相似三角形判定专项练习题

合集下载

相似三角形判定练习题

相似三角形判定练习题

相似三角形判定练习题### 相似三角形判定练习题一、选择题1. 下列各组三角形中,一定相似的是()A. 等腰三角形与直角三角形B. 等边三角形与等腰三角形C. 等腰直角三角形与直角三角形D. 等腰三角形与等边三角形2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 一定相似C. 不一定相似D. 以上都不对3. 三角形ABC与三角形DEF相似,若AB:DE=2:3,那么AC:DF的比值为()A. 2:3B. 3:2C. 1:1D. 无法确定二、填空题4. 若三角形ABC与三角形DEF相似,且∠A=∠D,∠B=∠E,则∠C=______。

5. 三角形ABC与三角形DEF相似,若AB=6cm,DE=9cm,则BC:EF的比值为______。

6. 如果三角形ABC与三角形DEF相似,且AB=4cm,AC=6cm,DE=6cm,那么DF的长度为______。

三、判断题7. 如果两个三角形的对应边成比例,则这两个三角形一定相似。

()8. 三角形ABC与三角形DEF相似,如果∠A=∠D,∠B=∠E,那么∠C=∠F。

()9. 三角形ABC的周长是三角形DEF的2倍,那么三角形ABC与三角形DEF相似。

()四、简答题10. 已知三角形ABC与三角形DEF相似,且AB:DE=3:4,BC:EF=2:3,求AC:DF的比值。

11. 根据相似三角形的性质,如果一个三角形的三个内角的度数分别是40°,50°,90°,那么与它相似的另一个三角形的三个内角的度数分别是多少?12. 如果三角形ABC的面积是三角形DEF的9倍,且AB=6cm,DE=4cm,求三角形ABC的面积与三角形DEF的面积的具体数值。

五、解答题13. 在三角形ABC中,已知∠A=70°,∠B=40°,求∠C的度数,并判断三角形ABC是否为直角三角形。

14. 已知三角形ABC与三角形DEF相似,且AB=5cm,BC=7cm,DE=10cm,求三角形ABC的周长。

相似三角形试题及答案

相似三角形试题及答案

相似三角形试题及答案
一、选择题
1. 已知两个三角形相似,下列说法正确的是()
A. 对应角相等
B. 对应边成比例
C. 对应角相等且对应边成比例
D. 面积相等
答案:C
2. 若两个三角形的相似比为2:3,则下列说法正确的是()
A. 周长比为2:3
B. 周长比为3:2
C. 面积比为4:9
D. 面积比为9:16
答案:C
二、填空题
1. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,则BC:EF=______。

答案:2:3
2. 若三角形ABC与三角形DEF相似,且相似比为1:2,则三角形ABC
的面积是三角形DEF面积的______。

答案:1/4
三、解答题
1. 已知三角形ABC与三角形DEF相似,AB=6cm,DE=9cm,求BC和EF 的长度。

答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边成比例。

因此,BC:EF=AB:DE=6:9=2:3。

设BC=2x,则EF=3x。

由于AB:DE=2:3,所以2x/3x=6/9,解得x=3cm。

因此,BC=6cm,
EF=9cm。

2. 已知三角形ABC与三角形DEF相似,且三角形ABC的面积为24平方厘米,三角形DEF的面积为36平方厘米,求相似比。

答案:设相似比为k,则三角形ABC与三角形DEF的面积比为k^2。

因此,k^2=24/36=2/3,解得k=√(2/3)。

所以相似比为√(2/3)。

(1503)相似三角形性质专项练习30题(有答案)

(1503)相似三角形性质专项练习30题(有答案)

相似三角形性质专项练习30题(有答案)1.如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,求EF的长.2.如图,AD=2,AC=4,BC=6,∠B=36°,∠D=107°,△ABC∽△DAC(1)求AB的长;(2)求CD的长;(3)求∠BAD的大小.3.如图,△ABC与△A′B′C′相似,AD,BE是△ABC的高,A′D′,B′E′是△A′B′C′的高,求证:=.4.如图所示,已知∠ACB=∠CBD=90°,AC=b,CB=a,BD=k,若△ACB∽△CBD,写出a、b、k之间满足的关系式.5.如图,AD、BE是△ABC的两条高,A′D′、B′E′是△A′B′C′的两条高,△ABD∽△A′B′D′,∠C=∠C′,求证:=.6.已知,如图,△AOB∽△DOC,BD⊥AC,∠AOB是直角.求证:AD2+BC2=AB2+CD2.7.已知如图△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°,△ABD∽△DCE.当△ADE是等腰三角形时,求AE的长.8.如图,△ABC与△ADB相似,AD=4,CD=6,求这两个三角形的相似比.9.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,求BF的长度.10.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q 从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?11.如图,在平行四边形ABCD中,E为DC上的一点,AE交BD于O,△AOB∽△EOD,若DE=AB,AB=9,AO=6,求DE和AE的长.12.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB.(1)求∠APB的大小.(2)说明线段AC、CD、BD之间的数量关系.13.如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE△∽△DEF,AB=6,AE=8,DE=2,求EF的长.14.如图,△ABC∽△DAB,AB=8,BC=12,求AD的长.15.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CPQ与△CBA相似,所需要的时间是多少秒?16.如图,△ABC∽△FED,若∠A=50°,∠C=30°,求∠E的度数.17.如图,已知△ABC∽△AED,且∠B=∠AED,点D、E分别是边AB、AC上的点,如果AD=3,AE=6,CE=3.根据以上条件你能求出边AB的长吗?请说明理由.18.如图,在△ABC中,AB=8cm,AC=16cm,点P从点B开始沿BA边向点A以每秒2cm的速度移动,点Q从点A开始沿AC边向点C以每秒4cm的速度移动.如果P、Q分别从B、A同时出发,经过几秒钟△APQ与△ABC相似?试说明理由.19.如图,在平行四边形ABCD中,AB=4,AD=6,∠ABC=60°;点P是射线AD上的一个动点(与点A不重合),BP与AC相交于点E,设AP=x.(1)求AC的长;(2)如果△ABP和△BCE相似,请求出x的值;(3)当△ABE是等腰三角形时,求x的值.20.已知两个相似三角形的一对对应边长分别是35cm和14cm(1)已知他们的周长相差60cm,求这两个三角形的周长.(2)已知它们的面积相差588cm2,求这两个三角形的面积.21.如图,已知△ACE∽△BDE,∠A=117°,∠C=37°,AC=6,BD=3,AB=12,CD=18,(1)求∠B和∠D的度数;(2)求AE和DE的长.22.一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三角架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.23.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4、5、6,另一个三角形框架的一边长为2,它的另外两边长分别可以为多少?24.如图,已知等边△ABC的边长为8,点D、P、E分别在边AB、BC、AC上,BD=3,E为AC中点,当△BPD与△PCE相似时,求BP的值.25.如图,△ABC∽△A′B′C′,相似比为k,AD、A′D′分别是边BC、B′C′上的中线,求证:.26.已知△ABC∽△DEF,△ABC和△DEF的周长分别为20cm和25cm,且BC=5cm,DF=4cm,求EF 和AC的长.27.如图,在△ABC中,AB=6cm,AC=12cm,动点M从点A出发,以1cm∕秒的速度向点B运动,动点N从点C出发,以2cm∕秒的速度向点A运动,若两点同时运动,是否存在某一时刻t,使得以点A、M、N为顶点的三角形与△ABC相似,若存在,求出t的值;若不存在,请说明理由.28.Rt△ABC中,∠A=90°,AB=8cm,AC=6cm,P、Q分别为AC,AB上的两动点,P从点C开始以1cm/s的速度向点A运动,Q从点A开始以2cm/s的速度向点B运动,当一点到达终点时,P、Q两点就同时停止运动.设运动时间为ts.(1)用t的代数式分别表示AQ和AP的长;(2)设△APQ的面积为S,①求△APQ的面积S与t的关系式;②当t=2s时,△APQ的面积S是多少?(3)当t为多少秒时,以点A、P、Q为顶点的三角形与△ABC相似?29.如图所示,∠C=90°,BC=8cm,AC:AB=3:5,点P从点B出发,沿BC向点C以2cm/s的速度移动,点Q从点C出发沿CA向点A以1cm/s的速度移动,如果P、Q分别从B、C同时出发,过多少秒时,以C、P、Q为顶点的三角形恰与△ABC相似?30.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.相似三角形专项练习30题参考答案:1.解:∵四边形ABCD是矩形,∴∠BAE=90°,∵AB=6,AE=9,∴BE===,∵△ABE∽△DEF,∴=,即=,解得EF=.2.解:(1)∵△ABC∽△DAC,∴,∴,解得:AB=3;(2)∵△ABC∽△DAC,∴,∴,解得:CD=;(3)∵△ABC∽△DAC,∴∠BAC=∠D=107°,∠CAD=∠B=36°,∵∠B=36°,∴∠BAD=∠BAC+∠CAD=107°+36°=143°3.证明:∵△ABC与∽A′B′C′,∴∠ABD=∠A′B′D′,∵AD和A′D′是高,∴∠ADB=∠A′D′B′,∴△ABD∽△A′B′D,∴=,同理可得=,∴=.4.解:∵△ACB∽△CBD,∴=,∵AC=b,CB=a,BD=k,∴=,即a2=bk.5.证明:∵△ABD∽△A′B′D′,∴∠ABC=∠A′B′C′,∠BAC=∠B′A′C′,∵AD是△ABC的高,A′D′是△A′B′C′的,∴∠ADB=∠A′D′B′=90°,∴△ABD∽△A′B′D′,∴=,同理可求△ABE∽△A′B′E′,∴=,∴=.6.解:∵BD⊥AC,∴∠AED=∠AEB=∠BEC=∠DEC=90°,∴在Rt△AED中,AD2=AE2+DE2,在Rt△AEB中,AB2=AE2+BE2,在Rt△BEC中,BC2=BE2+CE2,在Rt△CED中,CD2=CE2+DE2,∴AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2.7.解:分三种情况:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意;②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=1,BC=,AE=AC﹣EC=1﹣BD=1﹣(﹣1)=2﹣;③若AE=DE,此时∠DAE=∠ADE=45°,如图所示,易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:AE=CE=AC=.综上所述,当△ADE是等腰三角形时,AE的长为2﹣或.8.解:∵△ABC与△ADB相似,∴△ABC∽△ADB,∴=,∴AB2=AC•AD=10×4=40,∴△ABC与△ADB的相似比为==.9.解:设BF=x,则CF=4﹣x,由翻折的性质得B′F=BF=x,当△B′FC∽△ABC,∴=,即=,解得x=, 即BF=.当△FB ′C ∽△ABC , ∴AB FB /'=ACFC 即,解得:x=2.∴BF 的长度为:2或.10.解:设运动了ts ,根据题意得:AP=2tcm ,CQ=3tcm ,则AQ=AC ﹣CQ=16﹣3t (cm ),当△APQ ∽△ABC 时,, 即, 解得:t=;当△APQ ∽△ACB 时,, 即,解得:t=4; 故当以A 、P 、Q 为顶点的三角形与△ABC 相似时,运动时间是:s 或4s11.解:∵△AOB ∽△EOD , ∴DE :AB=OA :OE ,∵DE=AB ,AB=9,AO=6,∴DE=×9=6,OE=OA=4,∴AE=OA+OE=6+4=10.12.解:(1)∵△PCD 是等边三角形,∴∠PCD=60°,∴∠ACP=120°,∵△ACP ∽△PDB ,∴∠APC=∠B ,∵∠A=∠A ,∴∠ACP ∽∠APB ,∴∠APB=∠ACP=120°;(2)∵△ACP ∽△PDB ,∴AC :PD=PC :BD ,∴PD•PC=AC•BD,∵△PCD是等边三角形,∴PC=PD=CD,∴CD2=AC•BD.13.解:∵四边形ABCD是矩形,∴∠BAE=90°,∵AB=6,AE=8,∴BE===10,∵△ABE∽△DEF,∴=,即=,解得EF=.14.解:∵△ABC∽△DAB,∴,∵AB=8,BC=12,∴,∴AD=.15.解:设经过t秒后两三角形相似,则可分下列两种情况进行求解,①若Rt△ABC∽Rt△QPC则,即解之得t=1.2;②若Rt△ABC∽Rt△PQC则,解之得t=;由P点在BC边上的运动速度为2cm/s,Q点在AC边上的速度为1cm/s,可求出t的取值范围应该为0<t<2,验证可知①②两种情况下所求的t均满足条件.所以可知要使△CPQ与△CBA相似,所需要的时间为1.2或秒.16.解:∵△ABC中,∠A=50°,∠C=30°,∴∠B=180°﹣50°﹣30°=100°,∵△ABC∽△FED,∴∠E=∠B=100°.17.解:∵△ABC∽△AED,且∠B=∠AED,∴.又AD=3,AE=6,CE=3,∴AB==18.18.解:设经过t秒两三角形相似,则AP=AB﹣BP=8﹣2t,AQ=4t,①AP与AB是对应边时,∵△APQ与△ABC相似,∴=,即=,解得t=2,②AP与AC是对应边时,∵△APQ与△ABC相似,∴=,即=,解得t=,综上所述,经过或2秒钟,△APQ与△ABC相似19.解:(1)过点A作AF⊥BC于F(1分)在Rt△AFB中,∠AFB=90°,∠ABF=60°∴AF=ABsin∠ABF=4sin60°=4×=,BF=ABcos∠ABF=4cos60°=4×在Rt△AFC中,∠AFC=90°∴(1分)(2)过点P作PG⊥BC于G,在Rt△BPG中,∠PGB=90°,∴(1分)如果△ABP和△BCE相似,∵∠APB=∠EBC又∵∠BAP=∠BCD>∠ECB(1分)∴∠ABP=∠ECB∴即解得(不合题意,舍去)∴x=8(1分)(3)①当AE=AB=4时∵AP∥BC,∴即,解得,②当BE=AB=4时∵AP∥BC,∴,即,解得(不合题意,舍去)③在Rt△AFC中,∠AFC=90°∵,在线段FC上截取FH=AF,∴∠FAE>∠FAH=45°∴∠BAE>45°+30°>60°=∠ABC>∠ABE∴AE≠BE.综上所述,当△ABE是等腰三角形时,或20.解:(1)∵相似三角形的对应边长分别是35cm和14cm∴这两个三角形的相似比为:5:2∴这两个三角形的周长比为:5:2∵他们的周长相差60cm∴设较大的三角形的周长为5xcm,较小的三角形的周长为2xcm∴3x=60∴x=20cm∴5x=5×20=100cm,2x=2×20=40cm∴较大的三角形的周长为100cm,较小的三角形的周长为40cm(2)∵这两个三角形的相似比为:5:2∴这两个三角形的面积比为:25:4∵他们的面积相差588cm2∴设较大的三角形的面积为25xcm2,较小的三角形的面积为4xcm2∴(25﹣4)x=588,∴x=28cm2∴25x=25×28=700cm2,4x=4×28=112cm2∴较大的三角形的面积为700cm2,较小的三角形的面积为112cm221.解:(1)∵△ACE∽△BDE,∠A=117°,∠C=37°,∴∠B=∠A=117°,∠C=∠D=37°;(2)∵△ACE∽△BDE,AC=6,BD=3,AB=12,CD=18,∴设AE=x,DE=y,则BE=12﹣x,CE=18﹣y,∴==,即==,解得x=8,y=6,∴AE=8,DE=622.解:①当把30厘米的钢筋作为最长边,把50厘米的钢筋按10厘米与25厘米两部分截,则有;②当30厘米的钢筋作为中长边,把50厘米分截出12厘米和36厘米两部分,则有.③当30cm作为最短边:则另两边都会超过50cm,此时不合题意,∴一共有两种截法.23.解:题中没有指明边长为2的边与原三角形的哪条边对应,所以应分别讨论:(1)若边长为2的边与边长为4的边相对应,则另两边为和3;(2)若边长为2的边与边长为5的边相对应,则另两边为和;(3)若边长为2的边与边长为6的边相对应,则另两边为和.故三角形框架的两边长可以是:和3或和或和.24.解:设BP=x,∵等边△ABC的边长为8,∴CP=8﹣x,∵E为AC中点,∴CE=AC=×8=4,①BD和PC是对应边时,△BDP∽△CPE,∴=,即=,整理得,x2﹣8x+12=0,解得x1=2,x2=6,即BP的长为2或6,②BD和CE是对应边时,△BDP∽△CEP,∴=,即=,解得x=,即BP=,综上所述,BP的值是2或6或.25.证明:∵△ABC∽△A′B′C′,∴===K.又∵AD、A′D′分别是边BC、B′C′上的中线,∴==.∴,∵∠B=∠B′,∴△ABD∽△A′B′D′.∴.26.解:∵相似三角形周长的比等于相似比,∴,∴,同理,∴.答:EF的长是cm,AC的长是cm.27.解:存在t=3秒或4.8秒,使以点A、M、N为顶点的三角形与△ABC相似(无此过程不扣分)设经过t秒时,△AMN与△ABC相似,此时,AM=t,CN=2t,AN=12﹣2t(0≤t≤6),(1)当MN∥BC时,△AMN∽△ABC,(1分)则,即,(3分)解得t=3;(5分)(2)当∠AMN=∠C时,△ANM∽△ABC,(6分)则,即,(8分)解得t=4.8;(10分)故所求t的值为3秒或4.8秒.(11分)28.解:(1)用t的代数式分别表示AQ=2t,AP=6﹣t;(2分)(2)设△APQ的面积为S,①△APQ的面积S与t的关系式为:S=AQ•AP=×2t×(6﹣t)=6t﹣t2,即S=6t﹣t2,②当t=2s时,△APQ的面积S=×AQ•AP=×[2×2×(6﹣2)]=8(cm2);(6分)(3)当t为多少秒时,以点A、P、Q为顶点的三角形与△ABC相似,①当=时=,∴t=2.4(s);②当=时=,∴t=(s);综上所述,当t为2.4秒或时,以点A、P、Q为顶点的三角形与△ABC相似.29.解:∵∠C=90°,BC=8cm,AC:AB=3:5,∴设AC=3xcm,AB=5xcm,则BC==4x(cm),即4x=8,解得:x=2,∴AC=6cm,AB=10cm,∴BC=8cm,设过t秒时,以C、P、Q为顶点的三角形恰与△ABC相似,则BP=2tcm,CP=BC﹣BP=8﹣2t(cm),CQ=tcm,∵∠C是公共角,∴①当,即时,△CPQ∽△CBA,解得:t=2.4,②当,即时,△CPQ∽△CAB,解得:t=,∴过2.4或秒时,以C、P、Q为顶点的三角形恰与△ABC相似.30.(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴=k,a=ka1;又∵c=a1,∴a=kc;(2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2;此时=2,∴△ABC∽△A1B1C1且c=a1;(3)解:不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1;又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c;∴b=2c;∴b+c=2c+c<4c,4c=a,b+c<a,而应该是b+c>a;故不存在这样的△ABC和△A1B1C1,使得k=2.。

相似三角形判定专项练习30题(有答案)

相似三角形判定专项练习30题(有答案)

相似三角形判定专项练习30题(有答案)1.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE与△DEF相似吗?为什么?2.如图,△BAC、△AGF为等腰直角三角形,且△BAC≌△AGF,∠BAC=∠AGF=90°.若△BAC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E.请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.3.如图,在正三角形ABC中,D,E分别在AC,AB上,且,AE=EB.求证:△AED∽△CBD.4.如图,已知∠1=∠2,且AB•ED=AD•BC,则△ABC与△ADE相似吗?是说明理由.5.已知:如图,在△ABC中,∠C=90°,点D、E分别AB、CB延长线上的点,CE=9,AD=15,连接DE.若BC=6,AC=8,求证:△ABC∽△DBE.6.如图,点D在等边△ABC的BC边上,△ADE为等边三角形,DE与AC交于点F.(1)证明:△ABD∽△DCF;(2)除了△ABD∽△DCF外,请写出图中其他所有的相似三角形.7.如图,CD、BE分别是锐角△ABC中AB、AC边上的高线,垂足为D、E.(1)证明:△ADC∽△AEB;(2)连接DE,则△AED与△ABC能相似吗?说说你的理由.8.如图,在△ABC,AC⊥BC,D是BC延长线上的一点,E是AC上的一点,连接ED,∠A=∠D.求证:△ABC∽△DEC.9.在任意△ABC中,作CD⊥AB,垂足为D,BE⊥AC,垂足为E,F为BC上的中点,连接DE,EF,DF.(1)求证:DF=EF;(2)直接写出除直角三角形以外的所有相似三角形;(3)在(2)中的相似三角形中选择一对进行证明.10.如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)△EAF与△EBA相似吗?说说你的理由.11.如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,交BA于点E,EC与AD相交于点F.求证:△ABC∽△FCD.12.已知:在Rt△ABC中∠C=90°,CD为AB边上的高.求证:Rt△ADC∽Rt△CDB.13.如图,D为△ABC内一点,E为△ABC外一点,且∠1=∠2,∠3=∠4,找出图中的两对相似三角形并说明理由.14.如图,∠DEC=∠DAE=∠B,试说明:(1)△DAE∽△EBA;(2)找出两个与△ABC相似的三角形(第2小题不要求写出证明过程).15.如图,锐角三角形ABC中,CD,BE分别是AB,AC边上的高,垂足为D,E.(1)证明:△ACD∽△ABE.(2)若将D,E连接起来,则△AED与△ABC能相似吗?说说你的理由.16.如图,在△ABC中,∠BAC=90°,D为BC的中点,AE⊥AD,AE交CB的延长线于点E.(1)求证:△EAB∽△ECA;(2)△ABE和△ADC是否一定相似?如果相似,加以说明;如果不相似,那么增加一个怎样的条件,△ABE和△ADC 一定相似.(1)求证:△ADE∽△ABC;(2)△ABD与△ACE相似吗?为什么?(3)图中还有哪些三角形相似?请直接写出来.18.如图,已知:△ABC为等腰直角三角形,∠ACB=90°,延长BA至E,延长AB至F,∠ECF=135°,求证:△EAC∽△CBF.19.如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)当△ADE是等腰三角形时,求AE的长.20.如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.求证:△ABE∽△ACD.21.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s 的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的22.如图,矩形ABCD中,AB=6,BC=8,动点P从B点出发沿着BC向C移动,速度为每秒2个单位,动点Q 从点C出发沿CD向D出发,速度为每秒1个单位,几秒后由C、P、Q三点组成的三角形与△ABC相似?这时线段PQ与AC的位置关系如何?请说明理由.23.已知,如图,,点B,D,F,E在同一条直线上,请找出图中的相似三角形,并说明理由.24.已知线段AC上有一动点B,分别以AB、BC为边向线段的同一侧作等边三角形△ABD和△BCE.连接AE、CD (如图),若MN分别为AE、CD的中点,(1)求证:AM=CN;(2)求∠MBN的大小;(3)若连接MN,请你尽可能多的说出图中相似三角形和全等三角形.25.如图,已知△ABC和△MBN都是等腰直角三角形,∠BAC=∠MBN=90°,BD⊥AN.请找出与△ABD相似的三角形并给出证明,直接写出∠ANC的度数.26.如图,在△ABC中,AB=6,BC=8.点D以每秒1个单位长度的速度由B向A运动,同时点E以每秒2个单位长度的速度由C向B运动,当点E停止运动时,点D也随之停止.设运动时间为t秒,当以B,D,E为顶点的三角形与△ABC相似时,求t的值.27.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,证明:△ABE∽△AEF.28.如图,在四边形ABCD中,AB⊥BC,AD⊥DC,连接BD,AC,且DE⊥AC于E,交AB于F,求证:△AFD∽△ADB.29.已知,如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B、A、D在一条直线上,连接BE、CD.(2)若M、N分别是BE和CD的中点,将△ADE绕点A按顺时针旋转,如图②所示,试证明在旋转过程中,△AMN 是等腰三角形;(3)试证明△AMN与△ABC和△ADE都相似.30.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.相似三角形判定专项练习30题参考答案:1.解:△ABE 与△DEF 相似.理由如下: ∵四边形ABCD 为正方形, ∴∠A=∠D=90°,AB=AD=CD , 设AB=AD=CD=4a , ∵E 为边AD 的中点,CF=3FD , ∴AE=DE=2a ,DF=a ,∴==2,==2,∴=,而∠A=∠D , ∴△ABE ∽△DEF . 2.解:△EAD ∽△EBA ,△DAE ∽△DCA . 对△ABE ∽△DAE 进行证明: ∵△BAC 、△AGF 为等腰直角三角形, ∴∠B=45°,∠GAF=45°, ∴∠EAD=∠EBA , 而∠AED=∠BEA , ∴△EAD ∽△EBA . 3.证明:∵△ABC 为正三角形, ∴∠A=∠C=60°,BC=AB , ∵AE=BE , ∴CB=2AE , ∵,∴CD=2AD ,∴==,而∠A=∠C , ∴△AED ∽△CBD . 4.解:△ABC ∽△ADE ,理由为: 证明:∵AB •ED=AD •BC ,∴=,∵∠1=∠2, ∴∠1+∠ABE=∠2+∠ABE ,即∠BAC=∠DAE , ∴△ABC ∽△ADE .5.证明:∵在RT △ABC 中,∠C=90°,BC=6,AC=8, ∴AB==10,∴DB=AD ﹣AB=15﹣10=5 ∴DB :AB=1:2, 又∵EB=CE ﹣BC=9﹣6=3, ∴EB :BC=1:2,又∵∠DBE=∠ABC,∴△ABC∽△DBE.6.(1)证明:∵△ABC,△ADE为等边三角形,∴∠B=∠C=∠3=60°,∴∠1+∠2=∠DFC+∠2,∴∠1=∠DFC,∴△ABD∽△DCF;(2)解:∵∠C=∠E,∠AFE=∠DFC,∴△AEF∽△DCF,∴△ABD∽△AEF,故除了△ABD∽△DCF外,图中相似三角形还有:△AEF∽△DCF,△ABD∽△AEF,△ABC∽△ADE,△ADF∽△ACD.7.(1)证明:∵如图,CD、BE分别是锐角△ABC中AB、AC边上的高线,∴∠ADC=∠AEB=90°.又∵∠A=∠A,∴△ADC∽△AEB;(2)由(1)知,△ADC∽△AEB,则AD:AE=AC:AB.又∵∠A=∠A,∴△AED∽△ABC.8.证明:∵AC⊥BC,∴∠ACB=∠DCE=90°,又∵∠A=∠D,∴△ABC∽△DEC.9.(1)证明:∵CD⊥AB,BE⊥AC,∴∠BEC=∠BDC=90°,而F为BC上的中点,∴EF=BC,DF=BC,∴DF=EF;(2)解:△ADE∽△ACB;△PDE∽△PCB;△PDB∽△PEC;(3)△ADE∽△ACB.理由如下:证明:∵∠ADC=∠AEB=90°,而∠BAE=∠CAD,∴△ABE∽△ACD,∴=,∵∠DAE=∠CAB,∴△ADE∽△ACB.10.(1)证明:∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE=∠BAC,又∵BD=CE,∴△ABD≌△BCE;(2)答:相似;理由如下:∵△ABD≌△BCE,∴∠BAD=∠CBE,∴∠BAC﹣∠BAD=∠CBA﹣∠CBE,∴∠EAF=∠EBA,又∵∠AEF=∠BEA,∴△EAF∽△EBA.11.证明:∵AD=AC,∴∠ADC=∠ACD,∵D为BC中点,且DE⊥BC,∴EB=EC.∴∠B=∠DCF.∴△ABC∽△FCD.12.证明:∵CD为AB边上的高,∴∠ADC=∠CDB=90°,∵∠ACB=90°,∴∠A+∠ACD=90°,∠ACD+∠BCD=90°,∴∠A=∠BCD,∵∠ADC=∠CDB=90°,∴Rt△ADC∽Rt△CDB.13.解:△ABD∽△CBE,△ABC∽△DBE.∵∠1=∠2,∠3=∠4,∴△ABD∽△CBE,∴∵∠1=∠2,∴∠ABC=∠DBE,∴△ABC∽△DBE14.解:(1)∵∠DEC=∠B,∴DE∥AB,∴∠DEA=∠EAB,又∵∠DAE=∠B,∴△DAE∽△EBA;(2)△CDE∽△ABC,△EAC∽△ABC.15.证明:(1)∵CD,BE分别是AB,AC边上的高,∴∠ADC=∠AEB=90°.∵∠A=∠A,∴△ACD∽△ABE.(2)∵△ACD∽△ABE,∴AD:AE=AC:AB.∵∠A=∠A,∴△AED∽△ABC.16.证明:(1)∵△ABC中,∠BAC=90°,D为BC的中点,∴BD=CD,AD=CD,∴∠C=∠DAC,又∵AE⊥AD,∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠EAB=∠C,∴△EAB∽△ECA;(2)由(1)得,∠EAB=∠CAD,∴当∠ABE=∠ADC或AB=BE或∠E=∠C或=时,△ABE和△ADC一定相似.17.解:(1)证明∵∠A=∠A,∠ADE=∠ABC,∴△ADE∽△ABC;(2)相似.证明:∵△ADE∽△ABC;∴,∵∠A=∠A,∴△ABD∽△ACE;(3)△DOE∽△COB;△EOB∽△DOC.18.证明:∵△ABC为等腰直角三角形,∠ACB=90°,∴∠CAB=∠CBA=45°,∴∠E+∠ECA=45°(三角形外角定理).又∠ECF=135°,∴∠ECA+∠BCF=∠ECF﹣∠ACB=45°,∴∠E=∠BCF;同理,∠ECA=∠F,∴△EAC∽△CBF.19.(1)证明:Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∴∠ADE+∠EDC=∠B+∠BAD.又∵∠ADE=45°,∴45°+∠EDC=45°+∠BAD.∴∠EDC=∠BAD.∴△ABD∽△DCE.(2)解:讨论:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意.②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=2,BC=2,AE=AC﹣EC=2﹣BD=2﹣(2﹣2)=4﹣2③若AE=DE,此时∠DAE=∠ADE=45°,如下图所示易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:AE=CE=AC=1.20.解:∵∠BAC=∠BDC,∠AOB=∠DOC,∴∠ABE=∠ACD又∵∠BAC=∠DAE∴∠BAC+∠EAC=∠DAE+∠EAC∴∠DAC=∠EAB∴△ABE∽△ACD.21.解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD.22.解:要使两个三角形相似,由∠B=∠PCQ ∴只要或者∵AB=6,BC=8∴只要设时间为t则PC=8﹣2t,CQ=t∴t=或者t=;①当t=时,△ABC∽△PCQ,PQ⊥AC理由:△ABC∽△PCQ∴∠BAC=∠CPQ∵∠BAC+∠ECP=90°,∴∠EPC+∠ECP=90°即PQ⊥AC;②当t=,△ABC∽△QCP,AC平分PQ理由:△ABC∽△QCP∴∠BAC=∠CQP,∠ACB=∠QPC∴∠QCE=∠EQC,∠ACB=∠QPC∴PE=EQ=CE即AC平分PQ23.解:△ABC∽△ADE,△BAD∽△CAE.理由:∵,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵,∴,∴△BAD∽△CAE,∵∠ACB=∠AED,∠AFE=∠BFC,∴△AFE∽△BFC.24.(1)证明:∵△ABD和△BCE是等边三角形,∴AB=BD,BC=BE,∠EBC=∠ABC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中∴△ABE≌△DBC(SAS)∴AE=DC,∵M、N分别为AE、CD的中点,∴AM=AE,CN=DC∴AM=CN;(2)解:∵△ABE≌△DBC,∴∠EAB=∠CDB,在△AMB和△DNB中∴△AMB≌△DNB(SAS),∴∠ABM=∠DBN,∵∠ABC=∠ABM+∠MBD=60°,∴∠DBN+∠MBD=60°,即∠MBN=60°;(3)解:图中的全等三角形有:△ABM≌△DBN,△BME≌△BCN,△ABE≌△DBC;相似三角形有:△ABD∽△BCE,△ABD∽△BMN,△BMN∽△BCE.25.解:△ABD∽△CBN,理由:∵△ABC和△MBN都是等腰直角三角形,BD⊥AN,∴∠MBD=∠NBD=∠BNM=∠ABC=45°,∴==,∵∠MBA+∠ABD=45°,∠ABD+∠CBN=45°,∴∠ABD=∠CBN,∴△ABD∽△CBN,∴∠BNC=∠ADB=90°,∵∠BNA=45°,∴∠ANC=45°.26.解:∵点D以每秒1个单位长度的速度由B向A运动,同时点E以每秒2个单位长度的速度由C向B运动,∴BD=t,BE=8﹣2t,∴△BDE∽△BAC时,=,即=,解得t=2.4(秒);当△BED∽△BAC时,=,即=,解得t=(秒).综上所述,t的值为2.4秒或秒.27.证明:∵在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,∴∠B=∠C=90°,AB:EC=BE:CF=2:1.∴△ABE∽△ECF.∴AB:EC=AE:EF,∠AEB=∠EFC.∵BE=CE,∠FEC+∠EFC=90°,∴AB:AE=BE:EF,∠AEB+∠FEC=90°.∴∠AEF=∠B=90°.∴△ABE∽△AEF.28.证明:∵∠AEF=∠ABC=90°,∠EAF=∠BAC.∴△EAF∽△BAC,=,即AE•AC=AF•AB.同理可得,△AED∽△ADC,=,即AE•AC=AD2,∴AD2=AF•AB,即=,又∵∠DAF=∠BAD,∴△AFD∽△ADB.29.证明:(1)∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.在△ABE与△ACD中,,∴△ABE≌△ACD,∴BE=CD;(2)由(1)得△ABE≌△ACD,∴∠ABE=∠ACD,BE=CD.∵M,N分别是BE,CD的中点,∴BM=CN.在△ABM与△ACN中,,∴△ABM≌△ACN,∴AM=AN,∴△AMN为等腰三角形;(3)由(2)得△ABM≌△ACN,∴∠BAM=∠CAN,∴∠BAM+∠BAN=∠CAN+∠BAN,即∠MAN=∠BAC,又∵AM=AN,AB=AC,∴AM:AB=AN:AC,∴△AMN∽△ABC;∵AB=AC,AD=AE,∴AB:AD=AC:AE,又∵∠BAC=∠DAE,∴△ABC∽△ADE;∴△AMN∽△ABC∽△ADE.30.证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∵CE⊥AB,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.。

《相似三角形的判定》练习题

《相似三角形的判定》练习题

第 1 页《相似三角形的判定》练习题相似三角形的判定1、定义:对应角相等,对应边成比例的三角形相似2、引理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似3、判定定理1:两角对应相等,两三角形相似4、判定定理2:两对应边成比例且夹角相等,则两三角形相似5、判定定理3:三边对应成比例,则两三角形相似6、直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似一、选择题1、下列各组图形必相似的是()A 、任意两个等腰三角形B 、两条边之比为2:3的两个直角三角形C 、两条边成比例的两个直角三角形D 、斜边和一条直角边对应成比例的两个直角三角形2、如图,CD BC OB OA AOD ,900,那么下列结论成立的是()A 、OAB ∽OCA B 、OAB ∽ODA C 、BAC ∽BDA D 、以上结论都不对3、点P 是ABC 中AB 边上一点,过点P 作直线(不与直线AB 重合)截ABC ,使得的三角形与原三角形相似,满足这样条件的直线最多有()A 、2条B 、3条C 、4条D 、5条4、在直角三角形中,两直角边分别为3、4,则这个三角形的斜边与斜边上的高的比是()A 、1225B 、125C 、45D 、355、ABC 中,D 是AB 上的一点,在AC 上取一点E ,使得以A 、D 、E 为顶点的三角形与ABC 相似,则这样的点的个数最多是()A 、0 B 、1 C 、2D 、无数6、如图,正方形ABCD 中,E 是CD 的中点,FC=BC 41,下面得出的六个结论:(1)ABF ∽AEF ;(2)ABF ∽ECF ;(3)ABF ∽ADE ;(4)AEF ∽ECF ;(5)AEF ∽ADE ;(6)ECF ∽ADE ,其中正确的个数是()A 、1个B 、3个C 、4个D 、5个。

相似三角形的判定测试题(含详细解析)

相似三角形的判定测试题(含详细解析)

相似三角形的判定测试题(含详细解析)时间:100分钟总分:100一、选择题(本大题共10小题,共30.0分)1.如图,在中,点P在边AB上,则在下列四个条件中::;;;,能满足与相似的条件是A. B. C. D.2.下列的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则在网格图中的三角形与相似的是A. B. C. D.3.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形阴影部分与相似的是A. B. C. D.4.如图,在中,,,点D在AC上,且,如果要在AB上找一点E,使与相似,则AE的长为A. B. C. 3 D. 或5.如图,在正方形ABCD中,点E,F分别在BC,CD上,且,将绕点A顺时针旋转,使点E落在点处,则下列判断不正确的是A. 是等腰直角三角形B. AF垂直平分C. ∽D. 是等腰三角形6.如图,在中,点D,E分别在边AB,AC上,下列条件中不能判断∽的是A.B.C.D.7.如图,点D,E分别在的AB,AC边上,增加下列条件中的一个:,,,,,使与一定相似的有A. B. C. D.8.如图,在钝角三角形ABC中,,,动点D从A点出发到B点止,动点E从C点出发到A点止点D运动的速度为秒,点E运动的速度为秒如果两点同时运动,那么当以点A、D、E为顶点的三角形与相似时,运动的时间是A. 4或B. 3或C. 2或4D. 1或69.如图,在中,,,,将沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是A. B.C. D.10.如图,点E是矩形ABCD的边AD的中点,且于点F,则下列结论中错误的是A.B.C. 图中与相似的三角形共有4个D.二、填空题(本大题共10小题,共30.0分)11.如图,已知中,D为边AC上一点,P为边AB上一点,,,,当AP的长度为______ 时,和相似.12.如图,在中,、E分别为边AB、AC上的点,,点F为BC边上一点,添加一个条件:______,可以使得与相似只需写出一个13.在中,,,点D在边AB上,且,点E在边AC上,当______时,以A、D、E为顶点的三角形与相似.14.如图,,,,,,点p在BD上移动,当______时,和相似.15.如图,中,D、E分别是AB、AC边上一点,连接请你添加一个条件,使∽,则你添加的这一个条件可以是______写出一个即可.16.如图所示,中,E,F分别是边AB,AC上的点,且满足,则与的面积比是______ .17.已知在中,,,E是边AB上一点,且,若F是AC边上的点,且以A、E、F为顶点的三角形与相似,则AF的长为______.18.如图,在中,,,,点M在AB边上,且,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则______ .19.如图,在正方形网格上有6个三角形:,,,,,.在中,与相似的三角形的个数是______.三、计算题(本大题共4小题,共24.0分)20.如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.求证:≌;求证:∽.21.如图,在中,D、E分别是AB、AC上的点,,,AD::3,的角平分线AF交DE于点G,交BC于点F.请你直接写出图中所有的相似三角形;求AG与GF的比.22.如图,已知,,垂足分别为B、D,AD与BC相交于点E,,垂足为F,试回答图中,∽______ ,∽______ ,∽______ .23.在图中,的内部任取一点O,连接AO、BO、CO,并在AO、BO、CO这三条线段的延长线上分别取点D、E、F,使,画出你认为与相似吗?为什么?你认为它们也具有位似形的特征吗?四、解答题(本大题共2小题,共16.0分)24.如图所示,,,,点P从点B出发,沿BC向点C以的速度移动,点Q从点C出发沿CA向点A以的速度移动,如果P、Q分别从B、C同时出发,过多少时,以C、P、Q为顶点的三角形恰与相似?25.如图,四边形ABCD中,AC平分,,,E为AB的中点.求证:∽;与AD有怎样的位置关系?试说明理由;若,,求的值.答案和解析【答案】1. D2. B3. B4. D5. D6. A7. A8. B9. C10. C11. 4或912. ,或13. 或14. 或12cm或2cm15.16.17. 1:918. 或19. 4或620. 321. 证明:正方形ABCD,等腰直角三角形EDF,,,,,,在和中,,≌;延长BA到M,交ED于点M,≌,,即,,,,,,∽.22. 解:∽,∽,∽;,,,又,∽,,为角平分线,∽,,.23. DAB;BCD;DCE24. 解:相似如图,,,∽,,同理,∽,它们也具有位似形的特征.25. 解:设经过y秒后,∽,此时,.,,,.∽,,设经过y秒后,∽,此时,..∽,所以,经过秒或者经过后两个三角形都相似26. 解:平分,,又,::AB,∽;,理由:∽,,又为AB的中点,,,,,;,,,,,,∽,,.【解析】1. 解:当,,所以∽;当,,所以∽;当,即AC::AC,所以∽;当,即PC::AB,而,所以不能判断和相似.故选D.根据有两组角对应相等的两个三角形相似可对进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对进行判断.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.2. 解:根据勾股定理,,,所以,夹直角的两边的比为,观各选项,只有B选项三角形符合,与所给图形的三角形相似.故选:B.可利用正方形的边把对应的线段表示出来,利用三边对应成比例两个三角形相似,分别计算各边的长度即可解题.此题考查了勾股定理在直角三角形中的运用,三角形对应边比值相等判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键.3. 解:小正方形的边长为1,在中,,,,A中,一边,一边,一边,三边与中的三边不能对应成比例,故两三角形不相似故A错误;B中,一边,一边,一边,有,即三边与中的三边对应成比例,故两三角形相似故B正确;C中,一边,一边,一边,三边与中的三边不能对应成比例,故两三角形不相似故C 错误;D中,一边,一边,一边,三边与中的三边不能对应成比例,故两三角形不相似故D错误.故选:B.根据相似三角形的判定,易得出的三边的边长,故只需分别求出各选项中三角形的边长,分析两三角形对应边是否成比例即可.本题考查了相似三角形的判定识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.4. 解:是公共角,当,即时,∽,解得:;当,即时,∽,解得:,的长为:或.故选D.由是公共角,分别从当,即时,∽与当,即时,∽,去分析求解即可求得答案.此题考查了相似三角形的判定注意分类讨论思想的应用.5. 解:将绕点A顺时针旋转,使点E落在点处,,,是等腰直角三角形,故A正确;将绕点A顺时针旋转,使点E落在点处,,四边形ABCD是正方形,,,,,,,垂直平分,故B正确;,,,,∽,故C正确;,但不一定等于,不一定是等腰三角形,故D错误;故选D.由旋转的性质得到,,于是得到是等腰直角三角形,故A正确;由旋转的性质得到,由正方形的性质得到,推出,于是得到AF垂直平分,故B正确;根据余角的性质得到,于是得到∽,故C 正确;由于,但不一定等于,于是得到不一定是等腰三角形,故D错误.本题考查了旋转的性质,正方形的性质,相似三角形的判定,等腰直角三角形的判定,线段垂直平分线的判定,正确的识别图形是解题的关键.6. 解:,当或时,∽;当即时,∽.故选:A.根据相似三角形的判定定理进行判定即可.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.7. 解:,,∽,正确;,,∽,正确;,,∽,正确;由,或不能证明与相似.故选:A.由两角相等的两个三角形相似得出正确,由两边成比例且夹角相等的两个三角形相似得出正确;即可得出结果.本题考查了相似三角形的判定定理:两角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似;如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.8. 解:根据题意得:设当以点A、D、E为顶点的三角形与相似时,运动的时间是x秒,若∽,则AD::AC,即x::12,解得:;若∽,则AD::AB,即x::6,解得:;所以当以点A、D、E为顶点的三角形与相似时,运动的时间是3秒或秒.故选B.根据相似三角形的性质,由题意可知有两种相似形式,∽和∽,可求运动的时间是3秒或秒.此题考查了相似三角形的性质,解题时要注意此题有两种相似形式,别漏解;还要注意运用方程思想解题.9. 解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.根据相似三角形的判定定理对各选项进行逐一判定即可.本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.10. 解:A、,∽,,,,故A正确,不符合题意;B、过D作交AC于N,,,四边形BMDE是平行四边形,,,,于点F,,,,,故B正确,不符合题意;C、图中与相似的三角形有,,,,共有5个,故C错误.D、设,由∽,有.,故D正确,不符合题意.故选C.由,又,所以,故A正确,不符合题意;过D作交AC于N,得到四边形BMDE是平行四边形,求出,得到,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由∽,得到CD与AD的大小关系,根据正切函数可求的值,故D错误,符合题意.本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.11. 解:当∽时,,,解得:,当∽时,,,解得:,当AP的长度为4或9时,和相似.故答案为:4或9.分别根据当∽时,当∽时,求出AP的长即可.此题主要考查了相似三角形的判定与性质,利用倒推法以及分类讨论得出是解题关键.12. 解:,或.理由:,,∽,当时,∽,∽.当时,,∽.故答案为,或.结论:,或根据相似三角形的判定方法一一证明即可.本题考查相似三角形的判定和性质平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13. 解:当时,,∽,此时;当时,,∽,此时;故答案为:或.若A,D,E为顶点的三角形与相似时,则或,分情况进行讨论后即可求出AE的长度.本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法,解题的关键是分两种情况进行讨论.14. 解:由,,,设,则,若∽,则,即,变形得:,即,因式分解得:,解得:,,所以或12cm时,∽;若∽,则,即,解得:,,综上,或12cm或时,∽.故答案为:或12cm或2cm.设出,由表示出PD的长,若∽,根据相似三角形的对银边成比例可得比例式,把各边的长代入即可列出关于x的方程,求出方程的解即可得到x的值,即为PB的长.此题考查了相似三角形的判定与性质,相似三角形的性质有相似三角形的对应边成比例,对应角相等;相似三角形的判定方法有:1、两对对应角相等的两三角形相似;2、两对对应边成比例且夹角相等的两三角形相似;3、三边对应成比例的两三角形相似,本题属于条件开放型探究题,其解法:类似于分析法,假设结论成立,逐步探索其成立的条件.15. 解:当时,∽.故答案为.利用平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似进行添加条件.本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似.16. 解:,当时,∽.故答案为.利用有两组角对应相等的两个三角形相似添加条件.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.17. 解:,,又,∽,与的面积比:9,故答案为:1:9.由已知条件易证∽,根据相似三角形的性质即可求出与的面积比.本题考查了相似三角形的判定和性质,熟悉相似三角形的性质:相似三角形的面积比是相似比的平方是解题关键.18. 解:,以A、E、F为顶点的三角形与相似,有∽和∽两种情况:如图1:当时,∽时,即,解得:;如图2:当时,∽时,即,解得:.所以或.故答案为或.根据相似三角形的相似比求AF,注意分情况考虑.本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理,分情况讨论是解决本题的关键.19. 解:如图1,当时,则∽,故,则,解得:,如图2所示:当时,又,∽,,即,解得:,故答案为:4或6.分别利用当时以及当时,得出相似三角形,再利用相似三角形的性质得出答案.此题主要考查了相似三角形判定,正确利用分类讨论得出是解题关键.20. 解:,,,,,,,,,,,,,,,与不相似;,,,∽;,,,∽;,,,,,,与不相似.故答案为3.先利用勾股定理计算出,,,,,,然后利用三组对应边的比相等的两个三角形相似依次判断,,,,与是否相似.本题考查了相似三角形的判定:三组对应边的比相等的两个三角形相似也考查了勾股定理.21. 由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;由第一问的全等三角形的对应角相等,根据等量代换得到,再由对顶角相等,利用两对角相等的三角形相似即可得证.此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的判定与性质是解本题的关键.22. 可得到三组三角形相似;先利用两组对应边的比相等且夹角对应相等的两个三角形相似证明∽,则,再利用有两组角对应相等的两个三角形相似证明∽,然后利用相似比和比例的性质求的值.本题考查了相似三角形的判断:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.23. 解:,,,,,,,,∽;,,,,∽,故答案为:DAB;BCD;DCE.由AB垂直于BD,CD垂直于BD,得到一对同旁内角互补,利用同旁内角互补两直线平行得到AB与CD 平行,同理EF与AB平行,且与CD平行,根据EF与AB平行,利用两直线平行同位角相等得到两对角相等,确定出三角形DEF与三角形DAB相似;同理得到三角形BEF与三角形BCD相似;由两直线平行得到两对内错角相等,得到三角形ABE与三角形DEC相似.此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.24. 由,可得∽,再由相似得出对应边成比例,即可得出与相似,由于它们有位似中心点O,所以它们也具有位似形的特征.本题主要考查了相似三角形的判定以及位似图形的问题,应熟练掌握位似与相似之间的联系及区别.25. 设经过y秒后相似,由于没有说明对应角的关系,所以共有两种情况:∽与∽本题考查相似三角形的判定,解题的关键是分两种情况进行讨论,本题属于中等题型.26. 根据两组对应边的比相等且夹角对应相等的两个三角形相似进行求解;根据,,即可得出,进而得到;先根据,,判定∽,即可得出,进而得到.本题主要考查了相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合.。

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)1.在三角形ABC中,点D在边BC上,且∠BAC=∠DAG,∠XXX∠BAD。

证明:=。

当GC⊥BC时,证明:∠BAC=90°。

2.在三角形ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足。

证明:AC^2=AF•AD。

联结EF,证明:AE•DB=AD•EF。

3.在三角形ABC中,PC平分∠ACB,PB=PC。

证明:△APC∽△ACB。

若AP=2,PC=6,求AC的长。

4.在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠XXX∠C。

证明:△ABF∽△EAD。

若AB=4,∠BAE=30°,求AE的长。

5.在三角形ABC中,∠ABC=2∠C,BD平分∠ABC。

证明:AB•BC=AC•CD。

6.在直角三角形ABC中,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S。

说明AF•BE=2S的理由。

7.在等边三角形ABC中,边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P。

若AE=CF,证明:AF=BE,并求∠APB的度数。

若AE=2,试求AP•AF的值。

若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长。

8.在钝角三角形ABC中,AD,BE是边BC上的高。

证明。

9.在三角形ABC中,AB=AC,DE∥BC,点F在边AC 上,DF与BE相交于点G,且∠XXX∠ABE。

证明:(1)△DEF∽△BDE;(2)DG•DF=DB•EF。

10.在等边三角形ABC、△DEF中,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2.问E在何处时CH的长度最大?11.在AB和CD交于点O的图形中,当∠A=∠C时,证明:OA•OB=OC•OD。

12.在等边三角形△AEC中,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外)。

相似三角形的判定与性质练习题(附答案)

相似三角形的判定与性质练习题(附答案)

相似三角形的判定与性质练习题一、单选题1.如果两个相似三角形的相似比是1:2, 那么这两个相似三角形的面积比是( ) A.2:1 B. 1:2C.1:2D.1:42.如图,点D 是△ABC 的边AB 上的一点,过点D 作BC 的平行线交AC 于点E,连接BE,过点D 作BE 的平行线交AC 于点F,则下列结论错误的是( )A. AD AE BD EC= B. AF DF AE BE= C. AE AF EC FE= D. DE AF BC FE = 3.下列四条线段中,不能组成比例线段的是( )A.3,6,2,4a b c d ====B.1,2,3,6a b c d ====C.4,6,5,10a b c d ====D.2,5,23,15a b c d ====4.如图,在ABC ∆中,点D 、E 分别在边AB 、AC 上,下列条件中不能判断ABC AED ~△△ ( )A. AED B ∠=∠B. ADE C ∠=∠C. AD AC AE AB =D. AD AE AB AC= 5.如图27-4-4,在四边形ABCD 中,BD 平分,90,ABC BAD BDC E ∠∠=∠=°为BC 的中点,AE 与BD 相交于点F.若4,30BC CBD =∠=°,则DF 的长为( )A.235B.233C.334D.4356.如图,在中,E是边AD的中点,EC交对角线BD于点F,则:EF FC等于( )A.3:2B.3:1C.1:1D.1:27.如图,点A,B,C,D的坐标分别是(1,7),(11),,(41),,(61),,以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(60),B.(63),C.(65),D.(42),8.如图,在正方形网格上,若使△ABC∽△PBD,则点P应在处( )A.P1B.P2C.P3D.P49.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=( )A.1:3B.1:4C.2:3D.1:210.如图,在等边三角形ABC 中,D 、E 分别在AC 、AB 上,且AD ︰AC=1︰3,AE=BE,则有( )A.△AED∽△BEDB.△AED∽△CBDC.△AED∽△ABDD.△BAD∽△BCD11.如图所示,四边形ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③P 是BC 的中点;④BP:BC=2:3.其中能推出△ABP∽△ECP 的有( )A.4个B.3个C.2个D.1个12.如图,在ABC △中,CB CA =,90ACB ∠︒=,点D 在边BC 上(与,B C 不重合),四边形ADEF 为正方形,过点F 作FG CA ⊥,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:AC FG =;四边形1:2FAB 四边形CBFG S :S =△③ABC ABF ∠=∠;④2AD FQ AC =,其中正确结论有( ) A.1个 B.2个C.3个D.4个13.如图,点A 在线段BD 上.在BD 的同侧作等腰Rt ABC △和等腰Rt ADE △,CD 与BE ,AE 分别交于点,P M .对于下列结论:① BAE CAD △△;②MP MD MA ME ⋅=⋅;③22CB CP CM =⋅.其中正确的是( )A.①②③B.①C.①②D.②③14.如图,在平行四边形ABCD 中, E 为CD 上一点,连接AE 、BE 、BD ,且AE 、BD 交于点F ,:4:25DEF ABF S S ∆∆=,则:?DE EC = ( ) A. 2:3B. 2:5C. 3:5D. 3?:?2二、证明题15.如图,已知,,B C E 三点在同一条直线上,ABC △与DCE △都是等边三角形.其中线段BD 交AC 于点G ,线段AE 交CD 于点F ,连接GF .求证:(1)ACE BCD ≅△△;(2)AG AF GC FE=. 16.如图,在等边三角形ABC 中,点P 是BC 边上任意一点,AP 的垂直平分线分别交,AB AC 于点,M N .求证:BP CP BM CN ⋅=⋅.17.如图,D BC 已知是边上的中点,且AD AC =,DE BC ⊥,DE BA E 与相交于点,EC AD F 与相交于点.(1)求证:ABC FCD △△;(2)若5FCD S =△,10BC =,求DE 的长18.如图,已知AD 平分BAC ∠, AD 的垂直平分线EP 交BC 的延长线于点P .求证:2.PD PB PC =⋅19.如图,//AB FC ,D 是AB 上一点,DF 交AC 于点E ,DE FE =,分别延长FD 和CB 交于点G(1)求证:ADE CFE ≅△△;(2)若2GB =,4BC =,1BD =,求AB 的长.20.如图,在ABCD 中,,AM BC AN CD ⊥⊥,垂足分别为,M N .求证:(1)AMB AND △△;(2)AM MN AB AC=. 三、解答题21.如图,在4x3的正方形方格中,ABC △和DEC △的顶点都在边长为1的小正方形的顶点上.(1) 填空:ABC ∠= ,BC = ;(2) 判断ABC △和DEC △是否相似,并证明你的结论.22.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P 从点O 开始沿OA 边向点A 以1厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动.如果P,Q 同时出发,用t(秒)表示移动的时间(0≤t≤6),那么1.设△POQ 的面积为y,求y 关于t 的函数关系式;2.当t 为何值时,△POQ 与△AOB 相似.23.如图,已知矩形ABCD 的一条边8AD =,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.已知折痕与边BC 交于点O ,连接,,.AP OP OA(1)求证:OCP PDA △△;(2)若OCP △与PDA △的面积比为1:4,求边AB 的长.24.如图,在平面直角坐标系xOy 中,直线3y x =-+与x 轴交于点C ,与直线AD 交于点45(,)33A ,点D 的坐标为(0)1,.(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当BOD △与BCE △相似时,求点E 的坐标. 25.如图,在矩形ABCD 中,12AB = cm ,6BC = cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P ,Q 同时出发,用()t s 表示移动的时间(06t ≤≤),那么:(1)当t 为何值时,QAP △为等腰直角三角形?(2)对四边形QAPC 的面积,提出一个与计算结果有关的结论(3)当t 为何值时,以点Q ,A ,P 为顶点的三角形与ABC △相似?四、填空题26.如图,在直角梯形ABCD 中, 90ABC ∠=,//AD BC ,4AD =,5AB =,6BC =,点P 是AB 上一个动点,当PC PD +的和最小时, PB 的长为__________.27.如图,若AB∥CD,则△__________∽△__________,__________=__________=AO CO.28.如图,在等边三角形ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且90ADF BED CFE ∠=∠=∠=︒,则DEF ∆与ABC ∆的面积之比为__________ 29.已知578a b c ==,且329a b c -+=,则243a b c +-的值为 . 30.如图,已知在Rt ABC △中,5,3AB BC ==,在线段AB 上取一点D ,作DE AB ⊥交AC 于E ,将ADE △沿DE 析叠,设点A 落在线段BD 上的对应点为11,A DA 的中点为,F 若1FEA FBE △△,则AD= .31.已知:如图,在△ABC 中,点A 1,B 1,C 1分别是BC 、AC 、AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点,依此类推….若△ABC 的周长为1,则△A n B n C n 的周长为__________.32.如图,正三角形ABC 的边长为2,以BC 边上的高1AB 为边作正三角形11AB C ,ABC △与1ABC △公共部分的面积记为1S ,再以正三角形11AB C 的边1C 上的高2AB 为边作正三角形22AB C ,11AB C △与22AB C △公共部分的面积记为2S ,……,以此类推,则n S = .(用含n 的式子表示,n 为正整数)33.如图,在正方形ABCD 中,点E 是BC 边上一点,且 : 2:1,BE EC AE =与BD 交于点F ,则AFD △与四边形DFEC 的面积之比是 .34.如图,在△ABC 中,∠C=90°,BC=16cm,AC=12cm,点P 从点B 出发,沿BC 以2 cm /s 的速度向点C 移动,点Q 从点C 出发,以1cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为ts,当t=__________时,△CPQ 与△CBA 相似.35.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且1,4CF CD =下列结论: ①30BAE ∠=°; ②;ABE ECF △△③AE EF ⊥; ④ADF ECF △△.其中正确结论是 .(填序号)36.如图27-4-9,在ABC △中,90,8m 10m,C BC AB ∠===,°点 P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.若P Q 、同时分别从B C 、出发,经过____________s,CPQ CBA △△~.37.如图24-4-10,ABC △的两条中线AD 和BE 相交于点G ,过点E 作//EF BC 交AD 于点F ,则FG AG=________.参考答案1.答案:C解析:2.答案:D解析:3.答案:C解析:A 选项,因为3:62:4=,所以,,,a b c d 四条线段成比例B 选项,因为1232,2226==,所以,,,a b c d 四条线段成比例C 选项,因为4:56:10≠,所以,,,a b c d 四条线段不成比例D 选项,因为2252325,55515==,所以,,,a b c d 四条线段成比例故选C 4.答案:D解析:∵DAE CAB ∠=∠,∴当AED B ∠=∠或ADE C ∠=∠时,由两角分别相等的两个三角形相似,可以得出ABC AED ~△△;当AD AC AE AB=时,由两边成比例且夹角相等的两个三角形相似,可得ABC AED ~△△. 只有选项D 中条件不能判断ABC AED ~△△,故选D.5.答案:D解析:如图,在Rt BDC △中,4,30,BC CBD =∠=°2,2 3.CD BD ∴=∴=连接,90,DE BDC ∠=°,点E 是BC 中点,1 2.2DE BE CE C ∴====30,30,CBD BDE DBC ∠=∴∠=∠=°°,30,BD CBC ABD DBC ∠∴∠=∠=°,//,,ABD BDE DE AB DEF BAF ∴∠=∠∴∴△△~.DF DE BF AB ∴=在Rt ABD △中,230,23,3,,3DF ABD BD AD BF ∠==∴=∴=°22243,23,5555DF DF BD BD ∴=∴==⨯=故选D.6.答案:D解析:在中, //AD BC ,∴DEF BCF ∆~∆,∴DE EF BC CF=. ∴点E 是边AD 的中点, ∴12AE DE AD ==, ∴12EF CF =. 7.答案:B解析:ABC ∆中, 90,6,3,:2ABCAB BC AB BC ∠====. A 、当点E 的坐标为()6,0时, 90,2,1CDE CD DE ∠===,则::,AB BC CD DE CDE ABC =∆~∆,故本选项不符合题意; B 、当点E 的坐标为()6,3时, 90,2,2CDE CD DE ∠===,则::,AB BC CD DE CDE ≠∆与ABC ∆不相似,故本选项符合题意; C 、当点E 的坐标为()6,5时, 90,2,4CDE CD DE ∠===,则::,AB BC DE CD EDC ABC =∆~∆,故本选项不符合题意; D 、当点E 的坐标为()4,2时, 90,2,1ECD CD CE ∠===,则::,?AB BC CD CE DCE ABC =∆~∆,故本选项不符合题意; 故选:B.8.答案:C解析:从图中可知,要使△ABC 与△PBD相似,根据勾股定理,得BC =BD =12BC AB BD BP ===,因为AB=2,那么BP=4,故选择P 3处 . 考点:相似三角形点评:该题主要考查学生对相似三角形概念的理解,以及对其性质的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形判定专项练
习题
Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
1.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且
CF=3FD,△ABE与△DEF相似吗为什么
2.如图,在正三角形ABC中,D,E分别在AC,AB上,且,AE=EB.求
证:△AED∽△CBD.
3.如图,已知∠1=∠2,且AB?ED=AD?BC,则△ABC与△ADE相似吗说明理
由.
4.已知:如图,在△ABC中,∠C=90°,点D、E分别AB、CB延长线上的
点,CE=9,AD=15,连接DE.若BC=6,AC=8,求证:△ABC∽△DBE.
5.如图,点D在等边△ABC的BC边上,△ADE为等边三角形,DE与AC交于
点F.证明:△ABD∽△DCF
6.如图,CD、BE分别是锐角△ABC中AB、AC边上的高线,垂足为D、E.
证明:△ADC∽△AEB;
7.如图,在△ABC,AC⊥BC ,
D是BC延长线上的一点,E是AC上的一点,连
接ED,∠A=∠D.求证:△ABC∽△DEC.
8.如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与
BE相交于点F.试说明△ABD≌△BCE;
9.如图,在△
ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,交BA于点
E,EC与AD相交于点F.求证:△ABC∽△FCD.
10.如图,∠DEC=∠DAE=∠B,试说明:△DAE∽△EBA;
11.如图,在△ABC中,∠BAC=90°,D为BC的中点,AE⊥AD,AE交CB的延
长线于点E.求证:△EAB∽△ECA;
12.如图,已知:△ABC为等腰直角三角形,∠ACB=90°,延长BA至E,延
长AB至F,∠ECF=135°,求证:△EAC∽△CBF.
13.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的
两点.若
P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出
发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形
与△BDC相似。

相关文档
最新文档