构造中位线巧解题

合集下载

巧构三角形的中位线解题

巧构三角形的中位线解题

巧构三角形的中位线解题
巧构三角形的中位线解题是一种解决几何问题方法,即在一个三
角形中由三条不同的边或一边上找到中位线,以解决相关问题。

巧构三角形的中位线解题分为几个步骤:
第一步:根据提供的给出的三条边或者一边的长度,画出三角形
的外观。

第二步:对半分开三个角,将其分成两个小三角形。

第三步:画出小三角形的中线,求出这两个小三角形的中心角度。

第四步:在三角形中心点画一条竖直线,使其顶点正好夹在两个
小三角形的中心线上。

这条竖直线就是巧构三角形的中位线了。

第五步:根据中位线解决相关问题。

巧构三角形的中位线解题是一种有效的解决平面几何问题的方法,它能帮你查找出三角形的中位线,从而解决相关问题。

它的使用方法
主要是根据三角形的长度大小,画出其外观,将它分为两个小三角形,求出小三角形的中心角度,再画出一条竖直线,使其顶点正好夹在两
个小三角形的中心线上,即可得到中位线。

例析构造三角形中位线策略

例析构造三角形中位线策略

例析构造三角形中位线策略作者:***来源:《中学教学参考·理科版》2023年第11期[摘要]三角形中位线是一条重要的线段,在解题过程中构造三角形中位线将事半功倍,能使问题获得突破。

文章结合几个例题,探讨构造三角形中位线的策略,给学生一些启示。

[关键词]构造;三角形;中位线;初中数学[中图分类号] G633.6 [文献标识码] A [文章编号] 1674-6058(2023)32-0020-03三角形中位线是一条重要的线段,三角形中位线定理是初中阶段学习的重要定理。

在解题过程中,构造三角形中位线,将事半功倍,能使问题获得突破。

本文结合几个例题,探讨构造三角形中位线的策略,给学生一些启示。

一、直接连接两边中点,构造三角形中位线如果图形中有两个及以上的线段中点,此时,应考虑使用三角形中位线,辅助线作法为直接连接两边的中点,找出这两边所在的三角形,利用三角形中位线定理解决问题。

[例1]如图1所示,在边长为4的等边[△ABC]中,[D]、[E]分别为[AB]、[BC]的中点,[EF⊥AC]于点[F],[G]为[EF]的中点,连接[DG];(1)求[EF]的长;(2)求[DG]的长。

分析:(1)如图2所示,连接[DE],利用三角形中位线定理得[DE=2],且[DE]∥[AC],再解直角三角形[EFC]求得[EF]的长;(2)在直角三角形[DEG]中,利用勾股定理求得[DG]的长。

解:(1)如图2所示,连接[DE],∵在边长为4的等边[△ABC]中,[D]、[E]分别为[AB]、[BC]的中点,∴[DE]是[△ABC]的中位线,∴[DE=2],且[DE]∥[AC],[BD=BE=EC=2],∵[EF⊥AC]于点[F],[∠C=60°],∴[∠FEC=30°],[∠DEF=∠EFC=90°],∴[FC=12EC=1],故[EF=22−12=3]。

(2)∵[G]为[EF]的中点,∴[EG=32],∴[DG=DE2+EG2=22+322=192]。

典中点平行四边形专训5 构造中位线解题的五种常用方法

典中点平行四边形专训5   构造中位线解题的五种常用方法

典中点平行四边形专训5 构造中位线解题的五种常用方法◐名师点金◑三角形的中位线具有两方面的性质:一是位置上的平行关系,二是数量上的倍分关系.因此,当题目中给出三角形两边的中点时,可以直接 连出中位线;当题目中给出一边的中点时,往往需要找另一边的中点,作出三角形的中位线。

典例剖析:如图,在△ABC 中,BD,CE 分别平分∠ABC,∠ACB,AM ⊥CE 于点M,AN ⊥BD 于点N.求证:MN=21(AB+AC-BC)解题秘方:图中不存在中点,但结论与三角形中位线定理很类似,因此应设法寻找中点,再构造三角形的中位线.要证明MN=21(AB+AC-BC),可找以MN 为中位线的三角形,故延长AM 交BC 于点F,延长AN 交BC 于点G,易证明2MN=FG,而FG=BC+FC-BC.又易证明BG=AB,FC=AC,故问题得解。

方法1:连接两点构造三角形的中位线1.如图,点B 为AC 上一点,分别以AB,BC 为边在AC 同侧作等边△ABD 和等边△BCE,点P,M,N 分别为AC,AD,CE 的中点。

(1)求证PM=PN ;(2)求∠MPN 的度数。

方法2:已知角平分线及垂直构造中位线2.如图,在△ABC 中,点M 为BC 的中点,AD 为△ABC 的外角平分线,且AD ⊥BD.若AB=12,AC=18,求DM 的长。

3.如图,在△ABC 中,已知AB=6,AC=10,AD 平分∠BAC,BD ⊥AD 于点D,点E 为BC 的中点,求DE 的长。

方法3:倍长法构造三角形的中位线4.如图,在△ABC 中,∠ABC=90°,BA=BC ,△BEF 为等腰直角三角形,∠BEF=90°,M 为AF 的中点, 求证ME=21CF方法4:已知两边中点,取第三边中点构造三角形的中位线5. 如图,在△ABC 中,∠C=90°,CA=CB,E,F 分别为CA,CB 上一点,CE=CF,M,N 分别为AF 、BE 的中点, 求证AE=2MN方法5:已知一边中点推理得出另一边中点再取第三边中点构造三角形的中位线6.如图,在△ABC 中,AB=AC,AD ⊥BC 于点D,点P 是AD 的中点,连接BP 并延长交AC 于点N ,求证AN=31AC。

九年级数学上册23.4中位线构造中位线素材华东师大版(new)

九年级数学上册23.4中位线构造中位线素材华东师大版(new)

构造中位线“遇中点找中点,联想中位线”是一个解题突破口,但在一般问题中,要应用中位线的性质时,往往需要作辅助线。

下面介绍几种如何构造中位线的方法,供大家参考。

一、连中点,构造三角形的中位线例1 如图1,D、E、F分别是等边三角形ABC的边AB、BC、AC的中点,P为BC上任意一点,△DPM是等边三角形.连接FM。

那么EP与FM相等吗?为什么?分析:由D、E、F是中点,想到连接中点,得到中位线DE、DF.这样就可以把EP、FM放到△DPE、△DMF中,进而推出它们全等使问题得以解决。

解:连接DF、DE.因为D、E、F分别是等边三角形ABC的边AB、BC、AC的中点,所以DF∥BC,DF=错误! BC;DE∥AC,DE=错误!AC.所以四边形DECF是平行四边形.所以∠C=∠EDF=60°。

因为△ABC、△DPM是等边三角形,所以BC=AC,DP=DM,∠PDM=60°。

所以DF=DE。

因为∠EDP=60°-∠PDF,∠FDM=60°-∠PDF,所以∠EDP=∠FDM。

所以△DEP≌△DFM。

所以EP=FM.跟踪训练1如图2,四边形ABCD中,AC=BD,AC、BD相交于点O,M、N分别是边AB、CD的中点,MN交BD于点E、交AC于点F。

OE与EF相等吗?为什么?二、找中点,构造三角形的中位线例2 如图3,在四边形ABCD中,AB=CD,M、N分别是BC、AD边的中点,延长BA、MN 交于点F,延长CD交MF于点E。

请说明∠1与∠2相等.分析:因为M、N分别是BC、AD的中点,若连接BD,取其中点G,再连接NG、MG,则NG∥AB,NG=错误!AB,MG∥CD,MG=错误!CD。

这样把∠1与∠2通过中位线移到同一个等腰三角形GMN中,从而使问题得以解决.解:连接BD,取BD的中点G,连接NG、MG,则NG∥AB,NG=错误!AB,MG∥CD,MG=错误! CD。

构造三角形的中位线定理使用条件解题例析

构造三角形的中位线定理使用条件解题例析

构造三角形的中位线定理使用条件解题例析作者:孙中淼来源:《教育周报·教研版》2018年第22期三角形的中位线定理揭示了三角形中两条线段的位置关系和数量关系,利用它来解决几何证明题是行之有效的方法。

在解答与中点有关的几何题时,若能根据题意巧妙构造中位线定理使用条件,就会有出奇制胜的效果。

下面通过几道题说明之,以供参考。

一、没有第三边,添加第三边【例1】如图,点E、F、G、H分别是CD、BC、AB、DA的中点.求证:四边形EFGH是平行四边形.证明:连接BD,∵E、F、分别是CD、BC的中点,∴EF∥BD,,又∵G、H分别是AB、DA的中点,∴GH∥BD,,∴,∴四边形EFGH是平行四边形.二、没有中位线,作出中位线【例2】已知,如图在,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.证明:取BE的中点H,连接FH、CH,∵F是AE的中点,H是BE的中点,∴FH是三角形ABE的中位线,∴FH∥AB且,又∵点E是DC的中点,∴,又∵,∴.∴四边形EFHC 是平行四边形,∴GF=GC.三、同时作出中位线和第三边【例3】如图,同底边BC的△ABC与△DBC中,E、F、G、H分别是AB、AC、DB、DC的中点,求证:EH与FG互相平分.证明:连接EG、GH、FH、EF,∵点E、F、G、H分别是AB、CD、AC、BD的中点,∴EF、GH分别是△ABC与△DBC的中位线,∴,,∴.∴四边形EGFH为平行四边形.∴EF 与GH互相平分.四、两边中有一边不全,补全两边【例4】如图,已知在△ABC中,E是AB的中点,CD平分∠ACB,AD⊥CD,求证:(1)DE∥BC;(2)证明:延长AD交BC于F.(1)∵AD⊥CD,∴∠ADC=∠FDC=90°.∵CD平分∠ACB,∴∠ACD=∠FCD.在△ACD 与△FCD中,∠ADC=∠FDC, DC=DC,∠ACD=∠FCD,∴△ACD≌△FCD.∴AC=FC,AD=DF.又∵E为AB的中点,∴DE∥BF,即DE∥BC.(2)由(1)知AC=FC,,∴.总之,三角形的中位线定理是一个非常有价值的定理.它是一个遇到中点,必须联想到的重要定理,但是在解题时,往往只知道它的一部分,因此就需要同学们根据题目的特点自己去寻找,补全中位线定理的基本图形,解决问题,从而达到学习的目的.。

构造中位线巧解题

构造中位线巧解题

三角形的中位线定理,是一个非常有价值的定理。

它是一个遇到中点,必须联想到的重要定理之一。

但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。

本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。

一、知识回顾1、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

2、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半3、应用时注意的几个细节:①定理的使用前提:三角形或梯形。

②定理使用时,满足的具体条件:两条边的中点,且连接这两点,成一条线段。

③定理的结论:位置上:与第三边是平行的;与底是平行的(梯形)大小上:等于第三边的一半;等于两底和的一半(梯形)。

在应用时,要灵活选择结论。

4、梯形的中位线:中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L.L=(a+b)÷2已知中位线长度和高,就能求出梯形的面积.S梯=2Lh÷2=Lh中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。

二、什么情况下该用中位线1、直接找线段的中点,应用中位线定理例1、小峰身高1.70m,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm2、利用等腰三角形的三线合一找中点,应用中位线定理例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。

3、利用平行四边形对角线的交点找中点,应用中位线定理例3、如图5所示,AB∥CD,BC∥AD ,DE⊥BE ,DF=EF,甲从B出发,沿着BA、AD、DF的方向运动,乙B出发,沿着BC、CE、EF的方向运动,如果两人的速度是相同的,且同时从B出发,则谁先到达?总结:几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

构造三角形中位线的五种常用方法

构造三角形中位线的五种常用方法
人教版 八年级下
期末提分练案
第3讲 平行四边形 第2课时 方法训练 构造三角形中位线的五种常用方法
方法训练 1.如图,点 B 为 AC 上一点,分别以 AB,BC 为边在 AC 同侧
作等边三角形 ABD 和等边三角形 BCE,点 P,M,N 分别为 AC,AD,CE 的中点. (1)求证 PM=PN;
方法训练
5.如图,在△ABC 中,AB=AC,AD⊥BC 于点 D,点 P 是 AD 的中点,延长 BP 交 AC 于点 N.求证 AN=13AC.
证明:如图,取 NC 的中点 H,连接 DH, 过点 H 作 HE∥AD,交 BN 的延长线于 E. ∵AB=AC,AD⊥BC,∴D 为 BC 的中点. ∵H 为 NC 的中点,∴DH∥BN. 又∵PD∥EH,∴四边形 PDHE 是平行四边形.∴HE=PD.
方法训练 4.如图,在四边形 ABCD 中,AB 与 CD 不平行,M,N 分别
是 AD,BC 的中点.若 AB=10,CD=8,求 MN 长度的取 值范围.
方法训练 解:如图,取 BD 的中点 P,连接 PM,PN. ∵M 是 AD 的中点,P 是 BD 的中点,∴PM 是△ABD 的中位线, ∴PM=12AB=5. 同理得 PN=12CD=4. 在△PMN 中,∵PM-PN<MN<PM+PN,∴1<MN<9.
方法训练
∵P 为 AD 的中点,∴AP=PD. ∴AP=EH. 又∵HE∥AD,∴∠PAN=∠EHN,∠APN=∠HEN. ∴△APN≌△HEN(ASA). ∴AN=NH. ∴AN=NH=HC. ∴AN=13AC.
方法训练 2.如图,在△ABC 中,已知 AB=6,AC=10,AD 平分∠BAC,
BD⊥AD 于点 D,点 E 为 BC 的中点.求 DE 的长. 解:如图,延长 BD 交 AC 于点 F. ∵AD 平分∠BAC,∴∠BAD=∠CAD. ∵BD⊥AD,∴∠ADB=∠ADF. 又 AD=AD, ∴△ADB≌△ADF(ASA). ∴AF=AB=6,BD=FD.

巧构三角形中位线解题

巧构三角形中位线解题

人教版初中巧构三角形中位线解题三角形中位线有着重要的性质:三角形中位线平行于第三边,并且等于第三边的长的一半. 在解决与三角形有关的问题时,巧妙构建中位线,会对解题带来事半功倍的效果. 请看以下例子例1在△ABC中,AB=AC,以AB为直径作半圆交BC于D,E为AB上一点,且13AE AB=,连CE交AD于F.求证:AF=FD.证法1 如图1,过点D作CE的平行线,交AB于M.∵AB=AC,AB为半圆的直径,∴AD⊥BC,且BD=DC.∵DM//EC,∴BM=ME.即DM为△BEC的中位线.∵13AE AB=,∴BM=ME=AE.∴AF=FD.证法2 如图2,过点D作DN//AB,交EC于N.∵AB=AC,AB为半圆的直径,∴AD⊥BC,且BD=DC.∵DN//AB,∴EN=NC.即DN为△BEC的中位线.∴12DN BE=,∵1132AE AB BE==,∴DN=AE.又∵DN//AB,∴∠AEF=∠FND,∠F AE=∠FDN,∴△AEF≌△DNF.∴AF=FD.例2在△ABC中,M为BC的中点,∠B=2∠C,AD⊥BC于D,求证:12DM AB=.证法1 如图3,取AB的中点N,连MN、DN. ∵M为BC的中点,∴MN为△ABC的中位线.∴∠DMN=∠C.∵N为AB的中点,AD⊥BC,∴1.2 NB ND AB ==∴∠B=∠NDB.又∠NDB=∠DMN+∠DNM,∠NDB=∠B=2∠C,∴∠DMN=∠DNM.∴12DM DN AB==.证法2 如图4,取AC的中点N,连MN、DN. ∵M为BC的中点,∴MN为△ABC的中位线.∴∠NMC=∠B,12 MN AB=∵N为AC的中点,AD⊥BC,∴12DN NC AC==.∴∠C=∠NDC.又∠NMC=∠NDM+∠DNM,∠NMC=∠B=2∠C,∴∠NDM=∠DNM.∴12 DM MN AB==例3如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB的中点. 求证:CD=2CE.证法1如图5,取CD的中点F,连BF.∵BD=AB,DF=CF,∴BF是△ADC的中位线.∴BF//AC,且12 BF AC=∴∠CBF=∠ACB.∵AB=AC,∴∠ABC=∠ACB.∴∠ABC =∠CBF.∵1,2BE AB=∴BE=BF又∵BC=BC,∴△BCE≌△BCF.∴CE=CF. ∴CD=2CE.证法2如图6,取AC的中点F,连BF.∵BD=AB,AF=CF,∴BF是△ADC的中位线.∴BF//AC,且12BF CD=.∵E为AB的中点,∴BE=AE,∵AB=AC,∴AE=AF又∠A=∠A,∴△ABF≌△ACE,得CE=BF. ∴CD=2CE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的中位线定理,是一个非常有价值的定理。

它是一个遇到中点,必须联想到的重要定理之一。

但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。

本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。

一、知识回顾
1、三角形中位线定理:
三角形的中位线平行于第三边,并且等于它的一半。

2、梯形中位线定理
梯形的中位线平行于两底,并且等于两底和的一半
3、应用时注意的几个细节:
①定理的使用前提:三角形或梯形。

②定理使用时,满足的具体条件:
两条边的中点,且连接这两点,成一条线段。

③定理的结论:
位置上:与第三边是平行的;与底是平行的(梯形)
大小上:等于第三边的一半;等于两底和的一半(梯形)。

在应用时,要灵活选择结论。

4、梯形的中位线:
中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L.
L=(a+b)÷2
已知中位线长度和高,就能求出梯形的面积.
S梯=2Lh÷2=Lh
中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。

二、什么情况下该用中位线
1、直接找线段的中点,应用中位线定理
例1、小峰身高1.70m,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm
2、利用等腰三角形的三线合一找中点,应用中位线定理
例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。

3、利用平行四边形对角线的交点找中点,应用中位线定理
例3、如图5所示,AB ∥CD ,BC ∥AD ,DE ⊥BE ,DF=EF ,甲从B 出发,沿着BA 、AD 、DF 的方向运动,乙B 出发,沿着BC 、CE 、EF 的方向运动,如果两人的速度是相同的,且同时从B 出发,则谁先到达?
总结:几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

三、中位线能带来什么
1、说明角相等
例1已知,如图,四边形ABCD 中,AB =CD ,E 、F 分别是AD 、BC 的中点,BA 、FE 的
延长线相交于点M ,CD 、FE 的延长线相交于点N 。

试说明:∠AME =∠DNE 。

2、说明线段相等
例2 已知,如图,四边形ABCD 中,AC 、BD 相交于点O ,且AC =BD ,E 、F 分别是AD 、BC 的中点,EF 分别交AC 、BD 于点M 、N 。

试说明:OM =ON 。

例3:BD 、CE 分别是的△ABC 外角平分线,过A 作AF ⊥BD ,AG ⊥CE ,垂足分别是F 、G ,易证FG=
2
1
(AB+BC+AC )。

(1)若BD 、CE 分别是△ABC 的内角平分线,FG 与△ABC 三边有怎样的数量关系?画出图形(图1)并说明理由; (2)若BD 、CE 分别是△ABC 的内角和外角平分线,FG 与△ABC 三边有怎样的数量关系?画出图形(图2)并说明理由.
A
B
F C D
N M E
D A
B
C
O
E F M
N
P
3、说明面积相等
例3 已知,如图3,△ABC 的中线AD 、BE 交于点G 。

试说明:S △ABG =S 四边形CEGD 。

4、说明线段垂直
例4 已知,如图4,在梯形ABCD 中,AD ∥BC ,AD +BC =AB ,M 是CD 的中点试说明:AM ⊥BM 。

总结:三角形中位线辅助线常用口诀
三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线、中位线、加倍延长中线及其相关性质(直角三角形斜边中线性质、等腰三角形底边中线性质),然后通过探索,找到解决问题的方法。

三、本次课后作业:
1、已知三角形的三边为6、8、10,顺次连结各边中点,所得到的三角形的周长为多少? 变形题:已知三角形的三边为a 、b 、c,顺次连结各边中点,所得到的三角形的周长为多少?
2、已知△ABC 中,D 为AB 的中点,E 为AC 上一点,AE=2CE ,CD ,BE 交于O 点,OE=2厘米。

求BO 的长。

3、已知△ABC 中,BD ,CE 分别是∠ABC ,∠ACB 的平分线,AH ⊥BD 于H ,AF ⊥CE 于F 。

若AB=14
B A
C
E
D G
图4
B
C
M
N
A D
厘米,AC=8厘米,BC=18厘米,求FH的长。

4、已知在△ABC中,AB>AC,AD⊥BC于D,E,F,G分别是AB,BC,AC的中点。

求证:∠BFE=∠EGD。

5、在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图2-62所示)。

求证:∠DEF=∠HFE。

相关文档
最新文档