初二数学第二三章重难点

合集下载

初二上册数学重点知识点归纳

初二上册数学重点知识点归纳

初二上册数学重点知识点归纳初二,最容易被忽略的年级,却也是最重要的阶段。

那么如何正确利用初二这一年学习数学呢?以下是店铺分享给大家的初二上册数学重点知识点,希望可以帮到你!初二上册数学重点知识点一第一章勾股定理1、探索勾股定理①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗①如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0③平方根:一般地,如果一个数x的平方等于a,即x2=a。

那么这个数x就叫做a的平方根,也叫做二次方根④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数①实数:有理数和无理数的统称②实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数②=(a≥0,b≥0),=(a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式初二上册数学重点知识点二第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。

初中数学连接紧密的知识点

初中数学连接紧密的知识点

初中各年级数学知识点之间的联系七年级上册第一章丰富的图形世界1.生活中的立体图形2.展开与折叠3.截一个几何体4.从不同方向看5.生活中的平面图形第二章有理数及其运算(整个初中和高中数学的计算基础,比方说负数比较大小,数的开方) 1.数怎么不够用了2.数轴3.绝对值(0)0(0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩4.有理数的加法5.有理数的减法〔加入了负数的减法要变号〕6.有理数的加减混合运算7.水位的变化8.有理数的乘法9.有理数的除法10.有理数的乘方11.有理数的混合运算12.计算器的使用第三章字母表示数〔为后面解二元一次方程和解一元二次方程,甚至方程组和不等式方程组计算打好基础基础〕1.字母能表示什么2.代数式3.代数式求值4.合并同类项5.去括号〔中学学习计算最容易出错的地方,去括号变号的规律〕6.探索规律第四章平面图形及其位置关系1.线段、射线、直线2.比较线段的长短3.角的度量与表示4.角的比较5.平行6.垂直7.有趣的七巧板8.图案设计第五章一元一次方程 〔把方程带入解决实际问题中间,这个知识点是学期的考试重点。

初三的解一元二次方程中,需要变换成解二个一元一次方程,所以这章的学习会影响到后面只是的学习〕1.你今年几岁了2.解方程######################################################一元一次方程:⑴在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

#⑵解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

#⑶关于方程ax b =解的讨论①当0a ≠时,方程有唯一解b x a=; ②当0a =,0b ≠时,方程无解③当0a =,0b =时,方程有无数解;此时任一实数都是方程的解。

######################################################3.日历中的方程4.我变胖了5.打折销售6.“希望工程”义演7.能追上小明吗8.教育储蓄第六章 生活中的数据1.100万有多大2.科学记数法3.扇形统计图4.月球上有水吗5.统计图的选择第七章 可能性1.一定摸到红球吗2.转盘游戏3.谁转出的四位数大 七年级下册第一章 整式的运算 〔这些公式很多都是在整个初中甚至高中都要用到。

初二数学上册重要知识点归纳第二、三章鲁教版

初二数学上册重要知识点归纳第二、三章鲁教版

初二数学上册重要知识点归纳(第二、三章鲁教版)初二数学上册重要知识点归纳(第二、三章鲁教版)第二章勾股定理2.1探索勾股定理勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2 +b2=c2 ,即直角三角形两直角边的平方和等于斜边的平方。

(一个直角三角形,以它的两直角边为边长所作的两正方形面积之和等于以它的斜边为边长所作的正方形的面积)注意:电视机有多少英寸,指的是电视屏幕对角线的长度。

2.2勾股数1.勾股定理的逆定理:若三角形的三边长a,b,c满足a2 +b2=c2,则该三角形是直角三角形。

在&#8710;ABC中, a,b,c为三边长,其中 c为最大边,若a2 +b2=c2,则&#8710;ABC为直角三角形;若a2 +b2c2 ,则&#8710;ABC为锐角三角形;若a2 +b2c2 ,则&#8710;ABC为钝角三角形。

2.勾股数:满足a2 +b2=c2 的三个正整数(即能构成一个直角三角形三边的一组正整数),称为勾股数(勾股数是正整数)。

规律:一组能构成直角三角形的三边的数,同时扩大或缩小同一倍数(即同乘以或除以同一个正数),仍能够成直角三角形。

一组勾股数的倍数不一定是勾股数,因为其倍数可能是小数,只有整数倍数才仍是勾股数。

常用勾股数:3,4,5(三四五) 9,12,15(3,4,5的三倍) 5,12,13(5.12记一生)(八月十五在一起) 6,8,10(3,4,5的两倍) 7,24,25(企鹅是二百五)勾股数须知:连续的勾股数只有3,4,5 连续的偶数勾股数只有6,8,10第三章实数无理数有理数总可以用有限小数或无限循环小数表示。

反过来,任何有限小数或无限循环小数也都是有理数。

1.无理数的概念:无限不循环小数叫做无理数(两个条件:①无限②不循环)。

练习:下列说法正确的是()(A)无限小数是无理数;(B)带根号的数是无理数;(C)无理数是开方开不尽的数;(D)无理数包括正无理数和负无理数2.无理数: (1)特定意义的数,如∏;(2)特定结构的数;如2.02002000200002…(3)带有根号的数,但根号下的数字开不尽方,如3.分类:正无理数和负无理数。

冀教版初中数学各章节诠释 重难点标注

冀教版初中数学各章节诠释 重难点标注

级 第二十一章 四边形
21.1平行四边形的性质
21.2平行四边形的判定
下 册
初中几何中最重要的一章,没有之一。涉及前 面所学所有的几何知识铺垫,另外又有新知识 点的加入。
21.3三角形的中位线 21.4矩形 21.5菱形 21.6正方形
21.7多边形的内角和与外角和
第二十二章 一次函数
22.1一次函数
和它的运用。
28.5 弧长和扇形面积的计算
回顾与反思
三种方法需掌握,同时补充十字相乘法。 压轴题中的一道题型的出处。 新增小节,必考题。
对正反“A”、“8”字图形和字母形的理解是重难点。 这两节在前面打好基础后不难理解。
重新认识数与角度的关系是重点。 如何构造Rt△,利用三角函数是难点。
同一次函数理解即可。 重难点在图形面积的变化。
级 上
第三章 代数式 册
如何理解用字母表示数,如何用字母表示规律 问题是学生不易掌握。
第四章 整式的加减
本章难点是对负号的再次变项运用、灵活运 用,依然起到基础铺垫作用。
第五章 一元一次方程
本章涉及“移项变号”这一难点,学生新学, 但极易忘。而方程应用又是一个理解上的难 点,小学基本不用方程思想。本章重思想—— 方程思想。
中考必考方程,占10分左右。解法和运用必须 24.3 一元二次方程的根与系数的关系*
扎实。
24.4 一元二次方程的应用
回顾与反思
第二十五章:相似形
25.1 比例线段
25.2 平行线分线段成比例

25.3 相似三角形
继全等三角形后,难点的一个三角形章节。中 25.4 相似三角形的判定
年 考中的必考点,分值在20分左右。涉及多种数 25.5 相似三角形的性质

新版湘教版秋八年级数学上册第二章三角形课题三角形的基本概念教学设计

新版湘教版秋八年级数学上册第二章三角形课题三角形的基本概念教学设计

新版湘教版秋八年级数学上册第二章三角形课题三角形的基本概念教学设计一. 教材分析湘教版秋八年级数学上册第二章三角形课题三角形的基本概念是本学期数学课程的重要组成部分。

这部分内容主要介绍了三角形的定义、分类、性质以及三角形的相关概念。

通过这部分的学习,学生可以对三角形有更深入的了解,为后续的三角形相关题目打下坚实的基础。

二. 学情分析在开始本节课的学习之前,学生已经掌握了实数、平面几何的基本概念,具备了一定的逻辑思维能力和空间想象力。

但是,对于三角形的一些基本概念,如三角形的定义、分类、性质等,学生可能还不够熟悉。

因此,在教学过程中,教师需要注重引导学生理解并掌握这些基本概念。

三. 教学目标1.知识与技能:使学生了解三角形的基本概念,掌握三角形的分类,能运用三角形的性质解决一些简单问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生发现问题、分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学与生活实际的联系。

四. 教学重难点1.重点:三角形的基本概念、分类和性质。

2.难点:三角形性质的运用。

五. 教学方法1.情境教学法:通过生活实例引入三角形的基本概念,激发学生的学习兴趣。

2.启发式教学法:引导学生主动思考、发现问题、解决问题。

3.合作学习法:学生进行小组讨论,培养学生的团队合作精神。

4.巩固练习法:通过适量练习,使学生掌握三角形的基本概念和性质。

六. 教学准备1.教具:三角板、直尺、圆规等。

2.课件:三角形的相关图片、动画、PPT等。

3.练习题:针对三角形基本概念的练习题。

七. 教学过程1.导入(5分钟)利用生活实例,如电线塔、自行车三角架等,引导学生思考:这些物体为什么都要用到三角形呢?从而引出三角形的基本概念。

2.呈现(10分钟)通过PPT或板书,呈现三角形的基本概念、分类和性质。

让学生初步了解三角形的定义、分类和性质。

(整理)《数学分析》第二章 极限与连续.

(整理)《数学分析》第二章 极限与连续.

第二章 极限与连续一、本章知识脉络框图二、本章重点及难点(一)重点:极限的定义与性质、数列极限和一元函数极限的计算、两个重要极限的运用、归结原则、柯西准则以及有界闭集上连续函数的性质.(二)难点运用柯西准则和归结原则进行证明、理解多元函数重极限与累次极限的概念、有界闭集上连续函数的性质以及一致连续性.三、本章的基本知识要点本章符号说明::∀ 每一个或任给的;:∃ 至少有一个或存在;⇔:充分必要条件. (一)数列极限1. 数列极限定义lim 0,0,n n a a N ε→∞=⇔∀>∃>当n N >时,有.n a a ε-<注:定义中的N 可不取整数,n a a ε-<可以是.n a a ε-≤定理:增加、改变或去掉数列的有限项, 不影响数列的收敛性和极限. 重排不改变数列敛散性.数列极限的等价定义:(1) 0,0,N ε∀>∃> 当n N >时有,n a a k ε-< 其中k 为某个正数. (2) 0,0,c N ε∀<<∃> 当n N >时有,n a a k ε-<其中c 与k 为某个正数. 2. 收敛数列的性质(1) 唯一性定理:每个收敛的数列只有一个极限. (2) 有界性定理:收敛的数列必定有界.(3) 保号性定理:若lim n n a a →∞=,则对任意(),r a r a <>或 ,N n N ∃∀>, 有n a r > (或n a r <).(4) 保不等式性定理:若lim ,lim n n n n a b →∞→∞都存在,且,n n N n N a b ∃∀>≤有,则lim lim .n n n n a b →∞→∞≤(5) 迫敛性定理:设lim lim .n n n n a b a →∞→∞== 数列{}n c 满足:,N n N ∃∀>有 n n n a c b ≤≤,则数列{}n c 收敛,且lim .n n c a →∞=(6) 四则运算法则:lim ,lim ,i)lim();ii)lim ;iii)lim,0,0.n n n n n n n n n n n n n na ab b a b a b a b a b a ab b b b →∞→∞→∞→∞→∞==±=±⋅=⋅=≠≠设则其中(7) 与子列的关系:数列{}n a 收敛⇔数列{}n a 的任何非平凡子列都收敛. 3. 数列极限存在的条件 递增数列:121n n a a a a +≤≤≤≤; 递减数列:121n n a a a a +≥≥≥≥.(1) 单调有界定理:在实数系中,有界的单调数列必有极限.(2) 柯西收敛准则:0,,,,||.n m N n m N a a εε∀>∃∃∀>-<(二)函数极限1. 函数极限和非正常极限概念 函数极限定义(通过对比加以理解):(1) lim ()0,0,,().x f x A k x k f x A εε→+∞=⇔∀>∃>>-<当时恒有(2) lim ()0,0,,().x f x A k x k f x A εε→-∞=⇔∀>∃><--<当时恒有(3) lim ()0,0,,().x f x A k x k f x A εε→∞=⇔∀>∃>>-<当时恒有(4) 00lim ()0,0,0,().x x f x A x x f x A εδδε→=⇔∀>∃><-<-<当时恒有(5) 00lim ()0,0,0,().x x f x A x x f x A εδδε-→=⇔∀>∃>-<-<-<当时恒有 (6) 00lim ()0,0,0,().x x f x A x x f x A εδδε+→=⇔∀>∃><-<-<当时恒有 上述左极限0lim ()x x f x -→和右极限0lim ()x x f x +→也可以写成0(0)f x -和0(0)f x +. 定理:000lim ()(0)(0).x x f x A f x f x A →=⇔-=+=非正常极限定义(只列出2个,其余可以类似写出):(1) 0lim ()x x f x →=-∞00,0,0||,().M x x f x M δδ⇔∀>∃><-<<-当时恒有(2) lim ()x f x →∞=+∞0,0,||,().M k x k f x M ⇔∀>∃>>>当时恒有2. 函数极限的基本性质下面只以0lim ()x x f x →为代表来说明,其余类型极限的性质可以类似写出.(1) 唯一性定理:若0lim ()x x f x →存在,则极限唯一.(2) 局部有界性定理:若0lim ()x x f x →存在,则()f x 在0x 的某个空心邻域00()U x 内有界.(3) 局部保号性定理:若0lim (),x x f x A →=则r A ∀<(或r A >),0,δ∃>当00(,)x U x δ∈时,有()f x r >(或()f x r <).(4)保不等性定理:设0lim ()x x f x →与0lim ()x x g x →都存在,且在某邻域00(;)U x δ内有()(),f xg x ≤则0lim ()lim ().x x x x f x g x →→≤(5) 迫敛性定理:设00lim ()lim (), x x x x f x g x A →→==且在某邻域00(;)U x δ内有()() ()f x h x g x ≤≤ 则0lim ().x x h x A →=(6) 四则运算法则:lim (),lim (),(1)lim(()());(2)lim ()();()(3)lim,0.()x x x x x x x x x x f x A g x B f x g x A B f x g x A B f x AB g x B→→→→→==±=±⋅=⋅=≠设则其中3.函数极限存在的条件(1) 归结原则(也称为海涅定理):设()f x 在00(;)U x δ内有定义. 0lim ()x x f x →存在⇔任意含于邻域00(;)U x δ且以0x 为极限的数列{},n x 极限lim ()n n f x →∞存在且相等.(2) 柯西准则:设函数()f x 在邻域00(;')U x δ内有定义. 0lim ()x x f x →存在⇔0,ε∀>∃正数('),δδ<00',''(;),x x U x δ∀∈有|(')('')|.f x f x ε-<4. 两个重要极限(1) 0sin lim1.x xx→=(2) 1lim(1).xx e x→∞+=由归结原则得1lim(1).nn e n→∞+=5. 无穷小量与无穷大量 (1) 无穷小量定义:i) 设函数()f x 在某邻域00(;)U x δ内有定义. 若0lim ()0x x f x →=, 则称()f x 为当0x x →时的无穷小量.ii) 设函数()g x 在某邻域00(;)U x δ内有界,则称()g x 为当0x x →时的有界量.由无穷小量的定义可知,两个(相同类型的)无穷小量之和、差、积仍为无穷小量;无穷小量与有界量的乘积为无穷小量.(2) 定理:0lim ()()(),x x f x A f x A x α→=⇔=+其中()x α是当0x x →时的无穷小.(3) 无穷小量阶的比较无穷小量是以0为极限的函数,而不同的无穷小量收敛于0的速度有快有慢. 若无穷小量f 与g 满足()()lim0x x f x g x →=,则称当0x x →时f 为g 的高阶无穷小量,g 为f 的低阶无穷小量,记作()()()f x g x ο=(0x x →).特别,f 为当0x x →时的无穷小量,记作()()1f x ο=(0x x →).若存在正数K 和L ,使得在某邻域()00U x 上有()()f x K Lg x ≤≤,则称无穷小量f 与g 为当0x x →时的同阶无穷小量.特别当()lim0()x x f x c g x →=≠时,f 与g 必为同阶无穷小量. 若无穷小量f 与g 满足()()f x Lg x ≤,()00x U x ∈,则记作()()()0( ).f x O g x x x =→ 特别,若f 在某()00Ux 内有界,则记为()()1f x O =(0x x →).甚至当()()()0( )f x o g x x x =→ 时,也有()()()f x O g x =(0x x →).若无穷小量f 与g 满足()lim1()x x f x g x →=,则称f 与g 为当0x x → 时的等价无穷小量,记作()()~f x g x (0x x →).应指出,并不是任何两个无穷小量都可以进行这种阶的比较.例如,当0x → 时,1sinx x和2x 都是无穷小量,但它们的比 21sinx x x =11sin x x 或 21sin x x x =1sin x x当0x → 时都不是有界量,所以这两个无穷小量不能进行阶的比较. 下述定理表明了等价无穷小量在求极限问题中的作用. 定理: 设函数f ,g ,h 在邻域()00Ux 内有定义,且有()()~f x g x (0x x →).ⅰ) 若()()0lim x x f x h x A →=,则()()0lim ;x x g x h x A →= ⅱ) 若()()limx x h x B f x →=,则 ()()0lim .x x h x B g x →=(4) 无穷大量定义:对于自变量x 的某种趋向(或n →∞时),所有以∞、+∞或-∞为非正常极限的函数(包括数列),都称无穷大量.定理:ⅰ)设f 在()00U x 内有定义且不等于0.若f 为当0x x →时的无穷小量,则1f为当0x x →时的无穷大量.ⅱ)若g 为当0x x →时的无穷大量,则1g为当0x x →时的无穷小量. 由上述定理,对无穷大量的讨论可归结为无穷小量的研究.(三)一元函数的连续性1. 函数在点0x 连续的定义: 设函数()f x 在0x 的某邻域内有定义. 若()()00lim ,x x f x f x →= 则称函数()f x 在0x 点连续.若记()()00,x x x y f x f x ∆=-∆=- ,则()()00lim x x f x f x →= 的等价叙述为lim 0x y ∆→∆=,于是函数()f x 在0x 点连续的定义又可以写成:定义: 设函数()f x 在0x 的某邻域内有定义. 若0lim 0x y ∆→∆=,则称()f x 在0x 点连续.改用εσ-语言叙述,则()f x 在0x 点连续可以定义为:定义: 设函数()f x 在0x 的某邻域内有定义. 若对0ε∀>,0δ∃>使得当0x x δ-<时,都有()()0f x f x ε-<, 则称()f x 在0x 点连续.2. 函数在点0x 左、右连续的定义相应于在0x 的左、右极限的概念,我们给出左右连续的定义如下:定义: 设函数()f x 在0x 的某左(右)邻域内有定义. 若()()00lim x x f x f x -→=(或()()00lim x x f x f x +→=), 则称()f x 在0x 左(或右)连续.定理: 函数()f x 在0x 点连续⇔()f x 在0x 点既左连续又右连续. 与上述定理等价的否定叙述:定理: 函数()f x 在0x 点不连续⇔()f x 在0x 点或不左连续或不右连续. 3. 函数的间断点(不连续点)及其分类 定义:设函数f 在某领域()00Ux 内有定义. 若f 在点0x 无定义,或在点0x 有定义但不连续,则称点0x 为函数f 的间断点或不连续点.由连续的定义知,函数()f x 在0x 点不连续必出现如下3种情形之一:i )()0lim x x f x A →=,而f 在点0x 无定义,或有定义但()()00lim x x f x A f x →=≠;ii ) 左、右极限都存在,但不相等; iii ) 左、右极限至少一个不存在.据此,函数()f x 的间断点可作如下分类: i ) 可去间断点若()0lim x x f x A →=(存在),而f 在点0x 无定义,或有定义但()()00lim x x f x A f x →=≠,则称0x 为可去间断点(或可去不连续点).ii )跳跃间断点若0)(x x f 在点的左、右极限都存在,但不相等(即0(0)f x +与0(0)f x - 均存在,但00(0)(0)f x f x +≠-),则称0x 为()f x 的跳跃间断点.注:可去间断点与跳跃间断点统称)(x f 的第一类间断点. iii ) 第二类间断点若0(0)f x +与0(0)f x -至少有一个不存在,则称0x 为)(x f 的第二类间断点. 定义: 若函数)(x f 在区间I 上每一点都连续,则称)(x f 为I 上的连续函数. 对于区间端点上的连续性,则按左、右连续来确定.定义: 如果)(x f 在区间[],a b 上仅有有限个第一类不连续点,则称函数)(x f 在区间[],a b 上按段连续.4. 连续函数的性质局部有界性定理: 若函数)(x f 在0x 点连续,则)(x f 在0x 点的某邻域内有界. 局部保号性定理: 若函数)(x f 在0x 点连续,且()0f x α>(或()0f x β<),则对'αα∀<(或'ββ>),∃某邻域()0,U x 当()0x U x ∈时,有()'f x α>(或()'f x β<).四则运算性质: 若函数()(),f x g x 在区间I 上有定义,且都在0x I ∈连续,则()()()()()(),,f x g x f x g x f x g x ±(()00g x ≠)在0x 点连续.复合函数连续性定理: 若函数()f x 在0x 点连续,()g u 在0u 点连续,()00u f x =,则复合函数()()g f x 在0x 点连续.定义:设()f x 为定义在数集D 上的函数. 若∃0x D ∈,使得对∀x D ∈都有()()0f x f x ≥(或()()0f x f x ≤),则称在D 上有最大值(或最小值),称0x 为f 在D 上的最大值点(或最小值点),并称()0f x 为f 在D 上的最大值(或最小值).闭区间上连续函数的基本性质:最大最小值定理: 若函数()f x 在闭区间[],a b 上连续,则()f x 在闭区间[],a b 上有最大值与最小值.有界性推论:若函数()f x 在闭区间[],a b 上连续,则()f x 在闭区间[],a b 上有界. 介值性定理: 若函数()f x 在闭区间[],a b 上连续,且()()f a f b ≠,μ为介于()f a 与()f b 之间的任何实数(()()f a f b μ<<或()()f b f a μ<<),则在开区间(),a b 内至少存在一点0x ,使得()0.f x μ=根的存在定理: 若函数()f x 在闭区间[],a b 上连续,且()f a 与()f b 异号,则至少存在一点()0,x a b ∈ 使得()00,f x =即()0f x =在(),a b 内至少有一个实根.反函数的连续性定理: 若连续函数()f x 在闭区间[],a b 上严格递增(递减),则其反函数()1f y -在相应的定义域()(),f a f b ⎡⎤⎣⎦(或()(),f b f a ⎡⎤⎣⎦)上递增(递减)且连续.5. 一致连续性一致连续性定义:设函数()f x 在区间I 上有定义. 若0,ε∀>()0δδε∃=>, 当12,x x I ∈且12x x δ-<时,有()()12,f x f x ε-< 则称()f x 在区间I 上一致连续.注意:这里的δ只与0ε>有关,与(1,2)i x i =的位置无关.区间I 上的连续函数()f x ⇔1,x I ∀∈0,ε∀>()1'',0,x δδε∃=> 当2x I ∈且12'x x δ-<时,有()()12.f x f x ε-< 这就是说,连续函数里的'δ与预先取定的点1x 的位置有关,区间I 上的无穷多个点,对应无穷多个'δ,这无穷多个'δ的下确界可能为零,也可能大于零. 如果这无穷多个'δ的下确界为零,则不存在对I 上所有点都适合的公共()0δδε=>,这时()f x 在I 上连续,但不一致连续;如果这无穷多个'δ的下确界大于零,则必存在对I 上每一点都适用的公共()0δδε=>,如我们可取inf{'},δδ=则对I 上任意两点12,x x I ∈,当12x x δ-<时,便有()()12.f x f x ε-< 这种情况,()f x 在I 上连续就成为一致连续.一致连续性定理:若函数()f x 在闭区间[],a b 上连续,则()f x 在[],a b 上一致连续. 定理:一切基本初等函数都是定义域上的连续函数.因为任何一个初等函数都是由基本初等函数经过有限次四则运算与复合运算所得到,故任何初等函数都是定义域上的连续函数.(四)多元函数的极限与连续1.点列与二元函数的极限 (1) 点列极限与二重极限设{}n x 是X 轴上的一个点列,{}n y 是Y 轴上的一个点列,则以n x ,n y 为坐标的所有点(){},nnx y 组成平面上的一个点列记作{}nP .又设0P 是平面上的一点,坐标是()00,x y .若0,ε∀>∃正整数N ,当n N >时,有()0,n P P ρε=<,就称{}n P 收敛于0P ,记作0lim .n n P P →∞= 点列收敛的柯西准则:平面点列{}n P 收敛⇔0,0,N ε∀>∃>当N n >时,对一切正整数k ,都有(),.n n k P P ρε+<定义: 设f 为定义在2D R ⊂上的二元函数,0P 为的D 的一个聚点,A 是一个确定的实数. 若0,ε∀>∃0,δ> 使得当()D P UP oδ;0∈时,都有(),ε<-A P f 则称f在D 上当0P P →时以A 为极限,记作()0lim .P P P Df P A →∈=在对D P ∈不致产生误解时,也可简单地写作()0lim .P P f P A →= 当0,P P 分别用坐标()()00,,,y x y x 表示时,()0lim P P f P A →=也常写作()0(,)(,)lim ,.x y x y f x y A →=定理:()0lim P P P Df P A →∈=⇔对D 的每一个子集E ,只要点0P 是E 的聚点,就有()0lim P P P Ef P A →∈=.推论:i) 设1E D ⊂,0P 是1E 的聚点. 若极限()01lim P P P E f P →∈不存在,则极限()0lim P P P Df P →∈也不存在.ii) 设12,E E D ⊂, 0P 是1E 和2E 的聚点. 若存在极限()011lim P P P E f P A →∈=,()022lim P P P E f P A →∈=, 但12A A ≠, 则极限()0lim P P P Df P →∈不存在.iii) 极限()0lim P P P Df P →∈存在⇔对D 内任一点列{}n P , 0n PP →但0n P P ≠,数列(){}nf P 收敛.定义: 设D 为二元函数f 的定义域,),(000y x P 是D 的一个聚点. 若对0,M ∀>总存在0P 的一个δ邻域()00;U P δ,使得当()()0,;P x y U P D δ∈时,都有()f P M >,则称f 在D 上当0P P →时,存在非正常极限+∞,记作()()()00,,lim,.x y x y f x y →=+∞ 类似定义()()()00,,lim,x y x y f x y →=-∞和()()()00,,lim,.x y x y f x y →=∞(2) 累次极限 在前面研究的极限),(lim),(),(00y x f y x y x →中,两个自变量y x ,同时以任何方式趋于00,,x y这种极限也称为二重极限. 这一段考察x 与y 依一定的先后顺序相继趋于0x 与0y 时f 的极限,这种极限称为累次极限.定义:设,,x y E E R ⊂ 0x 是x E 的聚点,0y 是y E 的聚点,二元函数f 在集合x y D E E =⨯上有定义. 若对每一个0,y y E y y ≠∈,存在极限),,(lim 0y x f xE x x x ∈→由于此极限一般与y 有关,因此记作()),,(lim 0y x f y xE x x x ∈→=ϕ而且进一步存在极限(),lim 0y L yE y y y ϕ∈→=则称此极限为二元函数f 先对()0x x →后对()0y y →的累次极限,并记作 ),(lim lim 00y x f L xy E x x x E y y y ∈→∈→=或简记作).,(lim lim 00y x f L x x y y →→=类似地可以定义先对y 后对x 的累次极限 ).,(lim lim 00y x f K x x y y →→=注:i) 两个累次极限存在时,可能不相等. 例如:设yx y x y x y x f +++-=22),(,它关于原点的两个累次极限分别为.1)1(lim lim limlim 0202200-=-=-=+++-→→→→y yyy y x y x y x y y x y 与.1)1(lim lim limlim 0202200=+=-=+++-→→→→x xxx y x y x y x x x y x ii) 两个累次极限中的一个存在时,另一个可能不存在.例如函数1(,)sin f x y x y=在点(0,0)的情形.iii) 二重极限存在时,两个累次极限可能不存在(见例题).iV) 两个累次极限存在(甚至相等),二重极限可能不存在(见例题).综上, 二重极限、两个累次极限三者的存在性彼此没有关系. 但有以下确定关系: 定理:若二重极限()()()00,,lim,x y x y f x y →和累次极限()00lim lim ,x x y y f x y →→ (或另一次序)都存在, 则二者必相等.推论:i) 二重极限和两个累次极限三者都存在时,三者相等. ii) 两个累次极限存在但不相等时,二重极限不存在. 3. 二元函数的连续性 (1) 连续性概念定义: 设f 为定义在点集2R D ⊂上的二元函数. 0P D ∈(它或者是D 的聚点,或者是D 的孤立点). 若0,0,εδ∀>∃>只要(),;D P U P δ0∈就有()()ε<-0P f P f ,则称f 关于集合D 在点0P 连续. 在不至于误解的情况下,也称f 在点0P 连续.设()000,y x P 、()00,,,y y y x x x D y x P -=∆-=∆∈则称()()()0000,,,y x f y x f y x f z -=∆=∆()()0000,,y x f y y x x f -∆+∆+=为函数f 在点0P 的全增量. 和一元函数一样,可用增量形式来描述连续性,即当0lim),()0,0(),(=∆∈→∆∆z Dy x y x 时,f 在点0P 连续.如果在全增量中取0=∆x 或0=∆y ,则相应的函数增量称为偏增量,记作 ()00,y x f x ∆()()0000,,y x f y x x f -∆+=, ()00,y x f y ∆()().,,0000y x f y y x f -∆+=一般说来,函数的全增量并不等于相应的两个偏增量之和.若一个偏增量的极限为零,例如()000lim ,0,x x f x y ∆→∆=它表示在f 的两个自变量中,当固定0y y =时,()0,y x f 作为x 的一元函数0x 在连续. 同理,若().0,lim 000=∆→∆y x f y y 则表示一元函数()y x f ,0在0y 连续.容易证明,当f 在其定义域的内点()00,y x 连续时,()0,y x f 在0x 和()y x f ,0在0y 都连续. 但是反过来,二元函数对单个自变量都连续并不能保证该函数的连续性.(2) 连续函数的性质局部保号性定理:若二元函数f 在点()000,y x P 连续,并且存在实数A (或B )使得0()f P A >(或0()f P B <),则存在0P 的邻域0(;)U P δ,当0(;)P U P δ∈时有()f P A >(或()f P B <).局部有界性定理:若二元函数f 在点()000,y x P 连续,则f 在0P 的某个邻域0(;)U P δ上有界.四则运算性质: 两个连续函数的和、差、积、商(若分母不为0)都是连续函数. 复合函数的连续性定理:设函数()y x u ,ϕ=和()y x v ,φ=在xy 平面上点()000,y x P 的某邻域内有定义,并在点0P 连续;函数()v u f ,在uv 平面上点()000,v u Q 的某邻域内有定义,并在点0Q 连续,其中()000,y x u ϕ=,()000,y x v φ=.则复合函数()[]),(),,(,y x y x f y x g φϕ=在点0P 也连续.(3) 二元初等函数及其连续性与一元函数类似,二元连续函数经过四则运算和复合运算后仍为二元连续函数. 由x 和y 的基本初等函数经过有限次的四则运算和复合所构成的可用一个式子表示的二元函数称为二元初等函数.一切二元初等函数在其定义区域内是连续的. 这里定义区域是指包含在定义域内的区域. 利用这个结论,当要求某个二元初等函数在其定义区域内一点的极限时,只要算出函数在该点的函数值即可.4. 有界闭区域上连续函数的性质(1) 有界性与最值性定理: 若函数f 在有界闭域2R D ⊂上连续,则f 在D 上有界,且能取得最大值与最小值.(2) 一致连续性: 若函数f 在有界闭域2R D ⊂上连续,则f 在D 上一致连续, 即0,0,εδ∀>∃>使得,,P Q D ∀∈只要(),,P Q ρδ<就有()()ε<-Q f P f .(3) 介值性与零点定理:设函数f 在区域2R D ⊂连续,若21,P P 为D 中任意两点,且()()21P f P f <,则对任何满足不等式()()21P f P f <<μ的实数μ,存在点D P ∈0,使得()μ=0P f .四、基本例题解题点击【例1】按N ε-定义证明!lim0.nn n n →∞=【提示】在用N ε-定义证明极限时,先写出定义,运用放缩法,找到合适的N 即可. 【证明】0,ε∀> 1,N ε∃=当n N >时,有!110.n n n n Nε-≤<= 因此 !lim 0.nn n n →∞= ■【例2】求极限111lim().1223(1)n n n →∞++⋅⋅+【提示】111.(1)1n n n n =-++【解】111lim()1223(1)n n n →∞++⋅⋅+11111lim[(1)()()]2231n n n →∞=-+-++-+ 1lim(1) 1.1n n →∞=-=+ ■【例3】求极限n →∞+【提示】用极限的迫敛性定理.【解21,nn<++<=+且lim1,lim11,n nn →∞→∞===由极限的迫敛性定理,得 1.n →∞+= ■【例4】应用柯西收敛准则,证明数列{}n a 收敛,其中2sin1sin 2sin .222n nna =+++【提示】利用柯西收敛准则和三角函数有界性. 【证明】0ε∀>,21log ,N ε∃=,n m N ∀>> 有()()12sin 1sin 2sin 222n m m m nm m na a ++++-=+++12111111121222212n m m m n m -+++-≤+++=⋅- 11111.122212m mN ε+<⋅=<=-故由柯西收敛准则知数列{}n a 收敛. ■【例5】计算.n nπ【提示】定义函数(),f x nπ= 再用极限四则运算、归结原则和等价无穷小量求解.【解】记函数(),f x xπ=则有sin limlim )0.x x x xxπππ→+∞==故由归结原则得 l i s i n 0.n nπ=■【例6】设()10111011m m m mn n n na x a x a x a f xb x b x b x b ----++++=++++,000,0,a b m n ≠≠≤,求()lim x f x →+∞.【提示】极限的四则运算法则和12lim lim lim 0.n x x x xx x ---→+∞→+∞→+∞====【解】因()10111011lim lim m n m n nm n n x x n na x a x a x f xb b x b x b x -------→+∞→+∞-+++=++++, 12lim lim lim 0,n x x x x x x ---→+∞→+∞→+∞====当m n ≤时,12lim lim lim 0;m n m n n x x x xx x -----→+∞→+∞→+∞====当m n =时,lim 1m nx x-→+∞=; 当m n <时,lim 0.m nx x-→+∞=故由极限的四则运算法则,有()00,;lim 0,.x a m n b f x m n →+∞⎧=⎪=⎨⎪<⎩■【例7】设()()00,lim x x f x f x A →>=.证明limx x →= 其中2n ≥为整数.【提示】当0A =时,直接利用函数极限定义证明.当0A >分子有理化,然后利用放缩法证明.【证明】因为()0f x >,故()0lim 0x x f x A →=≥.若0A =,由()0lim x x f x A →=,则0,0,εδ∀>∃>当00x x δ<-<时,有()().f x A f xε-=<=<即0lim 0x x →==.若0A >,由()0lim x x f x A →=,则0,0,εδ∀>∃>当00x x δ<-<时,有().f x A ε-<从而有2n nA-=++()1.f x A ε<-<故lim x x →=■【例8】求极限0x → 【提示】利用重要极限0sin lim1x xx→=及函数极限的运算法则.【解】 当11x -<<2.2x ==故22002lim lim 1cos 2sin 2x x x x x →→=-⎛⎫⎪⎝⎭222220sin 22lim[]11sin 22x x xx x →⎛⎫ ⎪⎝⎭=⋅=⨯=⎛⎫ ⎪⎝⎭ ■【例9】证明:若f在点0x 连续,则f 与2f 也在0x 连续. 又问:若f 或2f 在I 上连续,那么f 在I 上是否必连续?【提示】要证2f 连续,证2ff f =⋅即可,要证f连续,证f =f 或2f 连续不一定有f连续.【证明】由()f x 在0x x =连续,得()()00lim x x f x f x →=,从而()()()()0220lim lim lim ,x x x x x xfx f x f x f x →→→=⋅=再由例7的结论知 ()()00lim lim,x x x x f x f x →→===故f 与2f 也在0x x =连续.构造函数1(0)(),1(0)x f x x ≥⎧=⎨-<⎩ 则,x R ∀∈有2()1,()1,f x f x == 即2(),()f x f x 在R 上连续,但()f x 在0x =不连续,故()f x 在R 上不连续. 因此,由f 或2f 在I 上连续不能断定f在I 上连续. ■【例10】 设f 在[],a b 上连续,[]12,,,n x x x a b ∈.证明:存在[],a b ξ∈,使得()()()()121n ff x f x f x n ξ=++⎡⎤⎣⎦.【提示】f 在[],a b 上连续,则存在最大值和最小值,利用连续函数介值性定理. 【证明】设()()()(){}12max ,,,,i n f x f x f x f x =()()()(){}12min ,,.j n f x f x f x f x = 不失一般性,设.i j x x <(1)若()(),i j f x f x =则()()()12n f x f x f x ===,此时有()()()()121,k n f x f x f x f x n=+++⎡⎤⎣⎦ 1,2,,.k n =取k x ξ=即可. (2)若()()i j f x f x ≠,则()()()()()121.j n i f x f x f x f x f x n<+++<⎡⎤⎣⎦由连续函数介值性定理知,[](,),,i j x x a b ξ∃∈⊂使得 ()()()()121.n ff x f x f x n ξ=+++⎡⎤⎣⎦由此本题得证. ■五、扩展例题解题点击【例1】 设1,m a a 为m 个正数. 证明:{}12max ,,.m n a a a =【提示】运用迫敛性定理和1(0).n m =>【证明】设{}12max ,,,m a a a A = 则有A ≤≤因lim ,lim ,n n A A A →∞→∞==故由极限的迫敛性定理,得{}12max ,,.m n a a a =【延伸】:设<<1,2,...)i a M n =0(. 试证明:{}sup .n n na =【提示】:与前面方法类似(运用 1.n =) ■【例2】设数列{}n a 满足:存在正数M ,对一切n 有21321.n n n A a a a a a a M -=-+-++-≤证明:数列{}n a 与{}n A 都收敛.【提示】利用单调有界原理,柯西收敛准则及绝对值不等式证明.【证明】由,n A M ≤且11n n n n A A a a +--=-≥0,知{}n A 为单调有界数列. 由单调有界原理知{}n A 收敛.因{}n A 收敛,故由柯西收敛准则知,0,0,N ε∀>∃>当n m N ≥>时有.n m A A ε-< 而 ()()()1121n m n n n n m m a a a a a a a a ---+-=-+-++-1121n n n n m m a a a a a a ---+≤-+-++-.n m A A ε=-<由柯西收敛准则知{}n a 收敛,故{}n a 与{}n A 都收敛. ■【例3】设 1.a > 证明:lim 0.an n n a→∞=【提示】令a b =+1,利用二项式定理把分母na 展开,利用放缩法和基本例题中的例6. 【证明】令[]a 表示a 的整数部分,b a =-1,显然>b 0. 故[][]()110.1a a a nn n n n n a a b ++<≤=+ 当[]2n a >+时,()[][]221.na a nbc b +++>因此,[]()[][][]1122<.1a a na a nn n c bb ++++<+0因[][][]122lim 0,a a a n nn c b+++→∞= 故由迫敛性定理知,当1a >时,lim 0.an n n a→∞= ■【例4】计算1lim .xx x +→ (上海大学2001年考研试题) 【提示】先用数列1n ⎧⎫⎨⎬⎩⎭代替x ,猜测出极限的值,然后考虑用迫敛性定理. 【解】在区间()0,1内,10,xx x << 而0lim 0,x x +→= 故由迫敛性定理知,1lim 0.xx x +→= ■【例5】已知323lim 0.1x x x ax bx c x →+∞⎛⎫++---= ⎪+⎝⎭求,a b 与c 的值.【提示】此题中2ax bx c ++实际上就是331x x x +++的整式部分.【解】因323lim 0,1x x x ax bx c x →+∞⎛⎫++---= ⎪+⎝⎭故 ()()()()()3233223lim 113lim 0213lim 031x x x x x ax bx c x x x c ax b x x x x x b c a x x x x →+∞→+∞→+∞⎧⎛⎫++⎪--= ⎪+⎪⎝⎭⎪⎛⎫++⎪---= ⎪⎨ ⎪+⎝⎭⎪⎪⎛⎫++⎪---= ⎪ ⎪⎪+⎝⎭⎩由(3)与极限四则运算法则,得:()323lim 1.1x x x a x x →+∞++==+把1a =代入(2),得:()()3333lim lim 1.11x x x x x x b ax x x x x x →+∞→+∞⎛⎫⎛⎫++++=-=-=- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭同理,把1,1a b ==-代入(1),得c =2. ■【例6】设lim n n a A →∞=(或∞+或∞-),则()121limn n a a a A n→∞+++=(或∞+或∞-).问:反之是否成立?【提示】利用极限定义和绝对值不等式证明.【证明】由极限定义知,1>0,,N N ε+∀∃∈当1n N >时,有,n a A ε-<故当1n N >时,有1212nn a a a a a a nAA nn++++++--=112N a A a A a An-+-++-≤1112N N n a A a A a An++-+-++-+1121.N a A a A a An N nnε-+-++--≤+⋅ 记112N a A a A a A b -+-++-=,因lim0,n bn→∞= 故2N N +∃∈, 当2n N >时有.bnε< 取{}12max ,N N N =, 当n N >时,1212.na a a n Nb A nn nεεεε+++--≤+⋅<+= 因此 ()121lim.n n a a a A n→∞+++=∞+或∞-的情形可类似进行证明.反之,若()121lim n n a a a A n→∞+++=,则不能得出lim n n a A →∞=. 例如,取(1),n n a =-则()121lim0,n n a a a n →∞+++= 而limn n a →∞不存在; 取2121,n a n -≡- 20,n a = 则()121lim ,n n a a a n →∞+++=+∞ 而lim n n a →∞不存在;∞-的情形类似. ■【例7】设函数f 定义在(),a +∞上,f 在每一个有限区间内有界,并满足()()lim 1,x f x f x A →+∞+-= 则()lim.x f x A x→+∞= 【提示】运用极限的定义,由题设条件推出结论成立.【证明】由题设()()lim 1,x f x f x A →+∞+-= 则00,,x a ε∀>∃> 使得当0x x ≥时,有()()()1.1f x f x A ε+--<∀0,x x > 记[]00,,m x x k x x m =-=-- 则1,k ≤<0 于是0,x x m k =++因而有()()()()000f x f x f x k f x k x k m A A A x x m x x -++⎛⎫+-=-+- ⎪⎝⎭ ()()()()0002f x f x k f x k x k m A A x m x x -++⎛⎫+≤-++ ⎪⎝⎭. 由(1)式可得()()0f x f x k m A x m -+⎛⎫- ⎪⎝⎭()()()00111mi f xk i f x k i mA m=≤++-++--∑()()()001111.3m i f x k i f x k i A m m mεε==++-++--<⋅⋅=∑ 又由于()f x 在()0,1a x +上有界,则()0lim 0x f x k x →+∞+=及0lim 0x x kA x→+∞+=,于是1,x a ∃> 使得当1x x >时,有()()00;.4f x k x kA x xεε++<< 取{}01max ,,X x x = 于是当x X >时,由(2)、(3)与(4)便有()3.f x A xεεεε-≤++= 故 ()lim .x f x A x→+∞= ■【例8】设f 为区间I 上的单调函数,证明:若0x I ∈为f 的间断点,则0x 必是f 的第一类间断点.【提示】利用确界与极限关系,证明f 在0x 的左右极限均存在.【证明】若f 为区间I 上的单调增函数,取()00U ,x I ⊂ 且满足()0012U ,,,x x x x I ∀∈∃∈使得12,x x x <<则f 在()00U x 上为有界函数. 由()()()000U 0inf ,x x f x f x +∈+=()()()000U 0sup ,x x f x f x -∈-= 知道f 在0x 左、右极限均存在. 因此,0x 若为f 的间断点,则0x 必为f 的第一类间断点. 若f 为区间I 上的单调减函数,则令()(),g x f x =-则()g x 为I 上的单调增函数,从而()()()(){}()()000000U U 00inf sup ,x x x x f x g x f x f x ++∈∈+=-+=--= ()()()(){}()()000000U U 00supinf.x x x x f x g x f x f x --∈∈-=--=--=因此,结论也成立. ■【例9】设函数f 为区间I 上满足利谱希茨条件(Lipschitz ),即存在常数0,L >使得对于I 上的任意两点'x 与''x 都有()()''''''.f x f x L x x -≤- 证明:f 在I 上一致连续.【证明】0,ε∀> 取0,δε=> 则''',,x x I ∀∈ 且''',x x δ-< 有()()''''''.f x f x L x x L ε-≤-<故f 在I 上一致连续. ■【例10】设{}n a 是有界数列,且12,n n n a a b ++= 若lim n n b →∞存在,则lim n n a →∞也存在(北京大学2009年考研试题).【证明】因{}n a 有界,故,M ∃ 使得,n ∀ 有.n a M ≤因lim n n b →∞存在(令其值为b ),故0,,N ε∀>∃ 当n N >时,有,n b b ε-< 即.n b b b εε<<+-因12,n n n a a b ++= 故有12.n n b a a b εε+<+<+-下面用反证法证明11.33n b a b εε<<-2+2 反设1,3n a b ε≥+2 由12n n a a b ε++<+得 1123n b a b εε+⎛⎫+<+ ⎪⎝⎭+2,即113.3n a b ε+<-因()2112,,n n n a a b b b εε++++=∈+- 故有2123,3n b a b εε+⎛⎫-+> ⎪⎝⎭-即215.3n a b ε+>+依此类推,于是得()22121.3k n k a b ε+>+-因此,当k 充分大时,有2.n k a M +>(例如当21log 12M b k ε⎛+⎫+⎪⎝⎭>时) 这与{}n a 为有界数列矛盾. 于是1.3n a b ε<+2 同理可证1.3n a b ε>-2 因此,0,,N ε∀>∃当n N >时有1.3n a b ε-<2 故{}n a 收敛. ■六、本章训练题提示点评 【训练题1】证明函数()1cosxf x e x=在()01,内非一致连续.(云南大学2004年考研试题) 【提示】利用非一致连续的定义证明. 【证明】0121110,0,,,222x x k k εδπππ∃=>∀>∃==+当正整数k 充分大时有12||x x δ-<(例如当12k δπ>时),故有 12101211coscos 1.xx x e e e x x ε-=≥= 因此,命题成立. ■【训练题2】已知()112,xx x xna a a f x n ⎛⎫+++=⎪⎝⎭其中123,,,n a a a a 为n 个正数.求(1)()0lim x f x →;(2)()lim x f x →+∞与 ()lim .x f x →-∞(2004年云南大学考研试题)【解】(1)因12112200ln ln ln lim lim x x x x xxn n nx x a a a n a a a a a a nx n→→+++-+++=(洛比达法则)()12ln .n a a a n=故()12121200lim lim 1x x x n x x x n a a a nnn xx x x a a a n n x x a a a n f x n +++-+++-→→⎡⎤⎛⎫+++-⎢⎥=+ ⎪⎢⎥⎝⎭⎢⎥⎣⎦()1212120ln limlim x x xx x xn n n x a a a a a a na a a n nxnxnx eee→+++-+++-→====(2)由(1)知x =0是()f x 的可去间断点. 由初等函数在其定义域内的连续性知,()()()()lim ln lim ln lim ,lim ,x x f x f x x x f x e f x e →+∞→-∞→+∞→-∞==而 ()121lim ln lim ln,x xxnx x a a a f x x n →+∞→+∞+++=⋅()121lim ln lim ln .x xx nx x a a a f x x n→-∞→-∞+++=⋅1 若{}max 1,i ia =则当0x >时,12.x xx n a a a n <+++≤1故()lim ln 0,x f x →+∞= 即()lim 1.x f x →+∞=2 若{}min 1,i ia = 则当0x <时,12.x x xn a a a n <+++≤1故()lim ln 0,x f x →-∞= 即()lim 1.x f x →-∞=3 若{}max 1,i i a ≠则12lnx xxna a a n+++为x →+∞时的无穷大量.故由洛比达法则得,12112212ln ln ln 1lim ln lim x xxx x xnn nx x x x x na a a a a a a a a x na a a →+∞→+∞++++++⋅=+++{}()ln max .i ia =因此,(){}lim max .i x if x a →+∞=4 若{}min 1,i i a ≠则12lnx xxna a a n+++为x →-∞时的无穷大量.故由洛比达法则得,12112212ln ln ln 1lim ln lim x xxx x xnn nx x x x x na a a a a a a a a x na a a →-∞→-∞++++++⋅=+++ {}()ln min .i ia =因此,(){}lim min .i x if x a →-∞=综合,2,3,41知,(){}(){}lim max ,lim min .i i x x iif x a f x a →+∞→-∞== ■【训练题3】设()2122lim 1n n n x ax bxf x x -→∞++=+是连续函数,求a ,b 的值.(福建师范大学2006年考研试题)【提示】利用极限的四则运算法则和连续函数的定义.【解】当1x >时,()23222111lim;1n n n n a bx x f x x x x--→∞-++==+当1x <时,()2122lim 1n n n x ax bxf x x -→∞++=+2;ax bx =+ 当1x =-时,()()111;2f a b -=-+- 当1x =时,()()111.2f a b =++ 因()f x 在1x =处连续,故()()()111,f f f -+==即 ()111;2a b a b +==++ 因()f x 在1x =-处连续,故()()()111,f f f -+-=-=-即()111.2a b a b -=-=-+- 解方程组可得 0a =, 1.b = ■【训练题4】求α和,β 使得当x →+∞时,量.x βα(上海大学2002年考研试题).【解】0limlim x t x βα+→+∞→+=122lim .t tβα+→-=在右领域()()0;1U δδ+<内,()211,2t t ο=++()211.2t t ο=-+当11,2αβ==-时,lim 1.x →+∞= 即当x →+∞12.x - ■【训练题5】设()f x 在(),a b 上连续,且f 是一对一(即()12,,x x a b ∀∈且12x x ≠时,有()()12f x f x ≠),证明:()f x 在(),a b 上严格单调. 【证明】反证法. 反设()f x 在(),a b 上非严格单调,即()123,,,x x x a b ∃∈且123,x x x <<有()()()()1232,.f x f x f x f x << 或()()()()1232,.f x f x f x f x >>(因f 是一对一,故不能取等号) 若()()()()1232,f x f x f x f x <<成立, 取()()(){}213max ,,2f x f x f x M +=显然()2M f x <且()()13,.M f x M f x >>在[]12,x x 上()f x 连续,由介值性定理知,()412,,x x x ∃∈ 使得()4,f x M =同理()523,,x x x ∃∈ 使得()5.f x M =于是()()45,f x f x = 这与f 在(),a b 上一对一矛盾.因此,当123x x x <<时,()()12f x f x <与()()32f x f x <不能同时成立. 同理可证,当123x x x >>时,()()12f x f x >与()()32f x f x >不能同时成立. 综上所述知,()f x 在(),a b 上严格单调. ■【训练题6】求202cos 2lim.tan sin x x x e x x x→+--(华南理工大学2004年考研试题) 【解】因()()2tan sin tan 1cos 0,2x x x x x x x -=-⋅→ 而()()22232cos 21212.2xx x e x x x x ο⎛⎫+-=++--+ ⎪⎝⎭(由泰勒公式)于是233002cos 2lim lim 2.tan sin 2x x x x e xx x xx →→+-==- ■【训练题7】设11x >>, 11nn na x x x ++=+, 1,2,n =, 试证{}n x 收敛,并求lim n n x →∞, (华南理工大学2004考研试题).【解】 因11x >>, 故2121101a xx x x --=<+, 即21x x <.因121111111a x ax x x +-==+<+=++故21x <<因 222211111a x a x x x +-==+>=++故3x >同理4x <, ,因此得21k x ->, 211,2,)k x k <<=.因213112()012a x x x a x --=<++, 故31x x <.因224222()012a x x x a x --=>++, 故42x x >.因22212121212212()112k k k k k k k a x a x x x x x a x -+---+--=-=+++且21k x ->故有21210k k x x +--<, 即2121k k x x +-<. 同理得222k k x x +>. 因此, 子列{}21k x -单调减小有下界, 故21limk k x -→∞存在, 设极限为1m . 子列{}2k x 单调增加有上界, 故2lim k k x →∞存在, 设极限为2m .对2212121212()12k k k k a x x x a x -+----=++左右两边取极限, 得21m a =. 由极限保号性知1m =. 同理得2m =. 由数学分析第一册(华东师大)第26页例题7知,lim n n x →∞=. ■【训练题8】证明极限111lim 1ln 23n n n →∞⎛⎫++++- ⎪⎝⎭存在. (哈尔滨工业大学2009考研试题). 【证明】 记1111ln 23n a n n =++++-. 则11ln11n n na a n n +-=+++. 因23ln(1)23x x x x -=----, ()[1,1)x ∈-,故2311111ln 112131n n n n n ⎛⎫⎛⎫=--⋅-⋅-⎪ ⎪++++⎝⎭⎝⎭.因此得10n n a a +-<, 即{}n a 为单调递减数列.由于23ln(1)23x x x x +=-+- ()(1,1]x ∀∈-,故ln(1)x x +<()(1,1]x ∀∈-. 因此得()111ln 11ln 1ln 1ln 1ln 23n a n n ⎛⎫⎛⎫⎛⎫>++++++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()ln 2(ln3ln 2)(ln 4ln3)ln 1ln ln n n n =+-+-+++--1ln0n n+=>. 于是{}n a 有下界.综上所述, 知{}n a 为单调递减数列且有下界, 故{}n a 收敛. ■【训练题9】令22(,)xyf x y x y=+,讨论二重极限(,)(0,0)lim (,)x y f x y →与累次极限00limlim (,)y x f x y →→、00limlim (,)x y f x y →→是否存在.【解】当动点(,)x y 沿着直线y mx =而趋于定点(0,0)时, 由于此时2(,)(,)1mf x y f x mx m ==+, 因而有2(,)(0,0)0lim(,)lim (,)1x y x y mxmf x y f x mx m →→===+.这说明动点沿不同斜率m 的直线趋于原点时, 对应的极限值也不同, 因此所讨论的重极限不存在.已经知道(,)(0,0)x y →时f 的重极限不存在. 但当0y ≠时有22lim0x xyx y →=+从而有 2200lim lim0y x xyx y →→=+. 同理可得 2200lim lim0x y xyx y →→=+. ■【训练题10】设11(,)sinsin f x y x y y x=+. 讨论重极限(,)(0,0)lim (,)x y f x y →和累次极限。

北师大版八年级数学上册第二章实数教学设计

北师大版八年级数学上册第二章实数教学设计一. 教材分析北师大版八年级数学上册第二章实数,主要介绍了实数的概念、分类和运算。

本章内容是初中数学的重要基础,对于学生理解和掌握数学知识体系具有重要意义。

教材内容安排合理,既有理论知识的讲解,又有实际例子的演示,使学生能够更好地理解和运用实数知识。

二. 学情分析八年级的学生已经掌握了初步的数学知识,对于实数的概念和运算有一定的了解。

但学生在实数的分类和运算方面存在一定的困难,需要通过本章的学习进一步巩固和提高。

同时,学生对于数学知识的理解和运用能力各有差异,需要在教学过程中关注学生的个体差异,因材施教。

三. 教学目标1.理解实数的概念,掌握实数的分类。

2.熟练掌握实数的运算方法,能够运用实数知识解决实际问题。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.实数的分类:有理数、无理数、整数、分数、正数、负数等。

2.实数的运算:加法、减法、乘法、除法、乘方等。

五. 教学方法1.讲授法:讲解实数的概念、分类和运算方法。

2.案例分析法:分析实际例子,让学生更好地理解和运用实数知识。

3.讨论法:分组讨论,培养学生的合作意识和解决问题的能力。

4.练习法:布置适量作业,巩固所学知识。

六. 教学准备1.教材:北师大版八年级数学上册。

2.教案:实数教学设计。

3.PPT:实数相关知识点和案例分析。

4.作业:适量实数运算练习题。

七. 教学过程1.导入(5分钟)利用PPT展示实数的应用场景,引导学生思考实数的概念和分类。

2.呈现(10分钟)讲解实数的概念、分类和运算方法,通过PPT展示相关知识点,让学生更好地理解和掌握。

3.操练(10分钟)分组讨论实数的运算方法,让学生动手实践,相互交流,巩固所学知识。

4.巩固(10分钟)布置适量作业,让学生独立完成,检查对实数知识的掌握情况。

5.拓展(10分钟)分析实际例子,让学生运用实数知识解决实际问题,提高学生的应用能力。

初二数学知识点全总结梳理

初二数学知识点全总结梳理在人类历史开展和社会生活中,数学发挥着不行替代的作用,同时也是学习和探究现代科学技术必不行少的根本工具。

下面我为大家带来初二数学学问点全总结梳理,盼望大家喜爱!初二数学学问点全总结梳理(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

假如把乘法公式反过来就是把多项式分解因式。

于是有:a2—b2=(a+b)(a—b)a2+2ab+b2=(a+b)2a2—2ab+b2=(a—b)2假如把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1.平方差公式(1)式子.a2—b2=(a+b)(a—b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项假如有公因式应先提公因式,再进一步分解。

2.因式分解,必需进展到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b..(a—b)2=a2—2ab+b2反过来,就可以得到:a2+2ab+b.=(a+b)2a2—2ab+b.=(a—b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2—2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号一样。

③有一项为哪一项这两个数的积的两倍。

(3)当多项式中有公因式时,应当先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

(5)分解因式,必需分解到每一个多项式因式都不能再分解为止。

(五)分组分解法我们看多项式am.an.bm.bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

湘教版八年级数学上册第二章《三角形》课堂教学设计


外角.能由∠A,∠B 求出∠ACD 吗?如果能,∠ACD 与∠A,∠B 有
什么关系?
(2)你能进一步说明任意一个三角形的一个外角与它不相邻的两个
内角有什么关系呢?并说明理由? 结论:三.角.形.的.外.角.等.于.和.它.不.相.邻.的.两.个.外.角.的.和.。.
(3)外角与其中一个不相邻的内角之间的关系呢? 结论:三.角.形.的.外.角.大.于.与.它.不.相.邻.的.任.意.一.个.内.角.
二、拓展提升
1.三角形的角平分线是( ).
A.直线
B.射线
C.线段 D.以上都不对
2.下列说法:①三角形的角平分线、中线、高线都是线段;•②直角三角形只有一条高线;③
三角形的中线可能在三角形的外部;④三角形的高线都在三角形的内部,并且相交于一点,
其中说法正确的有( ).
A.1 个
B.2 个 C.3 个
2.下列语句中,不是命题的句子是( ) A.过一点作已知直线的垂线 B.两点确定一条直线 C.钝角大于 D.凡平角都相等
3.写出下列命题的逆命题. 1) 线段垂直平分线上任意一点到这条线段两端点的距离相等。 2) 等腰三角形的两底角相等。 3) 平行四边形的对边相等。
2.2 命题与证明
第 2 课时 真命题、假命题与定理
图中三角形记作__________。
练一练:
1、如图.下列图形中是三角形的___________
2、图 3 中有几个三角形?用符号表示这些三角形.
(2)如图,等腰三角形 ABC 中,
A
D
AB=AC,腰是_______、_______,
底边是_________,顶角指_______,底角指_______.
角平分线相交三角形的 ;(3)钝角三角形的三条角平分线相交三角形的

初二数学知识点归纳 重点知识

<p> 初二学生学习数学一定要注意知识点的总结,下面小编为大家总结了初二数学知识点,仅供大家参考。

</p><p><img alt='初二数学知识点归纳重点知识点总结整理' src="/uploads/k12imgxin/41.jpg" title="初二数学知识点归纳重点知识点总结整理" alt="初二数学知识点归纳重点知识点总结整理"/></p><p> 初二数学一次函数重点知识(一) 一、定义与定义式:自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。

</p><p> 特别地,当b=0时,y是x的正比例函数。

</p><p> 即:y=kx (k为常数,k0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数</p><p> b取任何实数) 2.当x=0时,b为函数在y轴上的截距。

</p><p> 定义:任何有限小数或无限循环小数都是有理数。

无限不循环小数叫做无理数 (有理数总可以用有限小数或无限循环小数表示)</p><p> 一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

特别地,我们规定0的算术平方根是0。

</p><p> 一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

</p><p> 求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

</p><p> 一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解的总结
1、22424y x y xy x ++--有一个因式是y x 2-,另一个因式是( )
A .12++y x
B .12-+y x
C .12+-y x
D .12--y x
2、把a 4-2a 2b 2+b 4分解因式,结果是( )
A 、a 2(a 2-2b 2)+b 4
B 、(a 2-b 2)2
C 、(a -b)4
D 、(a +b)2(a -b)2
3、若a 2-3ab-4b 2=0,则b
a 的值为( ) A 、1 B 、-1 C 、4或-1 D 、- 4或1
4、已知a 为任意整数,且()2
213a a +-的值总可以被(1)n n n ≠为自然数,且整除,则n 的值为( )
A .13
B .26
C .13或26
D .13的倍数 5、把代数式 322363x x y xy -+分解因式,结果正确的是
A .(3)(3)x x y x y +-
B .223(2)x x xy y -+
C .2(3)x x y -
D .23()x x y -
6、把x 2-y 2-2y -1分解因式结果正确的是( )。

A .(x +y +1)(x -y -1)
B .(x +y -1)(x -y -1)
C .(x +y -1)(x +y +1)
D .(x -y +1)(x +y +1)
7、把x 2-y 2-2y -1分解因式结果正确的是( )。

A .(x +y +1)(x -y -1)
B .(x +y -1)(x -y -1)
C .(x +y -1)(x +y +1)
D .(x -y +1)(x +y +1)
8、分解因式:222x xy y x y -++-的结果是( )
A.()()1x y x y --+
B.()()1x y x y --- C.()()1x y x y +-+ D.()()1x y x y +--
9、因式分解:9x 2-y 2-4y -4=__________.
10、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。

11、已知,01200520042=+++++x x x x 则.________2006=x
12、若6,422=+=+y x y x 则=xy ___。

13、计算)10
11)(911()311)(211(2232----
的值是( )
14、22414y xy x +--
15、811824+-x x
16、2ax a b ax bx bx -++--2
17、24)4)(3)(2)(1(-++++x x x x
18、1235-+-x x x
19、)()()(23m n n m n m +--+
20、3)2(2)2(222-+-+a a a a
21、已知3
12=-y x ,2=xy ,求 43342y x y x -的值。

22、已知2=+b a ,求)(8)(22222b a b a +--的值
23、(1)已知2,2-==+xy y x ,求xy y x 622++的值;
(2)已知21,122=
+-=-y x y x ,求y x -的值; (3)已知21=+b a ,8
3-=ab ,求(1)2)(b a -;(2)32232ab b a b a +- (4)已知0516416422=+--+y x y x ,求x+y 的值;
24、2222224)(b a b a c ---
25、先分解因式,然后计算求值:(本题6分)
(a 2+b 2-2ab )-6(a -6)+9,其中a=10000,b=9999。

26、已知,8=+n m ,15=mn 求22n mn m +-的值。

24、27已知:,012=-+a a
(1)求222a a +的值;
(2)求1999223++a a 的值。

28、已知x(x -1)-(x 2
-y)=-2.求xy y x -+22
2的值.
【知识精读】
分式定义:(、为整式,中含有字母)性质通分:约分:分式方程定义:分母含有未知数的方程。

如解法思想:把分式方程转化为整式方程方法:两边同乘以最简公分母依据:等式的基本性质
注意:必须验根应用:列分式方程解应用题及在其它学科中的应用A B A B A M B M M A B A M B M M x x A B B =⨯⨯≠=÷÷≠⎧⎨⎪⎪⎩⎪⎪-=+⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪()()005113
【分类解析】
1. 分式有意义的应用
例1. 若ab a b +--=10,试判断1111
a b -+,是否有意义。

2. 结合换元法、配方法、拆项法、因式分解等方法简化分式运算。

例2. 计算:a a a a a a 2211313
+-+--+- 例3. 解方程:11765556
222-++=-+-+x x x x x x
3. 在代数求值中的应用
例4. 已知a a 2
69-+与||b -1互为相反数,求代数式 ()42222222222
a b a b ab a b a ab b a b ab b a -++-÷+-++的值。

4. 用方程解决实际问题
例5. 一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度。

5. 在数学、物理、化学等学科的学习中,都会遇到有关公式的推导,公式的变形等问题。

而公式的变形实质上就是解含有字母系数的方程。

例6. 已知x y y =+-2332
,试用含x 的代数式表示y ,并证明()()323213x y --=。

6、中考原题:
例1.已知M x y xy y x y x y x y 22222
2-=--+-+,则M =__________。

例2.已知x x 2
320--=,那么代数式()x x x --+-11132的值是_________。

7、题型展示:
例1. 当x 取何值时,式子||x x x -++232
2有意义?当x 取什么数时,该式子值为零? 例2. 求x m n x mn x m n x mn x m x n
2222
22---+--⋅--()()的值,其中x m n ===-2312。

【实战模拟】
1. 当x 取何值时,分式2111x x
+-有意义? 2. 有一根烧红的铁钉,质量是m ,温度是t 0,它放出热量Q 后,温度降为多少?(铁的比热为c )
3. 计算:x y y x y x y y x ++-+-242442222
4. 解方程:x x x x x x x x ++-++=++-++21436587
5. 要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天。

现在甲、乙两人合作2天后,再由乙单独做,正好按期完成。

问规定日期是多少天?
6. 已知43602700x y z x y z xyz --=+-=≠,,,求
x y z x y z
+--+2的值。

相关文档
最新文档