自考概率论与数理统计复习资料要点总结

合集下载

自考 概率论与数理统计 重难点笔记资料

自考 概率论与数理统计 重难点笔记资料

高等教育自学考试《概率论与数理统计》重难点笔记资料 课程代码:04183第一章 随机事件与概率一.随机事件关系与运算1!0,)!(!!!,)!(!0===-==-=C C C A A n n n r n nn rn r n r n :,n r n n 组合排列二.概率P(A) 1.P(A)概率特征)()31)(,0)()21)(0)111∑∞=∞===Ω=≤≤K KK kA A P ,P(P P A P 事件互不相容时φ2. 古典概型3.概率加法公式P(A+B)=P(A)+P(B)- P(AB)当A 、B 互斥时, P(A+B)=P(A)+P(B) 事件的独立性:定义:P(AB)=P(A)P(B)性质:.P(A)>0,,则P(B)=P(B/A); P(B)>0则P(A)=P(A/B) P(B —A)=P(B)--P(AB)P (A--B )==P (AB )=P (A--AB )=P (A )--P (AB )基本事件总数所包含的基本事件数A A P =)(P(A+B+C)=1--P(A+B+C)=1--P(A)P(B)P(C) P(AB)=P(AUB)=1-P(AUB)=1-(P(A)+P(B)) P(A)=1-P(A4.条件概率公式5.概率的乘法公式6.全概率公式:从原因计算结果7.Bayes 公式:从结果找原因)()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==nk k k B A P B P A P 1)|()()(∑==nk kki i k B A P B P B A P B P A B P 1)|()()|()()|()()()|(A P AB P A B P =)/()/()()(AB C P A B P A P ABC P =第二章随机变量及其概率分布4/ 13分布函数对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:“一般正态分布函数F(x)”转换为“标准正态分布函数)(x Φ”的关系 设X~N (δμ2,)则1.2.3.连续型随机变量函数的概率分布定理:记x=h(y)为y=g(x)的反函数,则Y=g(X)的概率密度:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<'=其他y y h y h y f f X Y ,0),())(()(βα1) 设X~U(-2,2ππ),令Y=tanX,求Y 的概率密度柯西分布:+∞<<-∞+='=y y h y h y y f f X Y ,111)())(()(2π 2)设X~N(σμ2,),求eX的概率密度对数正态分布:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤>-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤>•=-0,00,2)(ln 210,0,0,1)(ln )(,22y y y y y y y y y e f fX Yσμσπ ∑≤==≤=xk k X P x X P x F )()()(⎰∞-=≤=x dtt f x X P x F )()()(⎰∞-=≤=xdt t f x X P x F )()()()()('x f x F =3直接变换法:[])()(21)()(y y yy y ff F fXXY Y-+='=e e yx x 的的反函数为y y 的反函数为反y 2ln 2,,,,,ln -=-===第三章多维随机变量及其概率分布 二元随机变量及其边缘分布 分布规律的描述方法联合密度函数联合分布函数离散联合分布函数的概率:{}0),(),(),(),(,112112222121≥+--=≤<≤<y x y x y x y x y y x x F F F F Y X P性质1),(,0),(),(),(=+∞+∞=-∞-∞=-∞=-∞F F x F y F 离散边缘分布律:{}{}∑∑===⋅===⋅ijji pijY P j p pij X P pi y x1...2,1,,0,0=⋅=⋅=≥⋅≥⋅∑∑jij p pi j i j p pi联合密度二维边缘密度二维连续随机变量的分布 1.均匀分布(X,Y)~U D1)设D 为平面上的有界区域,S 表面积⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤+−−→−⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤≤≤--−−→−⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈=其他,其他o d x c b x a c d a b 其他D y x S y x f R yx R 圆形矩形,01,,,))((1,0),(,1),(2222π),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=+∞<<∞-=⎰+∞∞-x ,,dy y x f x f ),()(+∞<<-∞=⎰+∞∞-y dx y x f y f Y ,,),()(}{}{},{j Y P i X P j Y i X P =====2.正态分布),,,,(~),(222121ρσσμμN Y Xey y x f y x x ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+--------=σμσσσρρσπσμμρμ222212121212)2(121),())((2)()1(21221离散型随机变量的独立性)()(),(y FY x Fx y x F =连续型随机变量的独立性第四章 随机变量的数字特征数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义期望性质:● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数 , ● E(CX)=CE(X),其中C 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 ● E(XY)=E(X)E(Y),X,Y 相互独立 方差的性质D(a)=0,其中a 为常数D(a+bX)=b 2(X),其中a 、b 为常数D(X+Y)=D(X)+D(Y) 当X 、Y 相互独立时随机变量g(X)的数学期望常用公式:二维随机变量的期望 离散)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k kkP xX E )(⎰+∞∞-⋅=dxx f x X E )()(⎰∑+∞∞-=⇔=dx x fx x g X g E p x g X g E k k k )()()]([)())((ijji Jii i j ij i i i py j p y Y E p x pi x X E ∑∑∑∑∑∑=⋅==⋅=)()()()()(Y E X E Y X E +=+∑∑=i j ij j i p y x XY E )()()()(,Y E X E XY E Y X =独立时与当连续 g(X)∑⎰⎰∑=⇔=jij jiidxdy y x f y x g Y X G E p yx g Y X g E ,),(),()],([),()],([方差 定义式 离散:⋅-=∑=Pi X E xX D ni i21))(()(连续常用计算式常用公式协方差与相关系数⎰⎰--=dxdy y x f Y E Y X E x Y X Cov ),())())(((),(协方差Cov(X,Y)的性质当X 与Y 相互独立时,则Cov(X,Y)=0相关系数XY ρ的性质⎰⎰⎰⎰==dxdyy x yf Y E dxdy y x xf X E ),()(),()(dxdyy x xyf XY E ⎰⎰=),()(()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()()(),(Y E X E XY E Y X Cov -=)()(),(Y D X D Y X Cov XY=ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =),(),(),(Z Y Cov Z X Cov Z Y X Cov +=+独立与相关独立必定不相关 相关必定不独立 不相关不一定独立标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式第五章 大数定律及中心极限定理1.切比雪夫不等式:设随机变量X 的期望E(X)及方差D (X )存在,则对任意小正数a>0,{}{}22)(1)()()(aX D a X E X P a X D a X E X P -≥<-↔≤≥- 2.独立同分布序列的中心极限定理{})(21)(212lim lim lim x dt x n n X P x Y P x xt n i i n n n n n eF Φ==⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=≤=⎰∑∞---∞→∞→∞→πσμ3.棣莫费-拉普拉斯中心极限定理)1,0(~),(~2N X Z N X σμσμ-=⇔()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P)(2122lim x dt x mpq np Z p e t x n n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞-∞→⎰ 第六章 统计量及其抽样分布 样本方差,)(11212∑=--=ni i x x n s样本标准差2s s = 统计量样本K样本K卡方分布t 分布F 分布正态总体条件下样本均值的分布:样本方差的分布:两个正态总体的方差之比)(~)1,0(~212n X N X ni i χ∑=,则若())(~1),,(~21222n Y N Y ni iχμσσμ∑=-则若),(~//),(~),(~21212212n n F n V n U n V n U 则若χχ),(~2n N X σμ)1,0(~/N nX σμ-)1(~)1(222--n S n χσ)1(~/--n t ns X μ则若),(~),1,0(~2n Y N X χ)(~/n t nY X第七章 参数估计点估计:参数的估计值为一个常数最大似然估计P147似然函数单个正态总体参数的置信区间第八章 假设检验假设检验的步骤① 根据具体问题提出原假设H0和备择假设H1② 根据假设选择检验统计量,并计算检验统计值③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。

高等教育自学考试 概率论与数理统计期末自学 复习重要知识点

高等教育自学考试 概率论与数理统计期末自学 复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布): 若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x p p ====-<<,则称X 服从12,x x 处参数为p 的两点分布。

两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。

记为X~b(n,p)(或B(n,p)).两点分布的概率分布:{}(1),0,1,...,.k k n kn P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。

5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

概率论与数理统计复习资料

概率论与数理统计复习资料

自考04183概率论与数理统计(经管类)笔记-自考概率论与数理统§1.1 随机事件1.随机现象:确定现象:太阳从东方升起,重感冒会发烧等;不确定现象:随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等;其他不确定现象:在某人群中找到的一个人是否漂亮等。

结论:随机现象是不确定现象之一。

2.随机试验和样本空间随机试验举例:E1:抛一枚硬币,观察正面H、反面T出现的情况。

E2:掷一枚骰子,观察出现的点数。

E3:记录110报警台一天接到的报警次数。

E4:在一批灯泡中任意抽取一个,测试它的寿命。

E5:记录某物理量(长度、直径等)的测量误差。

E6:在区间[0,1]上任取一点,记录它的坐标。

随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。

样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。

所有样本点的集合称为样本空间,记作。

举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。

3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。

只包含一个样本点的单点子集{}称为基本事件。

必然事件:一定发生的事件,记作不可能事件:永远不能发生的事件,记作4.随机事件的关系和运算由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。

(1)事件的包含和相等包含:设A,B为二事件,若A发生必然导致B发生,则称事件B包含事件A,或事A包含于事件B,记作,或。

性质:例:掷骰子,A:“出现3点”,B:“出现奇数点”,则。

注:与集合包含的区别。

相等:若且,则称事件A与事件B相等,记作A=B。

(2)和事件概念:称事件“A与B至少有一个发生”为事件A与事件B的和事件,或称为事件A与事件B的并,记作或A+B。

2022年自考04183概率论与数理统计(经管类)核心考点资料

2022年自考04183概率论与数理统计(经管类)核心考点资料

(2) =φ,φ=Ω.
(3)A-B=
=A-AB.
在进行事件运算时,经常要用到下述运算律,设 A,B,C 为事件,则有: 交换律:A∪B=B∪A,A∩B=B∩A. 结合律:A∪(B∪C)=(A∪B) ∪C,
A∩(B∩C)=(A∩B)∩C. 分配律:A∪(B∩C)=(A∪B)∩(A∪C),
A∩(B∪C)=(A∩B)∪(A∩C). 对偶律:
, 其中 0<p<1,p+q=1,则称 X 服从参数为 n,p 的二项分布,简记为 X~B(n,p). 泊松分布: 设随机变量 X 的可能取值为 0,1,2,…,n,…,而 X 的分布律为
其中λ>0,则称 X 服从参数为λ的泊松分布,简记为 X~P(λ). 泊松( Poisson)定理设λ>0 是常数,n 是任意正整数,且 npn=λ,则对于任意取定的非负整 数 k,有
当 g(x1),g(x2),…,g(xk),…有相等的情况时,应把使 g(xk)相等的那些 xi 所对应的概率相 加,作为 Y 取 g(xk)时的概率,这样才能得到 Y 的分布律. 设 X 为连续型随机变量,其概率密度为 fx(x).设 g(x)是一严格单调的可导函数,其值域为[α, β]且 g’(x)≠0.记 x=h(y)为 y=g(x)的反函数,则 Y=g(X)的概率密度
.
即当 n 很大很小时,有近似公式
,其中λ=np.
二、随机变量的分布函数 设 X 为随机变量,称函数
F(x)=P{X≤x},x∈(-∞,+∞) 为 X 的分布函数. 当 X 为离散型随机变量时,设 X 的分布律为
pk=P{X=k},k=0,1,2,…
由于
,由概率性质知,



其中求和是对所有满足 xk≤x 时,xk 相应的概率 pk 求和. 分布函数有以下基本性质:

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率论知识点总结:1.随机事件:随机事件是指在一次试验中,可能发生也可能不发生的事件。

例如:掷硬币的结果、抽取扑克牌的花色等。

2.概率:概率是描述随机事件发生可能性大小的数值。

概率的取值范围是[0,1],表示事件发生的可能性大小,0表示不可能发生,1表示一定会发生。

3.古典概型:古典概型是指每种可能的结果发生的概率相等的情形。

例如:掷骰子的结果、抽取彩色球的颜色等。

4.随机变量:随机变量是用来描述试验结果的数值,它的取值是根据随机事件的结果确定的。

例如:掷骰子的点数、抽取扑克牌的点数等。

5.概率分布:随机变量的概率分布描述了每个取值发生的概率。

常见的概率分布有离散概率分布和连续概率分布,如二项分布、正态分布等。

6. 期望值:期望值是衡量随机变量取值的平均值。

对于离散型随机变量,期望值=E[X]=∑[xP(X=x)];对于连续型随机变量,期望值=E[X]=∫[x f(x)dx],其中f(x)为概率密度函数。

7. 方差:方差是衡量随机变量取值与期望值之间的偏离程度。

方差=Var(X)=E[(X-E[X])^2]。

8.独立性:两个随机事件或随机变量之间的独立性表示它们的发生与否或取值无关联。

独立性的判定通常通过联合概率、条件概率等来进行推导。

二、数理统计知识点总结:1.样本与总体:在统计学中,样本是指从总体中选取的具体观测数据。

总体是指要研究的对象的全部个体或事物的集合。

2.参数与统计量:参数是描述总体特征的数值,如总体均值、总体方差等。

统计量是根据样本计算得到的参数估计值,用来估计总体参数。

3.抽样方法:抽样方法是从总体中选取样本的方法,常见的抽样方法有简单随机抽样、系统抽样、整群抽样等。

4.统计分布:统计分布是指样本统计量的分布。

常见的统计分布有t分布、F分布、x^2分布等,其中t分布适用于小样本、F分布适用于方差比较、x^2分布适用于拟合优度检验等。

5.点估计与区间估计:点估计是以样本统计量为基础,估计总体参数的数值。

概率论与数理统计复习要点

概率论与数理统计复习要点

第一章 随机事件及其概率一、随机事件及其运算 1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。

2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生; ②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生;③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。

④互逆关系(对立):A ,事件A 发生事件A 必不发生,反之也成立;互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。

) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。

若AB =∅,则A B A B ⋃=+;②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。

4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂ ④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃对于n 个事件,有1111,n ni i i i nni ii i A A A A ======二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质: (1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21 ,有∑∑===ki i ki i A P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质 ①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如 若),()(B P A P ≤则B A ⊂。

高等教育自学考试概率论与数理统计(经管类04183)复习资料

高等教育自学考试概率论与数理统计(经管类04183)复习资料

概率论与数理统计(经管类04183)第一章 随机事件与概率复习要点:一、事件的关系和运算 1.常用表示公式A ,B ,C .至少发生一个;都发生;都不发生;恰好发生一个;至多发生一个. 2.互不相容与对立 3.差的不同表示法 4.特殊关系事件间的运算(1),B A ⊂则.,,,不相容与B A ,A B B A B B A A AB ⊂=-=+=Φ (2)A ,B 互不相容,则.,,,,B A B A B A B A B A AB ⊂=+=-=-=ΩΦ 5.对偶律 画图.二、概率的性质 1.基本性质 2.推论(1)有限可加性 (2))(1)(A P A P -=;(3))()()(,A P B P A B P B A -=-⊂;(4))()()()(AB P B P A P B A P -+=+, )()()(AB P A P B A P -=-,)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=++ 三、古典概型注意:1.上下一致;2.不重复,不遗漏;3. 事件复杂时考虑对立事件. 四、条件概率 1.条件概率)()()|(A P AB P A B P =2.乘法公式)()()()(),|()()(AB |C P A |B P A P ABC P A B P A P AB P == 3.全概率公式和贝叶斯公式n A A ,,1 —原因,在先,B —结果,在后.时间上的先后,逻辑上的先后.五、事件的独立性 1.定义 2.等价条件 3.n 个事件 4.性质(1)B ,A B A,B A B A ;;;,,独立性等价;(2)n A A ,,1 相互独立.其中一部分必相互独立;若干个换成对立事件仍相互独立;分成几组,各组的运算结果间相互独立.5.利用独立性计算概率),(()()()()(1)(B A)P P B P A P B P A P B A P -+=-=+)()()(B P A P B A P =- )()1)(11n n A P A P(A A P -=++最终化为事件乘积的概率. 6.n 重贝努利试验概率的计算:1.推算题 独立性→条件概率→互不相容→包含→一般2.文字题 独立性→全、逆概公式→条件概率→古典概型第二章 随机变量及其概率分布复习要点: 一、分布函数 1.定义 2.性质3.计算概率二、离散型随机变量 1.概率分布 2.性质求概率分布:(1)先找X 的取值;(2)求X 取每个值的概率(可少求一个). 3.求概率利用概率的可加性. 4.分布函数三、连续型随机变量 1.密度 2.性质求密度中的参数. 3.求概率 4.分布函数 (1)求参数(2)与密度的关系 四、重要分布 1.0—1分布 2.二项分布 3.泊松分布 4.均匀分布6.正态分布对称性,概率的计算.五、随机变量函数的分布1.离散型Y=g(X).先找Y的取值,再利用X的分布律和可加性计算Y的分布概率.2.连续型了解分布函数法第三章多维随机变量及其概率分布复习要点:一、多维随机变量及其分布函数二、离散型随机变量1.概率分布2.性质求概率分布:(1)先找X、Y的取值,得(X,Y)的取值(交叉);(2)求(X,Y)取每个值的概率(可少求一个).3.求概率利用概率的可加性.三、连续型随机变量1.密度2.性质求密度中的参数.3.求概率四、边际分布与独立性1.离散型表上作业.2.连续型注意逆问题:由独立性及边际分布找联合分布.五、重要分布1.二维均匀分布知道何时两分量独立.2.二维正态分布知道边际分布.五、两个随机变量的函数的分布1.离散型Z=X+Y,Z=XY.先找Z的取值,再利用(X,Y)的分布律和可加性计算Z的分布概率.2.两个独立连续型随机变量之和的分布了解卷积公式独立的正态分布的线性组合仍为正态分布.第四章随机变量的数字特征复习要点:1.单个随机变量(1)离散型 (2)连续型n nn p x X E ∑=)( ⎰+∞∞-=xf(x)dx X E )(n nn p x g X g E )()]([∑= ⎰+∞∞-=dx x f x g X g E )()()]([n nnp x X E ∑=22)( ⎰+∞∞-=dx x f x X E )()(222.两个随机变量 (1)离散型ij ij i j p y x g Y X,g E ),()]([∑∑= ij ijij p yx XY E ∑∑=)(∙∑∑∑==i ii ijii jpx p x X E )(j j jij ij jp yp y E(Y ∙∑∑∑==)(2)连续型dy dx y x f y x g Y X,g E ⎰⎰+∞∞-+∞∞-=),(),()]([ dy dx y x f y x XY E ⎰⎰+∞∞-+∞∞-=),()(==⎰⎰+∞∞-+∞∞-dxdy y x xf X E ),()(⎰+∞∞-dx x xf X )( ==⎰⎰+∞∞-+∞∞-dxdy y x f y Y E ),()(⎰+∞∞-dy y f y Y )(建议:用边际分布求各分量的期望及其函数的期望. 3.性质 二、方差 1.定义2.等价公式3.性质随机变量的标准化.三、重要分布的期望、方差 四、协方差 1.定义Cov (X ,Y )=E [X -E (X )]E [Y -E (Y )]),(2)()()(Y X Cov Y D X D Y X D ++=+),(2)()()(Y X abCov Y D b X D a bY aX D 22++=+2.等价公式Cov (X ,Y )=E (XY )-E (X )E (Y )3.性质 五、相关系数 1.定义2.性质3.不相关独立⇒E (XY )=E (X )E (Y )⇔⇔+=±)()()(Y D X D Y X D Cov (X ,Y )=0⇔不相关二维正态分布的特殊性.第五章 大数定律与中心极限定理复习要点:一、切贝雪夫不等式二、大数定律 知道结论.三、中心极限定理1.独立同分布序列的中心极限定理).,(~2n1i i n n N X σμ∑=)()(21σμΦn n a a X P ni i -≈≤∑=2.棣—拉中心极限定理X ~B (n ,p ).X ~N (np ,np (1-p )).).)1(()(p np np a a X P --≈≤Φ第六章 统计量及其抽样分布复习要点:一、概念 1.总体与样本 2.统计量定义;样本均值、样本方差、样本标准差、样本矩(了解). 二、几种统计量的分布 1.2χ分布(1)构造;(2)可加性;(3)分位数. 2.t 分布(1)构造;(2)对称性;(3)分位数. 3.F 分布(1)构造;(2)倒数;(3)分位数. 三、正态总体的抽样分布 单正态总体第七章 参数估计本章重点: 一、点估计 1.矩估计一个参数θ.(1))(θμg EX ==;(2) )ˆ(ˆθμg =;(3)解出θˆ. 2.极大似然估计一个参数θ.(1));(θ∏==n1i i x p L ;(2) lnL ;(3)0d dlnL=θ;(4)解出θˆ. 3.评判标准(1)无偏性.2σμ与的无偏估计;(2)有效性;(3)相合性. 二、区间估计1.概念2.单个正态总体的置信区间第八章 假设检验复习要点: 一、概念 1.基本概念2.步骤3.两类错误二、单个正态总体的假设检验 1.已知方差,检验均值 (u ) (1)双边;(2)单边.2.未知方差,检验均值 (t ) (1)双边;(2)单边.3.未知均值,检验方差 (χ2) (1)双边;(2)单边.三、两个正态总体的假设检验 1.已知方差,检验均值 (u ) (1)双边;(2)单边.2.未知方差但相等,检验均值 (t ) (1)双边;(2)单边.3.未知均值,检验方差 (F ) (1)双边;(2)单边.四、大样本下任意总体的参数检验第九章 回归分析复习要点:回归系数和回归常数的估计公式,了解F 检验.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计》复习提要第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用) 第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P3. 几个常用随机变量名称与记号 分布列或密度数学期望 方差两点分布),1(p B p X P ==)1(,p q X P -===1)0(p pq二项式分布),(p n Bn k q p C k X P k n k k n ,2,1,0,)(===-,np npqPoisson 分布)(λP,2,1,0,!)(===-k k ek X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P kp12pq 均匀分布),(b a Ub x a a b x f ≤≤-= ,1)(,2ba + 12)(2a b - 指数分布)(λE0 ,)(≥=-x e x f x λλλ1 21λ正态分布),(2σμN222)(21)(σμσπ--=x ex fμ2σ4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=x dt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

第三章 随机向量1. 二维离散随机向量,联合分布列ij j i p y Y x X P ===),(,边缘分布列⋅==i i p x X P )(,j j p y Y P ⋅==)(有(1)0≥ij p ;(2)∑=ijijp1;(3)∑=⋅jij i p p ,∑=⋅iij j p p 2. 二维连续随机向量,联合密度),(y x f ,边缘密度)( ),(y f x f Y X ,有 (1)0),(≥y x f ;(2)⎰⎰+∞∞-+∞∞-=1),(y x f ;(3)⎰⎰=∈Gdxdy y x f G Y X P ),()),((;(4)⎰+∞∞-=dy y x f x f X ),()(,⎰+∞∞-=dx y x f y f Y ),()(3. 二维均匀分布⎪⎩⎪⎨⎧∈=其它 0, ),( ,)(1),(G y x G m y x f ,其中)(G m 为G 的面积4. 二维正态分布),,,,(~) ,(222121ρσσμμN Y X ,其密度函数(牢记五个参数的含义)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-+-------=2222212121212221)())((2)()1(21ex p 121),(σμσσμμρσμρρσπσy y x x y x f 且),(~ ),,(~222211σμσμN Y N X ;5. 二维随机向量的分布函数 ),(),(y Y x X P y x F ≤≤=有 (1)关于y x ,单调非降;(2)关于y x ,右连续; (3)0),(),(),(=-∞-∞=-∞=-∞F y F x F ;(4)1),(=+∞+∞F ,)(),(x F x F X =+∞,)(),(y F y F Y =+∞;(5)),(),(),(),() ,(111221222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤<;(6)对二维连续随机向量,yx y x F y x f ∂∂∂=),(),(26.随机变量的独立性 Y X ,独立)()(),(y F x F y x F Y X =⇔ (1) 离散时 Y X ,独立j i ij p p p ⋅⋅=⇔(2) 连续时 Y X ,独立)()(),(y f x f y x f Y X =⇔(3) 二维正态分布Y X ,独立0=⇔ρ,且),(~222121σσμμ+++N Y X 7.随机变量的函数分布(1) 和的分布 Y X Z +=的密度⎰⎰+∞∞-+∞∞--=-=dx x z x f dy y y z f z f Z ),(),()((2) 最大最小分布第四章 随机变量的数字特征 1.期望(1) 离散时 ∑=iii px X E )(,∑=iiipx g X g E )())(( ;(2) 连续时⎰+∞∞-=dx x xf X E )()(,⎰+∞∞-=dx x f x g X g E )()())((;(3) 二维时∑=ji ij j i p y x g Y X g E ,),()),((,dy dx y x f y x g Y X g E ⎰⎰+∞∞-+∞∞-=),(),()),(((4)C C E =)(;(5))()(X CE CX E =; (6))()()(Y E X E Y X E +=+; (7)Y X ,独立时,)()()(Y E X E XY E = 2.方差(1)方差222)()())(()(EX X E X E X E X D -=-=,标准差)()(X D X =σ;(2))()( ,0)(X D C X D C D =+=; (3))()(2X D C CX D =;(4)Y X ,独立时,)()()(Y D X D Y X D +=+ 3.协方差(1))()()())]())(([(),(Y E X E XY E Y E Y X E X E Y X Cov -=--=; (2)),(),( ),,(),(Y X abCov bY aX Cov X Y Cov Y X Cov ==; (3)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+;(4)0),(=Y X Cov 时,称Y X ,不相关,独立⇒不相关,反之不成立,但正态时等价; (5)),(2)()()(Y X Cov Y D X D Y X D ++=+ 4.相关系数 )()(),(Y X Y X Cov XY σσρ=;有1||≤XY ρ,1)( ,,1||=+=∃⇔=b aX Y P b a XY ρ5.k 阶原点矩)(k k X E =ν,k 阶中心矩kk X E X E ))((-=μ。

相关文档
最新文档