数学建模 模拟退火

合集下载

中国数学建模-编程交流-模拟退火算法

中国数学建模-编程交流-模拟退火算法

中国数学建模-编程交流-模拟退火算法模拟退火算法模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。

用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。

退火过程由冷却进度表(CoolingSchedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

3.5.1 模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。

模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。

终止条件通常取为连续若干个新解都没有被接受时终止算法。

(7) T逐渐减少,且T->0,然后转第2步。

算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

数学建模之模拟退火算法PPT文档共69页

数学建模之模拟退火算法PPT文档共69页
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
数学建模之模拟退火算法
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民的幸福是至高异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国

模拟退火算法应用实例

模拟退火算法应用实例

模拟退火算法应用实例一、什么是模拟退火算法模拟退火算法是一种优化算法,用于在搜索空间中寻找全局最优解。

它的基本思想是通过随机游走的方式,从一个初始解开始,在搜索过程中逐渐降低温度,使得概率性的接受更优解的能力逐渐减弱,最终达到全局最优解。

二、应用实例1. 旅行商问题旅行商问题是指给定一组城市和每对城市之间的距离,求解访问每个城市恰好一次并回到起始城市的最短路径。

这个问题是NP-hard问题,因此需要使用启发式算法来求解。

模拟退火算法可以用来求解旅行商问题。

首先随机生成一个初始路径,然后不断地进行交换两个节点位置,并计算新路径长度。

如果新路径比原路径短,则接受新路径;否则以一定概率接受新路径。

随着时间推移,温度逐渐降低,接受新路径的概率也逐渐降低。

最终得到全局最优解。

2. 图像处理模拟退火算法可以用于图像处理中的图像分割和图像匹配等问题。

例如,在图像分割中,我们可以将图像分成多个区域,使得同一区域内的像素具有相似的特征,不同区域之间的像素特征差异较大。

首先随机生成一个初始分割方案,然后不断地进行移动像素点到其他区域,并计算新分割方案的代价函数。

如果新方案比原方案更优,则接受新方案;否则以一定概率接受新方案。

随着时间推移,温度逐渐降低,接受新方案的概率也逐渐降低。

最终得到全局最优解。

3. 机器学习模拟退火算法可以用于机器学习中的参数优化问题。

例如,在神经网络中,我们需要找到最优的权重和偏置值来最小化损失函数。

首先随机生成一个初始权重和偏置值,然后不断地进行微小调整,并计算新损失函数值。

如果新损失函数比原损失函数更小,则接受新权重和偏置值;否则以一定概率接受新权重和偏置值。

随着时间推移,温度逐渐降低,接受新权重和偏置值的概率也逐渐降低。

最终得到全局最优解。

三、模拟退火算法的优点和缺点1. 优点(1)全局最优解:模拟退火算法可以找到全局最优解,而不是局部最优解。

(2)适用性广:模拟退火算法可以应用于各种问题,并且具有较好的鲁棒性。

模拟退火算法简单易懂的例子

模拟退火算法简单易懂的例子

模拟退火算法简单易懂的例子
模拟退火算法是一种基于概率的算法,来源于固体退火原理。

下面以一个简单的例子来说明模拟退火算法:
想象一个有十个元素的数组,代表一个能量状态,每个元素都有一个能量值。

开始时,所有元素都处于最高能量状态。

我们的目标是找到最低能量的状态,即最优解。

模拟退火算法的工作原理如下:
1. 从最高温度开始,逐渐降低温度。

在每个温度下,算法会尝试各种元素的组合方式,并计算其能量。

2. 在温度较高时,算法会尝试各种组合,并接受能量增加的“移动”,因为这些增加的能量对应于更高的温度,所以被接受的概率更大。

3. 随着温度的降低,算法开始更多地考虑能量的减少。

如果一个状态比前一个状态的能量更低,那么它一定会被接受。

但如果一个状态的能量比前一个状态的能量高,那么它会被以一定概率接受。

这个概率随着温度的降低而减小。

4. 重复上述过程,直到达到终止温度。

这时,算法已经找到了最低能量的状态。

模拟退火算法可以找到全局最优解,而不是局部最优解。

这是因为算法在搜索过程中会接受一些次优解(即能量增加的“移动”),以便跳出局部最优解,探索更广阔的解空间。

以上内容仅供参考,如果需要更多信息,建议查阅相关文献或咨询专业人士。

数学建模模拟退火算法

数学建模模拟退火算法

数学建模模拟退火算法
数学建模是一种将实际问题转化为数学问题,通过建立数学模型来分析和解决问题的方法。

而模拟退火算法则是一种基于概率的全局优化算法,常被用于求解复杂问题的最优解。

在数学建模中,模拟退火算法可以应用于各种领域,如图像处理、目标识别、路线规划等。

模拟退火算法的基本思想是从一个随机解开始,通过随机扰动和接受策略来探索可能解空间,并逐渐降温,使得随机扰动的程度逐渐减小,最终达到全局最优解。

在应用模拟退火算法时,需要确定初始温度、温度下降速度以及接受策略等参数。

在数学建模中,模拟退火算法可以应用于很多问题。

例如,在图像处理中,可以通过模拟退火算法对图像进行优化,如图像的平滑处理、边缘检测等。

在目标识别领域,模拟退火算法可以用于对目标进行跟踪和识别。

在路线规划问题中,模拟退火算法可以用于求解最优路径。

在应用模拟退火算法时,需要考虑算法的效率和精度。

为了提高效率,可以采用多种优化技巧,如快速随机数生成、启发式信息引导等。

为了提高精度,可以适当增加迭代次数和初始温度,以便探索更广泛的解空间。

总之,模拟退火算法是一种非常有用的全局优化算法,可以应用于很多数学建模问题中。

在实际应用中,需要根据具体问题的特点和需求来选择算法参数和优化技巧,以达到最佳效果。

- 1 -。

模拟退火算法

模拟退火算法

模拟退火算法模拟退火算法(Simulated Annealing)是一种经典的优化算法,常用于解决复杂的优化问题。

它的灵感来自于金属退火的过程,通过降温使金属内部的不稳定原子重新排列,从而获得更优的结构。

在算法中,通过接受一定概率的差解,模拟退火算法能够逃离局部最优,并最终找到全局最优解。

在MATLAB中,我们可以使用以下步骤来实现模拟退火算法:1.初始化参数:设定初始温度T0、终止温度Tf、温度下降速率α、算法运行的迭代次数等参数,并设定当前温度为T0。

2.生成初始解:根据问题的要求,生成一个初始解x。

3. 迭代优化:在每个温度下,进行多次迭代。

每次迭代,随机生成一个新的解x_new,计算新解的目标函数值f_new。

4. 判断是否接受新解:根据Metropolis准则,判断是否接受新解。

如果新解比当前解更优,则直接接受;否则,以概率exp((f_current - f_new) / T)接受新解。

5.更新解和温度:根据前一步的判断结果,更新当前解和温度。

如果接受了新解,则将新解作为当前解;否则,保持当前解不变。

同时,根据设定的温度下降速率,更新当前温度为T=α*T。

6.重复步骤3-5,直到当前温度小于终止温度Tf。

7.返回最优解:记录整个迭代过程中的最优解,并返回最优解作为结果。

以下是一个简单的示例,演示如何使用MATLAB实现模拟退火算法解决旅行商问题(TSP)。

```matlabfunction [bestPath, bestDistance] =simulatedAnnealingTSP(cityCoordinates, T0, Tf, alpha, numIterations)numCities = size(cityCoordinates, 1);currentPath = randperm(numCities);bestPath = currentPath;currentDistance = calculateDistance(cityCoordinates, currentPath);bestDistance = currentDistance;T=T0;for iter = 1:numIterationsfor i = 1:numCitiesnextPath = getNextPath(currentPath);nextDistance = calculateDistance(cityCoordinates, nextPath);if nextDistance < currentDistancecurrentPath = nextPath;currentDistance = nextDistance;if nextDistance < bestDistancebestPath = nextPath;bestDistance = nextDistance;endelseacceptanceProb = exp((currentDistance - nextDistance) / T); if rand( < acceptanceProbcurrentPath = nextPath;currentDistance = nextDistance;endendendT = alpha * T;endendfunction nextPath = getNextPath(currentPath)numCities = length(currentPath);i = randi(numCities);j = randi(numCities);while i == jj = randi(numCities);endnextPath = currentPath;nextPath([i j]) = nextPath([j i]);endfunction distance = calculateDistance(cityCoordinates, path) numCities = length(path);distance = 0;for i = 1:numCities-1distance = distance + norm(cityCoordinates(path(i),:) - cityCoordinates(path(i+1),:));enddistance = distance + norm(cityCoordinates(path(numCities),:) - cityCoordinates(path(1),:)); % 加上回到起点的距离end```以上示例代码实现了使用模拟退火算法解决旅行商问题(TSP)。

模拟退火算法介绍

模拟退火算法介绍

模拟退火算法介绍模拟退火算法(Simulated Annealing,SA)是一种基于蒙特卡洛方法的优化算法,由Kirkpatrick等人于1983年提出。

它模拟了固体物体从高温到低温时退火的过程,通过模拟这一过程来寻找问题的最优解。

首先,模拟退火算法需要生成一个初始解。

初始解是随机生成的,它代表了问题的一个可能解。

初始解的生成可以采用随机数生成方法,或者使用其他启发式算法生成。

然后,算法需要定义一个邻域结构来解空间。

邻域结构定义了问题的解的相邻解之间的关系。

在退火算法中,邻域结构是动态变化的,随着算法的进行,邻域结构会不断调整以适应的需求。

在退火准则方面,模拟退火算法使用了一个“接受准则”来决定是否接受一个邻域解。

接受准则基于Metropolis准则,它比较了当前解和邻域解之间的差异以及温度参数。

如果邻域解的质量更好,那么就接受它;否则,以一定的概率接受较差的解。

这个概率与温度成正比,随着温度降低,接受较差解的概率逐渐减小。

在算法的每个迭代中,温度参数会随着迭代次数逐渐降低,这意味着算法逐渐从随机转变为局部。

温度参数的降低速率决定了算法的接受较差解的概率的减小速率。

温度参数的决定是关键,它通常是一个退火函数的参数,根据经验选择。

总的来说,模拟退火算法是一种随机化的优化算法,通过模拟物理退火过程,在解空间时能够克服局部最优解,从而寻找全局最优解。

它的应用范围广泛,涵盖了诸多领域,如组合优化、图像处理、网络设计等。

但是,模拟退火算法的收敛速度相对较慢,需要很多次迭代才能找到最优解,因此在实际应用中需要根据具体问题进行合适的调整和优化。

数学建模之模拟退火算法PPT69页

数学建模之模拟退火算法PPT69页
数学建模之模拟退火算法
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例已知敌方100个目标的经度、纬度如下:
我方有一个基地,经度和纬度为(70,40)。

假设我方飞机的速度为1000公里/小时。

我方派一架飞机从基地出发,侦察完敌方所有目标,再返回原来的基地。

在敌方每一目标点的侦察时间不计,求该架飞机所花费的时间(假设我方飞机巡航时间可以充分长)。

这是一个旅行商问题。

我们依次给基地编号为1,敌方目标依次编号为2,3,…,101,最后我方基地再重复编号为102(这样便于程序中计算)。

距离矩阵102102)(⨯=ij d D ,其中ij d 表示表示j i ,两点的距离,102,,2,1, =j i ,这里D 为实对称矩阵。

则问题是求一个从点1出发,走遍所有中间点,到达点102的一个最短路径。

上面问题中给定的是地理坐标(经度和纬度),我们必须求两点间的实际距离。

设B A ,两点的地理坐标分别为),(11y x ,),(22y x ,过B A ,两点的大圆的劣弧长即为两点的实际距离。

以地心为坐标原点O ,以赤道平面为XOY 平面,以0度经线圈所在的平面为XOZ 平面建立三维直角坐标系。

则B A ,两点的直角坐标分别为:
)s i n ,c o s s i n ,c o s c o s
(11111y R y x R y x R A )s i n ,c o s s i n ,c o s c o s
(22222y R y x R y x R B 其中6370=R 为地球半径。

B A ,两点的实际距离
⎫⎛
=R d arccos , 化简得
]s i n s i n c o s c o s )(a r c c o s [c
o s 212121y y y y x x R d +-=。

求解的模拟退火算法描述如下:
(1)解空间
解空间S 可表为{102,101,,2,1 }的所有固定起点和终点的循环排列集合,即
}102,}101,,3,2{),,(,1|),,{(102101211021===ππππππ的循环排列为 S
其中每一个循环排列表示侦察100个目标的一个回路,j i =π表示在第i 次侦察j 点,初始解可选为)102,,2,1( ,本文中我们使用Monte Carlo 方法求得一个较好的初始解。

(2)目标函数
此时的目标函数为侦察所有目标的路径长度或称代价函数。

我们要求
∑=+=
101
1
211
102),,,(min i i i d f π
ππππ
而一次迭代由下列三步构成:
(3)新解的产生 ① 2变换法
任选序号 v u ,(v u <)交换u 与v 之间的顺序,此时的新路径为:
10211111ππππππππ +++-v u u v v u
② 3变换法
任选序号v u ,和w ,将u 和v 之间的路径插到w 之后,对应的新路径为(设w v u <<) 1021111ππππππππ ++-w v u w v u (4)代价函数差
对于2变换法,路径差可表示为
)()(1111+-+-+-+=∆v v u u v u v u d d d d f ππππππππ
(5)接受准则
⎩⎨
⎧≥∆∆-<∆=0
)
/exp(0 1f T f f P
如果0<∆f ,则接受新的路径。

否则,以概率)/exp(T f ∆- 接受新的路径,即若
)/exp(T f ∆-大于0到1之间的随机数则接受。

(6)降温
利用选定的降温系数α进行降温即:T T α←,得到新的温度,这里我们取9999.0=α。

(7)结束条件
用选定的终止温度30
10
-=e ,判断退火过程是否结束。

若e T <,算法结束,输出当前
状态。

我们编写如下的matlab 程序如下: clc,clear
load sj.txt %加载敌方100个目标的数据,数据按照表格中的位置保存在纯文本文件sj.txt 中
x=sj(:,1:2:8);x=x(:); y=sj(:,2:2:8);y=y(:); sj=[x y]; d1=[70,40]; sj=[d1;sj;d1]; sj=sj*pi/180; %距离矩阵d d=zeros(102); for i=1:101
for j=i+1:102
temp=cos(sj(i,1)-sj(j,1))*cos(sj(i,2))*cos(sj(j,2))+sin(sj(i,2))*sin(sj(j,2));
d(i,j)=6370*acos(temp);
end
end
d=d+d';
S0=[];Sum=inf;
rand('state',sum(clock));
for j=1:1000
S=[1 1+randperm(100),102];
temp=0;
for i=1:101
temp=temp+d(S(i),S(i+1));
end
if temp<Sum
S0=S;Sum=temp;
end
end
e=0.1^30;L=20000;at=0.999;T=1;
%退火过程
for k=1:L
%产生新解
c=2+floor(100*rand(1,2));
c=sort(c);
c1=c(1);c2=c(2);
%计算代价函数值
df=d(S0(c1-1),S0(c2))+d(S0(c1),S0(c2+1))-d(S0(c1-1),S0(c1))-d(S0(c2),S0(c2+1));
%接受准则
if df<0
S0=[S0(1:c1-1),S0(c2:-1:c1),S0(c2+1:102)];
Sum=Sum+df;
elseif exp(-df/T)>rand(1)
S0=[S0(1:c1-1),S0(c2:-1:c1),S0(c2+1:102)];
Sum=Sum+df;
end
T=T*at;
if T<e
break;
end
end
% 输出巡航路径及路径长度
S0,Sum
计算结果为44小时左右。

其中的一个巡航路径如下图所示:。

相关文档
最新文档