2009年全国大学生数学建模竞赛D题

合集下载

2009全国大学生数学建模竞赛 题目汇总

2009全国大学生数学建模竞赛 题目汇总

青光眼 白内障 外伤 白内障(双眼) 视网膜疾病 白内障(双眼) 视网膜疾病 视网膜疾病 白内障 视网膜疾病 视网膜疾病 白内障(双眼) 白内障(双眼) 外伤 青光眼 白内障(双眼) 白内障(双眼) 白内障(双眼) 白内障(双眼) 视网膜疾病 白内障(双眼) 外伤 白内障(双眼) 白内障 青光眼 视网膜疾病 外伤 白内障 白内障(双眼) 白内障(双眼) 视网膜疾病 视网膜疾病 白内障 白内障(双眼) 视网膜疾病 视网膜疾病 青光眼 白内障 外伤 白内障 青光眼 视网膜疾病 白内障 白内障(双眼)
【附录】 2008-07-13 到 2008-09-11 的病人信息
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 类型 外伤 视网膜疾病 白内障 视网膜疾病 青光眼 视网膜疾病 白内障(双眼) 视网膜疾病 白内障(双眼) 白内障 视网膜疾病 白内障(双眼) 白内障(双眼) 青光眼 视网膜疾病 视网膜疾病 视网膜疾病 白内障 青光眼 白内障(双眼) 视网膜疾病 青光眼 白内障 白内障 白内障(双眼) 视网膜疾病 门诊时间 2008-7-13 2008-7-13 2008-7-13 2008-7-13 2008-7-13 2008-7-13 2008-7-13 2008-7-14 2008-7-14 2008-7-14 2008-7-14 2008-7-14 2008-7-14 2008-7-14 2008-7-14 2008-7-14 2008-7-15 2008-7-15 2008-7-15 2008-7-15 2008-7-15 2008-7-15 2008-7-15 2008-7-15 2008-7-15 2008-7-15 入院时间 2008-7-14 2008-7-25 2008-7-25 2008-7-25 2008-7-25 2008-7-26 2008-7-26 2008-7-26 2008-7-26 2008-7-26 2008-7-26 2008-7-26 2008-7-26 2008-7-27 2008-7-27 2008-7-27 2008-7-27 2008-7-27 2008-7-27 2008-7-27 2008-7-27 2008-7-27 2008-7-27 2008-7-27 2008-7-28 2008-7-28 第一次手术 时间 2008-7-15 2008-7-27 2008-7-28 2008-7-27 2008-7-27 2008-7-29 2008-7-28 2008-7-29 2008-7-28 2008-7-28 2008-7-29 2008-7-28 2008-7-28 2008-7-29 2008-7-29 2008-7-29 2008-7-29 2008-7-28 2008-7-29 2008-7-28 2008-7-29 2008-7-29 2008-7-28 2008-7-28 2008-8-4 2008-7-31 第二次手术 时间 / / / / / / 2008-7-30 / 2008-7-30 / / 2008-7-30 2008-7-30 / / / / / / 2008-7-30 / / / / 2008-8-6 / 出院时间 2008-7-19 2008-8-8 2008-7-31 2008-8-4 2008-8-5 2008-8-11 2008-8-2 2008-8-6 2008-8-1 2008-7-30 2008-8-8 2008-8-2 2008-8-2 2008-8-4 2008-8-9 2008-8-6 2008-8-12 2008-7-30 2008-8-5 2008-8-2 2008-8-9 2008-8-6 2008-7-30 2008-7-30 2008-8-9 2008-8-10

数学建模案例分析-2009年D题“会议筹备”

数学建模案例分析-2009年D题“会议筹备”

为了保持问题的原汁原味, 2009年全国大学生数学建 模竞赛D题中附表1和附图所列的10家宾馆的基本数据和 相对位置是真实的, 只是在各种客房和会议室的数量上 略作改动. 附表2中的数据来自本届会议的代表回执中有 关住房要求的信息. 附表3中所列的关于前几届会议的代 表回执和与会情况也基本上参考了历史数据.
NORTH UNIVERSITY OF CHINA
大 学 数 学 建 模 竞 赛 系 列 讲 座
案例分析—2009D“会议筹备”
主讲:薛震
2012年4月13日星期五
案例分析—2009D“会议筹备”
主讲:薛震
2012年4月13日星期五
确定需要预订客房的总量时,应该考虑使会议筹备组 在订房上的损失尽量小, 损失包括两部分: 预订客房数超 过实际用量时筹备组需要支付的一天空房费; 预订客房 数不够实际用量时引起代表不满的“费用”, 后者要用适当 的数学表达式加以量化.确定了预订客房的总量, 根据附 表2数据中本届会议的代表所需要三种类型的客房的比 例,可以得到需要预定各类客房的数量.
大 学 数 学 建 模 竞 赛 系 列 讲 座
NORTH UNIVERSITY OF CHINA
大 学 数 学 建 模 竞 赛 系 列 讲 座
案例分析—2009D“会议筹备”
主讲:薛震
2012年4月13日星期五
案例分析—2009D“会议筹备”
主讲:薛震
2012年4月13日星期五
问题3主要应考虑租用会议室和客车的总费用尽量小、 会议室所在的宾馆总数尽量少、距离上尽量靠近等.租车 接送代表要考虑多少代表参加哪个分组会议,由于题目中 没有这方面的信息,可以按照平均的、随机的方式处理. 当建立优化模型时,通常用租借会议室和客车的总费用 最少为目标,以满足对会议室数量和大小的需求, 及租车 接送代表的需要等为约束条件,由最优解确定租用哪些会 议室、三种车各租多少辆.

2009高教社杯全国大学生数学建模竞赛A-B-C-D题评阅要点

2009高教社杯全国大学生数学建模竞赛A-B-C-D题评阅要点

2009高教社杯全国大学生数学建模竞赛A 题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

因为本题涉及到一些重要概念, 所以请各赛区评阅专家在阅卷前务必用比较多的时间来研读本评阅要点. 千万不要简单地以数值结果来评分.评阅时请注意具体情况具体对待, 特别要注意在处理误差分析时有没有闪光点。

这是一个物理模拟问题,模拟的原则是试验台上制动器的制动过程与所设计的路试时车上制动器的制动过程理论上应该一致,所以制动过程中试验台主轴的瞬时转速与车轮的瞬时转速理论上随时一致,制动扭矩也理论上随时一致,另外理论上制动时间也相同。

1. 设前轮的半径为R ,制动时承受的载荷为G ,等效的转动惯量为J ,线速度为v ,角速度为ω,重力加速度为g 。

应该利用能量法得到 222121ωJ v g G =,v = Rω. 从而 J = GR 2/g 。

利用数据计算得到J = 52 kg ·m 2。

(计算结果如不正确适当扣分,但不影响后面的分数。

)2. 记飞轮的外半径为R 1,内半径为R 0,厚度为h ,密度为ρ,则飞轮的惯量为)(24041R R hJ -=πρ,利用数据计算得到三个飞轮的惯量分别为30 kg ·m 2、60 kg ·m 2、120 kg ·m 2,它们和基础惯量一起组成的机械惯量可以有8种情况:10, 40, 70, 100, 130, 160, 190, 220 kg ·m 2。

对于问题1中得到的等效的转动惯量,用电动机补偿能量对应的惯量(简称电机惯量)有两种方案:12 kg ·m 2 或 –18 kg ·m 2。

(写出一个即可,绝对值较小的模拟效果较好。

)3. 导出数学模型的一种方法为: 记需要模拟的单轮的等效的转动惯量为J , 主轴转速为()t ω,机械惯量1J , 则J 关于主轴的制动扭矩()M t 为,dtd Jt M ω=)( (1) J 1关于主轴的扭矩为 1d J dtω (2) 从而电流产生的扭矩()e M t 应为 1()()e d M t J J dtω=- (3) 由于电机的驱动电流0()()e I t k M t =,所以 01()()d I t k J J dt ω=- (4) 控制时可由k ω的测量值差分后得到1k I +.或者由(3)除以(1),得到 1()()e M t J J M t J-=,则有 10()()J J I t k M t J-= (5) 控制时由k M 的测量值得到1k I +. (4)和(5)就是驱动电流依赖于两个可观测量的数学模型。

全国大学生数学建模竞赛2009年D题_讲解

全国大学生数学建模竞赛2009年D题_讲解

问题分析和解决方法从题目要求出发,主要需要解决三个问题:1)预测本届会议与会代表的数量, 并确定需要预订各类客房的数量;2)确定在哪些宾馆预订客房及预订各类客房的数量;3)确定在哪些宾馆预订哪些类型的会议室以及租车的规格和数量。

问题1是求解问题2,3的前提,首先应该根据附表2,3的数据对本届会议与会代表的数量进行预测。

确定预订客房总量时,应使会议筹备组在订房上的损失尽量小,损失包括:预订客房数超过实际用量时需要支付的一天空房费;预订客房数不够时引起代表不满的“费用”,后者要用适当的数学表达式加以量化。

根据附表2数据中本届会议的代表所需要6种类型的客房的比例,可由预订客房的总量得到预定各类客房的数量。

问题2主要应考虑筹备组管理的方便及代表的满意,如满足代表在合住或独住及价位方面的需求、预订的宾馆总数尽量少、距离上尽量靠近等。

若建立优化模型,可以用宾馆总数最少为目标函数,以满足代表在合住或独住及价位方面的需求,及各宾馆拥有客房数量等为约束条件,以在哪几家宾馆订房及各类客房订多少间为决策变量。

以宾馆总数最少为目标的优化模型其最优解一般不唯一,可以再考虑宾馆间的距离、客房价格等因素,从几个解中选出相对较好的一个。

问题3主要应考虑租用会议室和客车的总费用尽量小、会议室所在的宾馆总数尽量少、距离上尽量靠近等。

租车要考虑多少代表参加哪个分组会议, 题目中没有这方面的信息, 可以按照平均的、随机的方式处理。

当建立优化模型时, 可用租借会议室和客车的总费用最少为目标函数, 以满足对会议室数量、大小及租车的需要为约束条件, 以租用会议室和车辆的规格、数量为决策变量。

将问题2, 3统一建立模型并求解有一定困难, 可在问题2几个解的基础上解问题3,通过比较得出最后结果。

一种参考解法1. 预测本届会议的与会代表数量确定需要预订各类客房的数量设有n届同类型会议的历史数据可利用(n较小, 本题n=4)第i届发来回执的代表数量ai第i届发来回执但未与会的代表数量bi第i届未发回执而与会的代表数量ci第i届与会代表数量di= ai- bi+ ci•比例法预测第i届与会代表占发来回执数量的比例ei= di/ai emean,emax本届发来回执数量A预测本届会议与会代表数量Nmean=Aemean=661Nmax=Aemax=6781. 预测本届会议的与会代表数量确定需要预订各类客房的数量• 建立di 对ai的回归模型用线性模型预测本届会议与会代表数量N =638确定预订客房的总量考虑两种可能的损失:空房费;代表不满的量化“费用”• 适当提高预测的与会代表数量•对未发回执而与会的代表另作安排 • 参考“航空公司的预订票策略”模型(姜启源等:《数学模型(第三版)第284页》1. 预测本届会议的与会代表数量确定需要预订各类客房的数量本届会议要求合住、独住各s (=3)种价位(类型)代表数量及所占比例 (合住考虑性别) 预订客房的总量预订各类客房的数量需要预订合住第j 种类型客房数量T 1j需要预订独住第j 种类型客房数量T 2j第i 家宾馆第j 种类型双人房(合住或独住)能提供的间数C 1ij第i 家宾馆第j 种类型单人房(独住)能提供的间数C 2ij2. 确定在哪些宾馆预订客房及预订各类客房的数量以宾馆总数最少为目标,以满足代表在合住、独住及价位方面的需求,及各宾馆拥有客房数量等为约束条件,建立优化模型.决策变量设共有r 家宾馆双人、单人房各s 种类型预订第i 家宾馆第j 种类型双人房(合住)间数 x 1ij预订第i 家宾馆第j 种类型单人房(独住)间数 x 2ij预订第i 家宾馆第j 种类型双人房(改独住)间数 yij第i 家宾馆的选择变量 ki (ki =0,1)目标函数约束条件满足需求250300350400450500550600650∑==r i i k z 1min s j T x k j r i ij i ,,2,1,111 =≥∑=s j T y x k j ij r i ij i ,,2,1,)(212 =≥+∑=满足供给求解整数规划模型(LINGO )最优解一般不唯一,可得到多个解可考虑距离因素、价格因素等确定最终方案或者在这些解的基础上进入下一步,根据租借会议室和租车情况确定最终方案.3. 确定在哪些宾馆预订哪些类型的会议室 以及租车的规格和数量预订会议室的原则:• 每个会议室的容量至少为与会总人数的1/6• 会议室位于预订客房的宾馆内租车的原则:•与会总人数1/6的代表不需接送 • 宾馆距离在一定范围内的代表不需接送• 一辆车每次会议最多接送2趟以会议室和客车的租费最小为目标建立优化模型求解对学生论文的评述基本情况• 绝大多数同学都能根据对问题的理解和掌握的数学知识,给出解决问题的方法,并得到所要求的结果。

2009高教社杯全国大学生数学建模竞赛

2009高教社杯全国大学生数学建模竞赛

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):海南大学参赛队员(打印并签名) :1. 谢慧芳2. 石梦云3. 王玲指导教师或指导教师组负责人(打印并签名):日期: 2009 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):某医院眼科病床的合理安排研究与建模[摘要]本文针对该医院等待住院病人队列越来越长,没有合理的安排病床问题建立模型,为该医院解决病床合理安排问题。

通过排队论,可系统地研究排队系统的各种参数并进行最优设计和最优运营。

本文运用运筹学中的排队论理论,通过对眼科数据的研究,科学、量化、准确地描述排队系统的概率规律性,同时对床位安排进行最优设计和最优运营,从而增加预见性,减少盲目性,最大限度的满足病人及家属的需要。

第一问,针对医院的情况,考虑到单一的指标不能很好的评价该医院的病床使用情况,只能反映某一指标的完成情况,由于病人的病种和危重程度不同,为了更加全面、准确和客观的评价,我们特别引进“CD型率”[1],考虑各指标之间的相互影响,要综合评价我们确定评价该医院的指标为高优指标:病床使用率、病床周转次数、平均病床工作日和CD率,低优指标出院者平均住院日。

2005-2009全国大学生数学数学建模竞赛参考答案

2005-2009全国大学生数学数学建模竞赛参考答案

2003-2009全国大学生数学建模竞赛试题及参考答案2010-7-192005A题: 长江水质的评价和预测 (2)2005 A题评阅要点 (4)2005B题: DVD在线租赁 (6)2005 B题评阅要点 (8)2006A题:出版社的资源配置 (10)2006A题评阅要点 (10)2006B题: 艾滋病疗法的评价及疗效的预测 (13)2006 B题评阅要点 (14)2007A题:中国人口增长预测 (17)2007 A题评阅要点 (18)2007 B题:乘公交,看奥运 (21)2007 B题评阅要点 (22)2008A题数码相机定位 (24)2008 A题评阅要点 (27)2008B题高等教育学费标准探讨 (27)2008B题评阅要点 (29)2009 A题制动器试验台的控制方法分析 (30)2009 A题评阅要点 (32)2009B题眼科病床的合理安排 (35)2009 B题评阅要点 (36)2005A题: 长江水质的评价和预测水是人类赖以生存的资源,保护水资源就是保护我们自己,对于我国大江大河水资源的保护和治理应是重中之重。

专家们呼吁:“以人为本,建设文明和谐社会,改善人与自然的环境,减少污染。

”长江是我国第一、世界第三大河流,长江水质的污染程度日趋严重,已引起了相关政府部门和专家们的高度重视。

2004年10月,由全国政协与中国发展研究院联合组成“保护长江万里行”考察团,从长江上游宜宾到下游上海,对沿线21个重点城市做了实地考察,揭示了一幅长江污染的真实画面,其污染程度让人触目惊心。

为此,专家们提出“若不及时拯救,长江生态10年内将濒临崩溃”(附件1),并发出了“拿什么拯救癌变长江”的呼唤(附件2)。

附件3给出了长江沿线17个观测站(地区)近两年多主要水质指标的检测数据,以及干流上7个观测站近一年多的基本数据(站点距离、水流量和水流速)。

通常认为一个观测站(地区)的水质污染主要来自于本地区的排污和上游的污水。

全国大学生数学建模竞赛D题解析

,
汇报人:
CONTENTS
PRT ONE
PRT TWO
竞赛名称:全国大学生数学建模竞 赛
竞赛目的:培养大学生数学建模能 力提高解决实际问题的能力
添加标题
添加标题
竞赛级别:国家级
添加标题
添加标题
竞赛影响:促进大学生数学建模技 术的发展选拔优秀人才
竞赛起始于XXXX年 每年举办一次 参赛对象为全国大学生 竞赛目的是提高大学生数学建模能力和科技创新能力
组建合适的团队分工明确
制定详细的计划合理安排时间
充分准备所需的知识和技能
准备阶段:研究 题目收集资料建 立模型
实施阶段:编程 实现模拟实验优 化模型
总结阶段:撰写 论文整理思路提 炼经验
反思阶段:总结 得失分析原因改 进策略
赛题分析:对竞赛题目进行深入剖析明确解题思路和要点 经验教训:总结竞赛过程中遇到的问题和不足提出改进措施 团队协作:评估团队成员在竞赛中的表现和贡献提出优化建议 未来规划:根据竞赛经验和教训制定个人和团队未来的学习和发展计划
模型验证:通过对比实际数据和模型预测结果对模型的准确性和可靠性进行评估和改进
数据清洗:去除异常值、缺失值和重复值 数据筛选:根据需求筛选有效数据 数据转换:对数据进行必要的转换以适应分析需求 数据可视化:通过图表、图像等形式直观展示数据
确定问题类型和目 标函数
确定算法的输入和 输出
设计算法的流程图 和伪代码
培养团队协作精神 提升大学生数学应用能力
促进学科交叉融合
为国家和社会培养创新型人 才
PRT THREE
题目背景:全国大学生数学建模竞赛D题 题目要求:分析D题所涉及的数学建模方法和技巧 题目内容:对D题进行解析包括问题分析、模型建立、求解过程等 题目难度:对D题的难度进行评估并给出解题建议

全国大学生数学建模竞赛赛题综合评析

B题:高等教育学费标准探讨
社会热点
叶其孝、周义仓
开放性强、社会关注性强,突出数据来源的可靠性、结论解释的合理性
数据收集与处理、问题的分析与假设,初等数学方法、一般统计方法、多目标规划、回归分析、综合评价方法、灰色预测
2009年
A题:制动器试验台的控制方法分析
工业问题
方沛辰、刘笑羽
问题具体、专业性强,要花时间读懂、理解清楚问题
出版社的资源配置
孟大志
艾滋病疗法的评价及疗效的预测
边馥萍
易拉罐形状和尺寸的最优设计(C题)
叶其孝
煤矿瓦斯和煤尘的监测与控制(D题)
韩中庚
2007年
中国人口增长预测
唐云
乘公交,看奥运
方沛辰、吴孟达
手机“套餐”优惠几何(C题)
韩中庚
体能测试时间安排(D题)
刘雨林
2008年
数码相机定位
谭永基
高等教育学费标准探讨
叶其孝、周义仓
地面搜索(C题)
肖华勇
NBA赛程的分析与评价(D题)
姜启源
2009年
制动器试验台的控制方法分析
方沛辰、刘笑羽
眼科病床的合理安排
吴孟达、毛紫阳
卫星和飞船的跟踪测控(C题)
周义仓
会议筹备(D题)
王宏健
2010年
储油罐的变位识别与罐容表标定
韩中庚
2010年上海世博会影响力的定量评估
杨力平
输油管的布置(C题)
1
6
8
付鹂
重庆大学
1
6
9
姜启源
清华大学
4
3
10
陈叔平
浙江大学、贵州大学
2
5
11

2009年全国大学生数学竞赛数学专业类试卷及答案

根据
fg k (η ) = gfg k −1 (η ) + fg k −1 (η )
.............................(6分)
= g ( fg k −1 )(η ) + fg k −1 (η )
用归纳法不难证明, fg k (η ) 一定可以表示成 η , g (η ), g 2 (η )," , g k (η ) 的线性组合,且 表示式中 g k (η ) 前的系数为 λ0 .
……………………………(4 分)
下面证明, Wm 在 f 下也是不变的.事实上,由 f (η ) = λ0η ,知
fg (η ) = gf (η ) + f (η ) = λ0 g (η ) + λ0η …………(5 分)
第 3 页( 共 6 页)
fg 2 (η ) = gfg (η ) + fg (η ) = g (λ0 g (η ) + λ0η ) + (λ0 g (η ) + λ0η ) = λ0 g 2 (η ) + 2λ0 g (η ) + λ0η
a12 " a1n ⎞ ⎟ a22 " a2 n ⎟ ,若 AF = FA ,证明: " " "⎟ ⎟ an 2 " ann ⎟ ⎠
评阅人
− an ⎞ ⎟ 0 # 0 −an −1 ⎟ 1 # 0 − an − 2 ⎟ . ⎟ # # # # ⎟ 0 # 1 −a1 ⎟ ⎠ 0 # 0
⎛ a11 ⎜ a (1)假设 A = ⎜ 21 ⎜" ⎜ ⎜a ⎝ n1
(2) 不一定. 令 f n ( x) = x 2 +
…………………………… (6 分)

2009年数学建模竞赛赛题

2009年数学建模竞赛赛题
2009年全国大学生数学建模竞赛赛题有A题和B题。

A题是设计一个交通环路。

题目描述了许多城市和社区存在的交通圈,需要用一个模型来确定如何最好地控制交通,绕流,并走出了一条循环。

需要考虑影响这种选择的因素,包括一个不超过两个双页纸的技术总结,并说明交通工程师如何使用模型来帮助选择适当的流量控制任何特定交通圈的方法。

B题是能源与手机。

这个问题涉及到手机革命的“能源”后果。

每部手机配备了一个电池和一个充电器。

以上信息仅供参考,建议查阅全国大学生数学建模竞赛官网了解更多赛题内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
D题会议筹备
某市的一家会议服务公司负责承办某专业领域的一届全国性会议,会议筹备组要为与会代表预订宾馆客房,租借会议室,并租用客车接送代表。

由于预计会议规模庞大,而适于接待这次会议的几家宾馆的客房和会议室数量均有限,所以只能让与会代表分散到若干家宾馆住宿。

为了便于管理,除了尽量满足代表在价位等方面的需求之外,所选择的宾馆数量应该尽可能少,并且距离上比较靠近。

1
筹备组经过实地考察,筛选出10家宾馆作为备选,它们的名称用代号①至⑩表示,相对位置见附图,有关客房及会议室的规格、间数、价格等数据见附表1。

根据这届会议代表回执整理出来的有关住房的信息见附表2。

从以往几届会议情况看,有一些发来回执的代表不来开会,同时也有一些与会的代表事先不提交回执,相关数据见附表3。

附表2,3都可以作为预订宾馆客房的参考。

需要说明的是,虽然客房房费由与会代表自付,但是如果预订客房的数量大于实际用房数量,筹备组需要支付一天的空房费,而若出现预订客房数量不足,则将造成非常被动的局面,引起代表的不满。

会议期间有一天的上下午各安排6个分组会议,筹备组需要在代表下榻的某几个宾馆租借会议室。

由于事先无法知道哪些代表准备参加哪个分组会,筹备组还要向汽车租赁公司租用客车接送代表。

现有45座、36座和33座三种类型的客车,租金分别是半天800元、700元和600元。

请你们通过数学建模方法,从经济、方便、代表满意等方面,为会议筹备组制定一个预订宾馆客房、租借会议室、租用客车的合理方案。

附表1 10家备选宾馆的有关数据
说明:表头第一行中的数字1、2、3分别指每天每间120~160元、161~200元、201~300元三种不同价格的房间。

合住是指要求两人合住一间。

独住是指可安排单人间,或一人单独住一个双人间。

附图(其中500等数字是两宾馆间距,单位为米)。

相关文档
最新文档