f x x x x f x f ---'--+-+= (1-4)可以验证(1-4)所确定的H (x )确实满足插值条件(1-1).同时也可以看到,构造牛顿——埃米尔特插值多项式,完全采用牛顿插值的构造思想.最后,也可以把(1-4)式整理成拉格朗日形式:1001112010001101010)()(y x x xx x x y xx x x y xx x x x x x x x x x H '-⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛----+-=插值余项为()()120)3(2!3)()(x x x x f X R --=ξ, ξ在0x 与1x 之间.第二章 Hermite 插值的Matlab 实现§2.1 导数完全情形Hermite 插值的Matlab 实现在实际应用中,应用最广也是最简单的Hermite 插值情形即为导数完全的情况下,Hermite 插值多项式的拟合.我们首先讨论该情形下的Matlab 程序.在给出程序之前,我们首先给出该公式所应用的Hermite 插值公式. 定理2.1 设在节点b x x x a n ≤<<≤≤ 21上,,)(,)(j j j j y x f y x f '='=,其中n j ≤≤1,则函数)(x f 在结点处n x x x ,,,21 处的Hermite 插值多项式为∑=+--=ni i i i i i i y y y a x x h x y 1])2)([()(其中 ∑∏≠=≠=-=--=nij j ji i nij j ji j i x x a x x x x h 1211;)(.该定理的证明详见文献.该情形下对应的Matlab 程序及流程图详见附录B . 为验证该程序的正确性与有效性,下面给出例2.1. 例2.1 设有如下数据表:x0 0.5 1 1.5 2 2.5 3 3.5)sin(x y = 0 0.4794 0.8145 0.9975 0.9093 0.5985 0.1411 -0.3508 )cos(x y =' 1 0.8776 0.5403 0.0707 -0.4161 -0.8011 -0.9900 -0.9365在Matlab 工作台输入如下命令:>> x0=[0,0.5,1,1.5,2,2.5,3,3.5];y0=[0,0.4794,0.8415,0.9975,0.9093,0.5985,0.1411,- 0.3508]; y1=[1,0.8776,0.5403,0.0707,-0.4161,-0.8011,-0.9900,-0.9365]; x=x0;y=hermite(x0,y0,y1,x); yplot(x,y) y2=sin(x); hold onplot(x,y2,'*r') 则输出结点处的插值:y =0 0.4794 0.8415 0.9975 0.9093 0.5985 0.1411 -0.3508)sin(x y =的Hermite 插值多项式的拟合图像如图:§2.2导数不完全情形Hermite 插值的Matlab 实现在实际应用中,并不是所有节点处的一阶导数都是已知的,为此,我们给出了更具一般性的Hermite 插值公式及其算法实现,已有的Hermite 插值公式成为本文所得结果的一个特例.在此首先给出求解Hermite 插值问题的一般性公式。
数值分析Hermite

由(2.3)可设
0 x x x1 a x x0 b ,
2
再由(2.2)可求得
b 1
x1 x0
2
, a
2
x1 x0
பைடு நூலகம்
3
x x1 x x0 0 x 1 2 x1 x0 x0 x1
4!
3. 2n+1 次Hermite 插值多项式
给定n+1个节点和相应的函数值和导数值:
f xi yi , yi f xi mi , i 0,1,, n
则可构造2n+1 次Hermite 插值多项式H x 满足条件:
H 1) x 是不超过2n+1 次多项式; H 2) xi yi , H xi mi , i 0,1,, n
2
2
f , x0 , x1 4!
4
于是有下述定理
定理:设 H3 x 是以 x0 , x1 为插值节点的三次 f x C 3 a, b , f 4 x 在 a, b Hermite 插值多项式, 内存在,其中 a, b 是包含 x0 , x1 的任一区 间,则对任意给定的 x a, b ,总存在依赖 于 x 的点 a, b ,使 4 f 2 2 R3 x f x H 3 x x x0 x x1 .
Hermite插值方法

数值分析实验报告五一、实验目的理解Hermite插值方法,掌握Hermite插值算法设计二、实验内容使用vc++编程,实现该方法,即Hermite插值法三、实验步骤#include <iostream.h>double herm(double x0,double x1,double y0,double y1,double h0,double g0,double g1,double x) {double alp0,alp1,bta0,bta1,t;double s;t=h0*h0;alp0=(x-x1)*(x-x1)*(h0+2*(x-x0))/t/h0;alp1=(x-x0)*(x-x0)*(h0-2*(x-x1))/t/h0;bta0=(x-x0)*(x-x1)*(x-x1)/t;bta1=(x-x1)*(x-x0)*(x-x0)/t;s=y0*alp0+y1*alp1+g0*bta0+g1*bta1;return(s);}void main(){int n=7;double p0;double pn; double aa[8],bb[8],s=0;double xx[8]={0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9};double yy[8]={0.4794,0.6442,0.7833,0.8912,0.9636,0.9975,0.9917,0.9463};double g[8];int i;double a[8],c[8],h[8];cout<<"Please input p0 and pn"<<endl;cin>>p0;cin>>pn;for(i=0;i<=n-1;i++){h[i]=xx[i+1]-xx[i];cout<<"h["<<i<<"]="<<h[i]<<endl;}c[0]=1;g[0]=3*(yy[1]-yy[0])/h[0]-p0*h[0]/2;for( i=1;i<=n-1;i++){a[i]=h[i]/(h[i]+h[i-1]);c[i]=1-a[i];}for(i=1;i<n;i++){cout<<"a["<<i<<"]="<<a[i]<<endl;cout<<"c["<<i<<"]="<<c[i]<<endl;}for( i=1;i<=n-1;i++){g[i]=3*(c[i]*(yy[i+1]-yy[i])/h[i]+a[i]*(yy[i]-yy[i-1])/h[i-1]);}a[n]=1;g[n]=3*(yy[n]-yy[n-1])/h[n-1]+pn*h[n-1]/2;for(i=0;i<=n;i++)cout<<"g["<<i<<"]="<<g[i]<<endl;aa[0]=2;bb[0]=c[0]/aa[0];g[0]=g[0]/aa[0];for(i=1;i<=n-1;i++){aa[i]=2-a[i]*bb[i-1];bb[i]=c[i]/aa[i];g[i]=(g[i]-a[i]*g[i-1])/aa[i];}aa[n]=2-a[n]*bb[n-1];g[n]=(g[n]-a[n]*g[n-1])/aa[n];for(i=n-1;i>=0;i--){g[i]=g[i]-bb[i]*g[i+1];}cout<<endl;for(i=0;i<=n;i++)cout<<"g["<<i<<"]="<<g[i]<<endl;double ss;double c0,c1,d0,d1,g0,g1,h1;double x0;cout<<"Please input interpolation point x0:"<<endl;cin>>x0;if(x0>=0.5 && x0<0.7){c0=xx[0];c1=xx[1];d0=yy[0];d1=yy[1];h1=h[0];g0=g[0];g1=g[1];ss=herm(c0,c1,d0,d1,h1,g0,g1,x0);cout<<ss<<endl;}else if(x0>=0.7 && x0<0.9){c0=xx[1];c1=xx[2];d0=yy[1];d1=yy[2];h1=h[1];g0=g[1];g1=g[2];ss=herm(c0,c1,d0,d1,h1,g0,g1,x0);cout<<ss<<endl;}else if(x0>=0.9 && x0<=1.1){c0=xx[2];c1=xx[3];d0=yy[2];d1=yy[3];h1=h[2];g0=g[2];g1=g[3];ss=herm(c0,c1,d0,d1,h1,g0,g1,x0);cout<<ss<<endl;}else if(x0>=1.1 && x0<=1.3){c0=xx[3];c1=xx[4];d0=yy[3];d1=yy[4];h1=h[3];g0=g[3];g1=g[4];ss=herm(c0,c1,d0,d1,h1,g0,g1,x0);cout<<ss<<endl;}else if(x0>=1.3 && x0<=1.5){c0=xx[4];c1=xx[5];d0=yy[4];d1=yy[5];h1=h[4];g0=g[4];g1=g[5];ss=herm(c0,c1,d0,d1,h1,g0,g1,x0);cout<<ss<<endl;}else if(x0>=1.5 && x0<=1.7){c0=xx[5];c1=xx[6];d0=yy[5];d1=yy[6];h1=h[5];g0=g[5];g1=g[6];ss=herm(c0,c1,d0,d1,h1,g0,g1,x0);cout<<ss<<endl;}else if(x0>=1.7 && x0<=1.9){c0=xx[6];c1=xx[7];d0=yy[6];d1=yy[7];h1=h[6];g0=g[6];g1=g[7];ss=herm(c0,c1,d0,d1,h1,g0,g1,x0);cout<<ss<<endl;}elsecout<<"The data error,please input again!"<<endl;}四、运行结果。
埃尔米特(Hermite)插值

实验二埃尔米特(Hermite)插值一、实验目的:1.掌握埃尔米特插值算法原理;2.使用C语言编程实现埃尔米特插值算法。
二、实验准备:阅读《数值分析》2.4节二、实验要求:某人从甲地开车去乙地,每隔一段时间对行车距离和速率进行一次采样,得到在n+1 个采样时刻点t i 的里程s i和速率v i(i=0, 1, ..., n)。
要求编程构造埃尔米特插值多项式H2n+1(t),满足H2n+1(t i)=s i,H'2n+1(t i)=v i,对所有i=0, 1, ..., n成立,并据此计算m个给定时刻的里程和速率。
函数接口定义:void Hermite_Interpolation( int N, double t[], double s[], double v[], int m, double ht[], double hs[], double hv[] );其中N为采样点个数(注意这个N不是公式中的最大下标n,而是等于n+1),采样时刻点t i、里程s i、速率v i分别通过t、s、v传入;m是需要估算的给定时刻的个数,ht传入给定的时刻点,相应计算出的里程和速率应分别存储在hs和hv中。
裁判程序如下:裁判输入数据:20.0 1.00.0 1.00.0 0.050.0 0.2 0.5 0.8 1.030.0 0.5 1.0100.0 170.0 200.030.0 150.0 0.050.0 0.25 0.5 0.75 1.050.0 1.0 2.0 3.0 4.00.0 60.0 160.0 260.0 300.05.0 70.0 100.0 120.0 20.0100.5 1.0 1.5 2.0 2.5 3.0 3.5 3.8 3.95 4.0标准输出数据:0.0000 0.1040 0.5000 0.8960 1.00000.0000 0.9600 1.5000 0.9600 0.0000100.0000 127.9297 170.0000 195.9766 200.000030.0000 165.4688 150.0000 52.9688 0.000030.2222 60.0000 105.9303 160.0000 206.3438 260.0000 307.9764 305.7687 299.9796 300.000062.6024 70.0000 109.0488 100.0000 92.9745 120.0000 41.2374 -44.8421 -16.2783 20.0000#include<stdio.h>#define MAXN 5 /* 最大采样点个数 */#define MAXM 10 /* 最大估算点个数 */void Hermite_Interpolation( int N, double t[], double s[], double v[], int m, double ht[], double hs[], double hv[] ){double l[10],p[10],h1[10],h2[10],x,ll[10],pp[10];int kk;for(kk=0;kk<m;kk++){x=ht[kk];hs[kk]=0;hv[kk]=0;int i;for(i=0;i<N;i++){l[i]=1;ll[i]=1;int j;for(j=0;j<N;j++){if(i!=j){l[i]=l[i]*(x-t[j])/(t[i]-t[j]);}}p[i]=0;pp[i]=0;int k;for(k=0;k<N;k++){if(i!=k){p[i]=p[i]+l[i]/(x-t[k]);pp[i]=pp[i]+ll[i]/(t[i]-t[k]);}}h1[i]=(1-2*pp[i]*(x-t[i]))*l[i]*l[i];h2[i]=(x-t[i])*l[i]*l[i];hs[kk]=hs[kk]+s[i]*h1[i]+v[i]*h2[i];int kkk;for(kkk=0;kkk<N;kkk++){if(x==t[kkk])break;}if(x==t[kkk])hv[kk]=v[kkk];elsehv[kk]=hv[kk]+s[i]*(2*p[i]*l[i]-4*l[i]*p[i]*(x-t[i])*pp[i]-2*pp[i]*l[ i]*l[i])+v[i]*(l[i]*l[i]+2*l[i]*p[i]*(x-t[i]));}}}int main(){int N, m;double t[MAXN], s[MAXN], v[MAXN]; /* 用于构造的数据 */double ht[MAXM], hs[MAXM], hv[MAXM]; /* 用估算的数据 */int i;while ( scanf("%d", &N) != EOF ) {for ( i=0; i<N; i++ )scanf("%lf", &t[i]);for ( i=0; i<N; i++ )scanf("%lf", &s[i]);for ( i=0; i<N; i++ )scanf("%lf", &v[i]);scanf("%d", &m);for ( i=0; i<m; i++ )scanf("%lf", &ht[i]);Hermite_Interpolation( N, t, s, v, m, ht, hs, hv );for ( i=0; i<m; i++ )printf("%.4lf ", hs[i]);printf("\n");for ( i=0; i<m; i++ )printf("%.4lf ", hv[i]);printf("\n\n");}return 0; }。
数值计算方法( 三次样条插值)

u xj hj
分段三次Hermite插值算法
则 v A1 y j 1 A2 y j B1 f j1 B2 f j
算法: 1.输入x j , f j , f j (j 0,1,...,n); 2.计算插值 (1)输入插值点u; (2)对于j 1,2,...,n做 如果u x j 则计算A1 , A2 , B1 , B2 ; v A1 f j 1 A2 f j B1 f j1 B2 f j; 3.输出u , v。
三次样条插值
于是由Taylor展示有 s( x) s( xi ) s( xi )(x xi ) s( xi ) s( xi ) 2 ( x xi ) ( x xi )3 2! 3! M M Mi yi s( xi )(x x j ) i ( x xi ) 2 i 1 ( x xi )3 2! 3!( xi 1 xi )
2M 0 M 1 6 f [ x0 , x0 , x1 ]
三次样条插值
同理(2)式中令i n得 M n 1 2M n 6 f [ xn 1 , xn , xn ] 即有 2M 0 M 1 6 f [ x0 , x0 , x1 ] ) i M i 1 2M i i M i 1 6 f [ xi 1 , xi , xi 1 ] (i 1,2,...,n 1 M 2M 6 f [ x , x , x ] n n 1 n n n 1
三次样条插值
对于待定系数a j , b j , c j .d j j 1,2,...n,即4n个未知系数,
而插值条件为 n 2个,还缺两个,因此须 4 给出两个 条件称为边界条件,有 以下三类: 第一类 已知两端点的一阶导数 s( x0 ) f ( x0 ) m0 s( xn ) f ( xn ) mn
埃尔米特(Hermite)插值

实验二埃尔米特(Hermite)插值一、实验目的:1.掌握埃尔米特插值算法原理;2.使用C语言编程实现埃尔米特插值算法。
二、实验准备:阅读《数值分析》2.4节二、实验要求:某人从甲地开车去乙地,每隔一段时间对行车距离和速率进行一次采样,得到在n+1 个采样时刻点t i 的里程s i和速率v i(i=0, 1, ..., n)。
要求编程构造埃尔米特插值多项式H2n+1(t),满足H2n+1(t i)=s i,H'2n+1(t i)=v i,对所有i=0, 1, ..., n成立,并据此计算m个给定时刻的里程和速率。
函数接口定义:void Hermite_Interpolation( int N, double t[], double s[], double v[], int m, double ht[], double hs[], double hv[] );其中N为采样点个数(注意这个N不是公式中的最大下标n,而是等于n+1),采样时刻点t i、里程s i、速率v i分别通过t、s、v传入;m是需要估算的给定时刻的个数,ht传入给定的时刻点,相应计算出的里程和速率应分别存储在hs和hv中。
裁判程序如下:裁判输入数据:20.0 1.00.0 1.00.0 0.050.0 0.2 0.5 0.8 1.030.0 0.5 1.0100.0 170.0 200.030.0 150.0 0.050.0 0.25 0.5 0.75 1.050.0 1.0 2.0 3.0 4.00.0 60.0 160.0 260.0 300.05.0 70.0 100.0 120.0 20.0100.5 1.0 1.5 2.0 2.5 3.0 3.5 3.8 3.95 4.0标准输出数据:0.0000 0.1040 0.5000 0.8960 1.00000.0000 0.9600 1.5000 0.9600 0.0000100.0000 127.9297 170.0000 195.9766 200.000030.0000 165.4688 150.0000 52.9688 0.000030.2222 60.0000 105.9303 160.0000 206.3438 260.0000 307.9764 305.7687 299.9796 300.000062.6024 70.0000 109.0488 100.0000 92.9745 120.0000 41.2374 -44.8421 -16.2783 20.0000#include<stdio.h>#define MAXN 5 /* 最大采样点个数 */#define MAXM 10 /* 最大估算点个数 */void Hermite_Interpolation( int N, double t[], double s[], double v[], int m, double ht[], double hs[], double hv[] ){double l[10],p[10],h1[10],h2[10],x,ll[10],pp[10];int kk;for(kk=0;kk<m;kk++){x=ht[kk];hs[kk]=0;hv[kk]=0;int i;for(i=0;i<N;i++){l[i]=1;ll[i]=1;int j;for(j=0;j<N;j++){if(i!=j){l[i]=l[i]*(x-t[j])/(t[i]-t[j]);}}p[i]=0;pp[i]=0;int k;for(k=0;k<N;k++){if(i!=k){p[i]=p[i]+l[i]/(x-t[k]);pp[i]=pp[i]+ll[i]/(t[i]-t[k]);}}h1[i]=(1-2*pp[i]*(x-t[i]))*l[i]*l[i];h2[i]=(x-t[i])*l[i]*l[i];hs[kk]=hs[kk]+s[i]*h1[i]+v[i]*h2[i];int kkk;for(kkk=0;kkk<N;kkk++){if(x==t[kkk])break;}if(x==t[kkk])hv[kk]=v[kkk];elsehv[kk]=hv[kk]+s[i]*(2*p[i]*l[i]-4*l[i]*p[i]*(x-t[i])*pp[i]-2*pp[i]*l[ i]*l[i])+v[i]*(l[i]*l[i]+2*l[i]*p[i]*(x-t[i]));}}}int main(){int N, m;double t[MAXN], s[MAXN], v[MAXN]; /* 用于构造的数据 */double ht[MAXM], hs[MAXM], hv[MAXM]; /* 用估算的数据 */int i;while ( scanf("%d", &N) != EOF ) {for ( i=0; i<N; i++ )scanf("%lf", &t[i]);for ( i=0; i<N; i++ )scanf("%lf", &s[i]);for ( i=0; i<N; i++ )scanf("%lf", &v[i]);scanf("%d", &m);for ( i=0; i<m; i++ )scanf("%lf", &ht[i]);Hermite_Interpolation( N, t, s, v, m, ht, hs, hv );for ( i=0; i<m; i++ )printf("%.4lf ", hs[i]);printf("\n");for ( i=0; i<m; i++ )printf("%.4lf ", hv[i]);printf("\n\n");}return 0; }。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四分段三次埃尔米特插值
(一)实验目的
掌握分段三次埃尔米特插值算法。
(二)实验项目内容
1.写出计算步骤和流程图。
2.对每种算法分别用C或c#程序实现。
3.调试程序。
可用以下数据进行调试。
已知函数y=1/(1+x2)在区间[0,3]上取等距插值节点,求区间[0,3]上的分段三次埃尔米特插值函数,并利用它求出f(1.5)的近似值(0.3075)。
x0 1 2
i
y 1 0.5 0.2 i
y 0 -0.5 -0.16 i
(三)主要仪器设备
微机
(四)实验室名称
公共计算机实验室
(五)实验报告撰写
实验四分段三次埃尔米特插值
实验报告
一、流程图
二、 程序代码
#include<stdio.h>
#include<math.h>
float f0(float x) N Y
开始
输入i x ,i y ,x
y=0, j=0
t=1
i j i
x x t t x x -=- i=0,…j-1,j+1,…n i y y ty =+
j=n? 输出y
结束
j=j+1
{
return((x-1)*(x-1)*(2*x+1));
}
float f1(float x)
{
return(x*x*(-2*x+3));
}
float g0(float x)
{
return(x*(x-1)*(x-1));
}
float g1(float x)
{
return(x*x*(x-1));
}
void main()
{float x0,x1,x,y0,y1,yy0,yy1,h,p;
printf("输入x0,x1,x,y0,y1和yy0,yy1的取值");
scanf("%f%f%f%f%f%f%f",&x0,&x1,&x,&y0,&y1,&yy0,&yy1); h=x1-x0;
p=y0*f0((x-x0)/h)+y1*f1((x-x0)/h)+h*yy0*g0((x-x0)/h)+h*yy1*g1((x-
x0)/h);
printf("%f\n",p);
}
三、运行结果【截图】。