【VIP专享】2014-2015高中数学必修四三角函数公式大全

合集下载

必修4三角函数公式大全(经典)

必修4三角函数公式大全(经典)

三角函数 公式大全 姓名:1、两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotAcotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+2、倍角公式tan2A =Atan 12tanA2-Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A3、三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 4、半角公式sin(2A )=2cos 1A- cos(2A )=2cos 1A+ tan(2A )=AAcos 1cos 1+- cot(2A )=AA cos 1cos 1-+ tan(2A )=A A sin cos 1-=AAcos 1sin + 5、和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos2b a +sin 2ba - cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+6、积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb =21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]7、诱导公式sin(-a) = -sinacos(-a) = cosasin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sinasin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sina cos(π+a) = -cosa8、万能公式sina=2)2(tan 12tan2aa +cosa=22)2(tan 1)2(tan 1aa+-tana=2)2(tan 12tan2aa - 9、其它公式a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a •sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a] 1+sin(a) =(sin2a +cos 2a )21-sin(a) = (sin 2a -cos 2a)2公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin 〔2kπ+α〕= sinα cos 〔2kπ+α〕= cosα tan 〔2kπ+α〕= tanα cot 〔2kπ+α〕= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin 〔π+α〕= -sinα cos 〔π+α〕= -cosα tan 〔π+α〕= tanα cot 〔π+α〕= cotα 公式三:任意角α与 -α的三角函数值之间的关系: sin 〔-α〕= -sinα cos 〔-α〕= cosα tan 〔-α〕= -tan α cot 〔-α〕= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin 〔π-α〕= sinα cos 〔π-α〕= -cosα tan 〔π-α〕= -tanα cot 〔π-α〕= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin 〔2π-α〕= -sinα cos 〔2π-α〕= cosα tan 〔2π-α〕= -tanα cot 〔2π-α〕= -cotα公式六: 2π±α及23π±α与α的三角函数值之间的关系:sin 〔2π+α〕= cosα cos 〔2π+α〕= -sinαtan 〔2π+α〕= -cotα cot 〔2π+α〕= -tanαsin 〔2π-α〕= cos α cos 〔2π-α〕= sinαtan 〔2π-α〕= cotα cot 〔2π-α〕= tanαsin 〔23π+α〕= -cosα cos 〔23π+α〕= sinαtan 〔23π+α〕= -cotα cot 〔23π+α〕= -tanαsin 〔23π-α〕= -cosα cos 〔23π-α〕= -sinαtan 〔23π-α〕= cotα cot 〔23π-α〕= tanαA•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A例题:sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ 解:sinα=m sin(α+2β) sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1) tan(α+β)=(1+m)/(1-m)tanβ。

最新数学必修四三角函数公式总结与归纳

最新数学必修四三角函数公式总结与归纳
cos(α-β)=cosαcosβ+sinαsinβ,
sin(α+β)=sinαcosβ+cosαsinβ,
sin(α-β)=sinαcosβ-cosαsinβ
tan(α+β)= ,
tan(α-β)= ,
4、二倍角的三角函数:
sin2α=2sinαcosα,
cos2α=cos2α-sin2α
=1-2sin2α
合计50100%7、其他公式:
sinαcosβ= [sin(α+β)+sin(α-β)],
cosαsinβ= [sin(α+β)-sin(α-β)],
这里有营业员们向顾客们示范着制作各种风格炯异的饰品,许多顾客也是学得不亦乐乎。据介绍,经常光顾“碧芝”的都是些希望得到世界上“独一无二”饰品的年轻人,他们在琳琅满目的货架上挑选,然后亲手串连,他们就是偏爱这种DIY的方式,完全自助在现场,有上班族在里面精挑细选成品,有细心的小女孩在仔细盘算着用料和价钱,准备自己制作的原料。可以想见,用本来稀奇的原料,加上别具匠心的制作,每一款成品都必是独一无二的。而这也许正是自己制造所能带来最大的快乐吧。cosαcosβ= [cos(α+β)+cos(α-β)],
sin( +α)=cosα, cos( +α)=-sinα
sin( -α)=cosα, cos( -α)=sinα
2、同角三角函数基本关系:
sin2α+cos2α=1,
=tanα,
tanα×cotα=1,
1+tan2α= ,
1+cot2α=
cosα= ,
sinα=
3、两角和与差的三角函数:
cos(α+β)=cosαcosβ-sinαsinβ,

必修4三角函数公式大全(经典)

必修4三角函数公式大全(经典)

三角函数 公式大全姓名:1两角和公式sin(A+B) = sin AcosB+cosAs inB sin( A-B) = sin AcosB-cosAs inBcos(A+B) = cosAcosB-s inAsinB cos(A-B) =cosAcosB+s inAsinB2、倍角公式2 2 2 2 Cos2A = Co^A-Si n 2A=2Cos 2A -仁 1-2si n 2A3、 三倍角公式3sin3A = 3sinA-4(sinA)3nntan3a = tana ・ tan(— +a) • tan( -a)334、 半角公式丄 ‘A 、 1 - cos A sin Atan()==2si nA1 + cos A5、和差化积a b a —b sina+s in b=2s in cos —2 2, c a +b a —bcosa+cosb = 2cos cos —2 2sin(a b)tan a+ta nb=cos acosba b . a - bsin2 2 cosa-cosb = -2sin^sin 口2 26、积化和差1cosacosb = - [cos(a+b)+cos(a-b)]21cosas inb = — [si n(a+b)-si n(a-b)]22 1sin acosb = - [si n(a+b)+si n(a-b)]2tan(A+B)=业 凹B 1 - tan Ata nBta n( A-B)= tan A - ta nB 1 tan Ata nB cot(A+B)=cotAcotB -1 cotB cotAcot(A-B)=cotAcotB 1 cotB - cotAtan2A =2tanA 1「ta n 1 2ASin 2A=2Si nA?CosAsin(t )=1「cosA2 cosA1「cosA 1 cosA3cos3A = 4(cosA) -3cosA吨)=1 cosA1 -cosA7、诱导公式sin( +a) = cosa 2 sin( n +a)-sina8、万能公式cos(-a) = cosa cos( +a) = -sina2cos( n +a) -cosaa 2ta n2sina=—a 2 1 (tan —)229、其它公式a 21 -(ta n^) cosa= -------- 2—1 (ta n —)22 a 2ta n2tana=—a 21 - (ta n_)2a?sina+b?cosa=(a 2 b 2) x sin(a+c)[其中 tanc=—] a a?sin(a-b?cos(a) = J(a 2 +b 2) x cos(a-c)其中 tan(c)=2] b aa 2 aa 2 1+s in(a) =(s in +cos —)1-s in(a) = (sin -cos-)22 22公式一:设a 为任意角,终边相同的角的同一三角函数的值相等:sin (2k 卄 a) = sin a cos (2k 卄 a = cos a tan (2k n+ a) = tan acot (2k n+ a) = cot a公式二:设a 为任意角,n +的三角函数值与a 的三角函数值之间的关系:sin ( n+ o) = -sin a cos ( n+ a) = - cos a tan ( n+ a) = tan acot ( n+ a) = cot a公式三:任意角a 与-a 的三角函数值之间的关系:sin (-a) = -sin a cos (- a = cos a tan (-a) = -tan acot (- a) = -cot a公式四:利用公式二和公式三可以得到na 与a 的三角函数值之间的关系: sin (n a = sin atan (n a) = -tan a 公式五: 利用公式-和公式三可以得到 sin (2 n a) = -sin a tan (2 n a = -tan asin( -a) = -sinasin(— -a) = cosa cos( -a) = sina2 2sin( -a) = sina cos( -n ) = -cosacos (n a) = - cos a cot ( n- a) = -cot a2 n - a 与a 的三角函数值之间的关系:cos (2 n a) = cos a cot (2 n a) = -cot a公式六: -±及 — 土与a 的三角函数值之间的关系: 2 2s t A %)B2—2ABcos (厂)X sin 'tarcsin[(A sin=Bsin「)"2 +B 2 +2ABcos© ®)例题:已知 sin a =m sin( a +2|m )<1 求证 tan( a +B )=(1+m)/(m )tan B 解:sin a =msin( a +2 B ) sin(a+ -B )=msin(a+ B + B )sin(a+ B )cocos (a+ B )sin B =msin(a+ B )cos B +mcos(a+ B )sin B sin(a+ B )cos-m)=cos(a+ B )sin B (m+1) tan( a + B )=(1+m-m )tan B1sinasinb = - [cos(a+b)-cos(a-b)]sin (— + a) = COS a2COs ( + a) = -sin a2tan (+ a) = -cot a 2 COt ( + a) = -tan a2sin (- a) = COS a 2COs ( - a) = sin a2tan ( - a) = cot a 2sin (+ a) = -COSaCOt ( - a) = tan a2COS (+ a) =sintan 3 ■:+ a) = -COt aCOt ( — + a) = -ta nsin-a) =-COs aCOS ( 主-a) = -sin tan (訂)=COt a3兀COt (- a)2=tanA?sin( 3 t+ 0 )+ B?sin(。

三角函数公式大全及记忆口诀

三角函数公式大全及记忆口诀

三角函数公式大全及记忆口诀一、正弦函数(sine function)公式:1. 正弦函数的定义:在直角三角形中,正弦函数是对边与斜边之比,表示为sinθ。

2. 正弦函数的基本关系式:sinθ = 对边 / 斜边3. 弦函数的平方和恒等式:sin²θ + cos²θ = 1二、余弦函数(cosine function)公式:1. 余弦函数的定义:在直角三角形中,余弦函数是邻边与斜边之比,表示为cosθ。

2. 余弦函数的基本关系式:cosθ = 邻边 / 斜边3. 弦函数与余弦函数的关系:cosθ = sin(90° - θ)三、正切函数(tangent function)公式:1. 正切函数的定义:在直角三角形中,正切函数是对边与邻边之比,表示为tanθ。

2. 正切函数的基本关系式:tanθ = 对边 / 邻边3. 弦函数与正切函数的关系:tanθ = sinθ / cosθ四、余切函数(cotangent function)公式:1. 余切函数的定义:在直角三角形中,余切函数是邻边与对边之比,表示为cotθ。

2. 余切函数的基本关系式:cotθ = 邻边 / 对边3. 弦函数与余切函数的关系:cotθ = 1 / tanθ = cosθ / sinθ五、正割函数(secant function)公式:1. 正割函数的定义:在直角三角形中,正割函数是斜边与邻边之比,表示为secθ。

2. 正割函数的基本关系式:secθ = 斜边 / 邻边= 1 / cosθ六、余割函数(cosecant function)公式:1. 余割函数的定义:在直角三角形中,余割函数是斜边与对边之比,表示为cscθ。

2. 余割函数的基本关系式:cscθ = 斜边 / 对边= 1 / sinθ七、和差公式:1. 正弦函数和差公式:sin(θ±φ) = sinθcosφ ± cosθsinφ2. 余弦函数和差公式:cos(θ±φ) = cosθcosφ ∓ sinθsinφ3. 正切函数和差公式:tan(θ±φ) = (tanθ ± tanφ) / (1 ∓tanθtanφ)八、倍角公式:1. 正弦函数倍角公式:sin2θ = 2sinθcosθ2. 余弦函数倍角公式:cos2θ = cos²θ - sin²θ = 2cos²θ - 1= 1 - 2sin²θ3. 正切函数倍角公式:tan2θ = (2tanθ) / (1 - tan²θ)九、半角公式:1. 正弦函数半角公式:sin(θ/2) = ±√[(1 - cosθ) / 2]2. 余弦函数半角公式:cos(θ/2) = ±√[(1 + cosθ) / 2]3. 正切函数半角公式:tan(θ/2) = ±√[(1 - cosθ) / (1 +cosθ)]十、和差化积公式:1. 正弦函数和差化积公式:sinθ ± sinφ = 2sin[(θ ±φ)/2]cos[(θ ∓ φ)/2]2. 余弦函数和差化积公式:cosθ + cosφ = 2cos[(θ +φ)/2]cos[(θ - φ)/2]3. 正切函数和差化积公式:tanθ ± tanφ = sin(θ ± φ) /cosθcosφ以上是三角函数的常用公式。

(完整版)三角函数三角函数公式表

(完整版)三角函数三角函数公式表

(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。

公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。

公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。

公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。

公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。

公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。

高中数学必修四三角函数公式大全

高中数学必修四三角函数公式大全

高中三角函数公式大全三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a -cosa+cosb = 2cos2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 诱导公式sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin 万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +-tana=2)2(tan 12tan2a a- 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1 sec(a) =acos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinαcos (π+α)= -co sαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosαcos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)2009-07-08 16:13公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a -b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1) tan(α+β)=(1+m)/(1-m)tanβ。

数学必修四所有三角函数公式

数学必修四所有三角函数公式在数学中,三角函数是一类重要的运算工具,可以用来描述图形的形状、大小和关系,也可以解决一些复杂的实际问题,是必学的基本知识。

数学必修四是高中阶段数学课程中最重要的一门课程,其中涉及三角函数的知识十分重要,下面就来回顾一下数学必修四中所有的三角函数公式。

一、正弦函数公式正弦函数的定义为y=sinx,其中x为弧度,y为正弦值。

正弦函数的图像是一条波浪线,其最大值为1,最小值为-1,两个极值出现的位置和周期T为2π,表示的公式为:sinx=sin(x+2kπ)。

此外,正弦函数的反函数也重要,其公式为:arcsinx=x+2kπ,其中k为任意整数。

二、余弦函数公式余弦函数的定义为y=cosx,其中x为弧度,y为余弦值。

余弦函数的图像是一条类似V的波浪线,其最大值为1,最小值为-1,两个极值出现的位置和周期T为2π,表示的公式为:cosx=cos(x+2kπ)。

此外,余弦函数的反函数也重要,其公式为:arccosx=x+2kπ,其中k为任意整数。

三、正切函数公式正切函数的定义为y=tanx,其中x为弧度,y为正切值。

正切函数的图像是一条锯齿状的曲线,其最大值变化不定,但一般不大于3,最小值变化不定,但一般不小于-3,表示的公式为:tanx=tan(x+2kπ),其中k为任意整数。

此外,正切函数的反函数也重要,其公式为:arctanx=x+2kπ,其中k为任意整数。

四、反正弦函数公式反正弦函数的定义为y=arcsinx,其中x为正弦值,y为对应的弧度值,表示的公式为:arccosx=cosx+2kπ,其中k为任意整数。

五、反余弦函数公式反余弦函数的定义为y=arccosx,其中x为余弦值,y为对应的弧度值,表示的公式为:arccosx=cosx+2kπ,其中k为任意整数。

六、反正切函数公式反正切函数的定义为y=arctanx,其中x为正切值,y为对应的弧度值,表示的公式为:arctanx=tanx+2kπ,其中k为任意整数。

数学必修四所有三角函数公式

数学必修四所有三角函数公式“三角函数”是从古希腊数学家凯撒伯罗的一篇论文中来的,它开始于一个环状几何图形的旋转动作,因此他们又被称为“旋转函数”。

三角函数在数学必修四中有着广泛的应用,其基本公式包括正弦函数公式、余弦函数公式、正切函数公式,以及余切函数公式等。

正弦函数公式:sin x=y/r其中,x为角度值(单位为弧度),y为三角形直角边,r为斜边。

此函数表示,角度X对应的正弦值为y/r。

余弦函数公式:cos x=a/r其中,x为角度值(单位为弧度),a为三角形的邻边,r为斜边。

此函数表示,角度X对应的余弦值为a/r。

正切函数公式:tan x=y/a其中,x为角度值(单位为弧度),y为三角形的直角边,a为邻边。

此函数表示,角度X对应的正切值为y/a。

余切函数公式:cot x=a/y其中,x为角度值(单位为弧度),a为三角形的邻边,y为直角边。

此函数表示,角度X对应的余切值为a/y。

此外,还有一些特殊的三角函数,比如正割函数sec x、余割函数csc x、双曲正切函数tanh x和双曲余切函数coth x等。

正割函数公式:sec x=r/a其中,x为角度值(单位为弧度),r为三角形的斜边,a为邻边。

此函数表示,角度X对应的正割值为r/a。

余割函数公式:csc x=r/y其中,x为角度值(单位为弧度),r为三角形的斜边,y为直角边。

此函数表示,角度X对应的余割值为r/y。

双曲正切函数公式:tanh x=y/(ar)其中,x为角度值(单位为弧度),y为三角形的直角边,a为邻边,r为斜边。

此函数表示,角度X对应的双曲正切值为y/(ar)。

双曲余切函数公式:coth x=ar/y其中,x为角度值(单位为弧度),a为三角形的邻边,r为斜边,y为直角边。

此函数表示,角度X对应的双曲余切值为ar/y。

三角函数的基本运算法则是:1.sin(-x)=-sin x2.cos(-x)=cos x3.tan(-x)=-tan x4.sec(-x)=sec x5.csc(-x)=csc x6.cot(-x)=-cot x7.sin(π/2+x)=cos x8.cos(π/2+x)=-sin x9.tan(π/2+x)=-cot x10.sec(π/2+x)=-csc x11.csc(π/2+x)=-sec x12.cot(π/2+x)=tan x因此,数学必修四中所有的三角函数公式可以总结如下:正弦函数公式:sin x=y/r余弦函数公式: cos x=a/r正切函数公式:tan x=y/a余切函数公式:cot x=a/y正割函数公式:sec x=r/a余割函数公式:csc x=r/y双曲正切函数公式:tanh x=y/(ar)双曲余切函数公式:coth x=ar/y以上就是数学必修四中所有三角函数的基本公式及其基本运算法则了。

数学必修四所有三角函数公式

数学必修四所有三角函数公式三角函数是数学中常用的一类函数,它们可以反映出特定角度对应的角对应对应物理量变化,并用于求解有关三角形与圆的问题,在数学学习中也非常重要。

针对数学必修四的学习目标,下面将详细介绍所有三角函数的公式及其各项特性。

首先,我们来讨论正弦函数的公式:$sintheta=frac{opposite}{hypotenuse}$它表示的是特定角度$theta$的反对边,其对应的斜边的比值。

此外,它还可以用指数形式表示:$sintheta=e^{itheta}-e^{-itheta}$其次,我们来讨论余弦函数的公式:$costheta=frac{adjacent}{hypotenuse}$它表示的是特定角度$theta$的邻边,其对应的斜边的比值。

此外,它也有指数形式:$costheta=e^{itheta}+e^{-itheta}$再来,我们看看正切函数的公式:$tantheta=frac{opposite}{adjacent}$它表示的是特定角度$theta$的反对边,其对应的邻边的比值。

此外,它也有指数形式:$tantheta=frac{e^{itheta}-e^{-itheta}}{e^{itheta}+e^{-ithet a}}$最后,我们来看看反正弦函数的公式:$arcsin x=sin^{-1} x=theta$它表示的是特定余弦值x,对应的正弦函数角度$theta$。

此外,它也有指数形式:$arcsin x=sin^{-1} x=iln(x+sqrt{x^{2}+1})$上面就是数学必修四中所有三角函数的公式,下面我们来讨论它们的各自特性。

正弦函数的特点是反映出特定角度的反对边和斜边的比值,理解它可以帮助我们求解有关三角形的问题。

余弦函数的特点是反映出特定角度的邻边和斜边的比值,理解它可以帮助我们解决有关三角形的问题。

正切函数的特点是反映出特定角度的反对边和邻边的比值,理解它可以帮助我们解决有关三角形的问题。

高中数学必修4三角函数公式大全

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号.(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα.当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”.所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变,符号看象限.公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限.各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内切函数是“+”,弦函数是“-”;第四象限内只有余弦是“+”,其余全部是“-”.上述记忆口诀,一全正,二正弦,三正切,四余弦其他三角函数知识:同角三角函数基本关系⒈同角三角函数的基本关系式倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法六角形记忆法:(参看图片或参考资料链接)构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型.(1)倒数关系:对角线上两个函数互为倒数;(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积. (主要是两条虚线两端的三角函数值的乘积).由此,可得商数关系式.(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方.两角和差公式⒉两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ倍角公式⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 2tanαtan2α=—————1-tan^2(α)半角公式⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosαsin^2(α/2)=—————21+cosαcos^2(α/2)=—————21-cosαtan^2(α/2)=—————1+cosα。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中三角函数公式大全三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA +tan(A-B) =tanAtanB 1tanB tanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotA cotB 1cotAcotB -+倍角公式tan2A =A tan 12tanA 2-Sin2A=2SinA•CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(+a)·tan(-a)3π3π半角公式sin()=2A 2cos 1A -cos()=2A 2cos 1A +tan()=2A A A cos 1cos 1+-cot()= 2A A A cos 1cos 1-+tan()==2A A A sin cos 1-AA cos 1sin +和差化积sina+sinb=2sin cos 2b a +2b a -sina-sinb=2cos sin 2b a +2b a -cosa+cosb = 2cos cos 2b a +2b a -cosa-cosb = -2sin sin 2b a +2b a -tana+tanb=b a b a cos cos )sin(+积化和差 sinasinb = -[cos(a+b)-cos(a-b)]21cosacosb = [cos(a+b)+cos(a-b)]21sinacosb = [sin(a+b)+sin(a-b)]21cosasinb = [sin(a+b)-sin(a-b)]21诱导公式 sin(-a) = -sina cos(-a) = cosa sin(-a) = cosa 2πcos(-a) = sina 2πsin(+a) = cosa2πcos(+a) = -sina2πsin(π-a) = sinacos(π-a) = -cosa sin(π+a) = -sinacos(π+a) = -cosatgA=tanA =aa cos sin 万能公式sina=2)2(tan 12tan 2a +cosa=22)2(tan 1)2(tan 1a +-tana=2)2(tan 12tan 2a a -其它公式a•sina+b•cosa=×sin(a+c) [其中tanc=])b (a 22+a b a•sin(a)-b•cos(a) = ×cos(a-c) [其中tan(c)=])b (a 22+b a 1+sin(a) =(sin +cos )22a 2a 1-sin(a) = (sin -cos )22a 2a 其他非重点三角函数csc(a) = a sin 1sec(a) =a cos 1双曲函数sinh(a)=2e -e -a a cosh(a)=2e e -a a +tg h(a)=)cosh()sinh(a a 公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanα cot (-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα 公式六: ±α及±α与α的三角函数值之间的关系: 2π23πsin (+α)= cosα 2πcos (+α)= -sinα 2πtan (+α)= -cotα 2πcot (+α)= -tanα 2πsin (-α)= cosα 2πcos (-α)= sinα 2πtan (-α)= cotα 2πcot (-α)= tanα 2πsin (+α)= -cosα 23πcos (+α)= sinα 23πtan (+α)= -cotα 23πcot (+α)= -tanα 23πsin (-α)= -cosα 23πcos (-α)= -sinα 23πtan (-α)= cotα 23πcot (-α)= tanα 23π(以上k ∈Z) 这个物理常用公式我费了半天的劲才输进来,希望对大家有用A•sin(ωt+θ)+ B•sin(ωt+φ) =×sin )cos(222ϕθ⋅++AB B A )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A 三角函数公式证明(全部)2009-07-08 16:13公式表达式 乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac>0 注:方程有一个实根 b2-4ac<0 注:方程有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1) tan(α+β)=(1+m)/(1-m)tanβ。

相关文档
最新文档