9 数据挖掘功能之聚类分析和孤立点分析

合集下载

完整版数据挖掘中的聚类分析方法

完整版数据挖掘中的聚类分析方法

数据挖掘中的聚类分析方法随着计算机应用的普及,信息系统产生的数据量日益增大,如何有效地利用巨量的原始数据分析现状和预测未来,己经成为人类面临的一大挑战。

由此数据挖掘技术应运而生并得以迅猛发展,这是快速增长的数据量和日益贫乏的信息量之间矛盾运动的必然结果。

数据挖掘(DataMining),又称为数据库中的知识发现(简称KDD),是从大量数据中提取可信的、新颖的、有效的并能被人们理解的模式的处理过程。

数据挖掘是一门新兴的技术,它以数据库技术作为基础,把逻辑学、统计学、机器学习、模糊学、可视化计算等多门学科的成果综合在一起,进行如何从数据库中得到有用信息的研究。

数据挖掘技术得到了人们的普遍关注,广泛应用于银行金融、保险、公共设施、政府、教育、远程通讯、软件开发、运输等各个企事业单位及国防科研上。

聚类分析是数据挖掘中的一个重要研究领域。

所谓聚类,就是把没有类别标记的样本集按某种准则划分成若干类,使类内样本的相似性尽可能大,而类间样本的相似性尽量小,是一种无监督的学习方法。

聚类分析通常是在没有先验知识支持的前提下进行的,它所要解决的就是在这种前提下,实现满足要求的类的聚合。

聚类分析的研究主要集中在聚类算法上,产生性能好而且实用的聚类算法是其终极目的。

聚类是一个富有挑战性的研究领域,采用基于聚类分析方法的数据挖掘在实践中己取得了较好的效果,在实际操作中往往不是采用单一的手段,而是采用多种手段和方法相结合根据潜在的各项应用,数据挖掘对聚类的典型要求有以下9个方面:⑴可伸缩性可伸缩性是指算法不论对于小数据集还是对于大数据集,都应是有效的在很多聚类算法当中,对于数据对象小于200个的小数据集合性很好,而对于包含成千上万个数据对象的大规模数据库进行聚类时,将会导致有不同的偏差结果。

此外,可伸缩性算法应该随着数据库大小的变化,其运行时间应该线性变化。

(2)处理不同字段类型的能力算法不仅要能处理数值型数据,还要有处理其它类型字段的能力,包括分类标称类型(catalog流Viminal),序数型(ordinal),二元类型(binary),或者这些数据类型的混合。

数据挖掘-聚类分析

数据挖掘-聚类分析
d (i, j ) rs qr st

0 1 0 1 1 1 0 0 .......... ......... .......... ......... .......... .........

2
Байду номын сангаас
数据结构和类型
数据类型
• 混合变量相异度计算 其中为单个类型变量定义的距离; p p为变量的个数。
d (i, j )
(f) d ij 1
p
3
聚类分析方法的分类
聚类方法分类
聚类分析技术通常可分为五大类 :
• 基于划分的方法
• 基于层次的方法
• 基于密度的方法 • 基于网格的方法 • 基于模型的方法
3
聚类分析方法的分类
DS (Ca , Cb ) min{ d ( x, y) | x Ca , y Cb }
2
数据结构和类型
簇间距离度量
最长距离法:定义两个类中最远的两个元素间的距离为类间距离。
D ,C max{ d ( x, 为类间 y) | x Ca , y Cb义类 } L (Ca 的 b) 中心法:定 义两类 两个 中心 间的距离 距离。首先定 中心,而后给出类间距离。 假如Ci是一个聚类,x是Ci内的一个数据点,即x∈ Ci,那么类 中心 定义为:
K-means算法
• k-平均算法,也被称为k-means或k-均值,是一种得到最广泛使用 的聚类算法。 k-平均算法以k为参数,把n个对象分成k个簇,以使 簇内具有教高的相似度,而簇间的相似度较低相似度的计算根据一 个簇中对象的平均值来进行。 • 算法首先随机地选择k个对象,每个对象初始地代表了一个簇的平 均值或中心。对剩余的每个对象根据其与各个簇中心的距离,将它 赋给最近的簇。然后重新计算每个簇的平均值。这个过程不断重复, 直到准则函数收敛。准则如下:

关于数据挖掘中的聚类分析

关于数据挖掘中的聚类分析

关于数据挖掘中的聚类分析聚类数据库中的记录可被化分为一系列有意义的子集,即聚类。

聚类增强了人们对客观现实的认识,是概念描述和偏差分析的先决条件。

聚类技术主要包括传统的模式识别方法和数学分类学。

80年代初,Mchalski提出了概念聚类技术牞其要点是,在划分对象时不仅考虑对象之间的距离,还要求划分出的类具有某种内涵描述,从而避免了传统技术的某些片面性。

统计分析(statistical analysis)常见的统计方法有回归分析(多元回归、自回归等)、判别分析(贝叶斯分析、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)和探索性分析(主元分析法、相关分析法等)。

其处理过程可以分为三个阶段:搜集数据、分析数据和进行推理。

在整个过程中,聚类的依据是统计距离和相似系数。

如何度量距离的远近:统计距离和相似系数人工神经网络神经网络近来越来越受到人们的关注,因为它为解决大复杂度问题提供了一种相对来说比较有效的简单方法。

神经网络可以很容易的解决具有上百个参数的问题(当然实际生物体中存在的神经网络要比我们这里所说的程序模拟的神经网络要复杂的多)。

神经网络常用于两类问题:分类和回归。

在结构上,可以把一个神经网络划分为输入层、输出层和隐含层(见图4)。

输入层的每个节点对应一个个的预测变量。

输出层的节点对应目标变量,可有多个。

在输入层和输出层之间是隐含层(对神经网络使用者来说不可见),隐含层的层数和每层节点的个数决定了神经网络的复杂度。

除了输入层的节点,神经网络的每个节点都与很多它前面的节点(称为此节点的输入节点)连接在一起,每个连接对应一个权重Wxy,此节点的值就是通过它所有输入节点的值与对应连接权重乘积的和作为一个函数的输入而得到,我们把这个函数称为活动函数或挤压函数。

如图5中节点4输出到节点6的值可通过如下计算得到:W14*节点1的值+W24*节点2的值神经网络的每个节点都可表示成预测变量(节点1,2)的值或值的组合(节点3-6)。

数据挖掘 聚类分析

数据挖掘 聚类分析

聚类特征树(CF-树)
• CF树是一个具有两个参数分支因子B和阈值T的高度平衡树。 • 分支因子B:非叶节点可以拥有的孩子数 • 阈值T:叶子节点中的子聚类的最大直径
CF-树算法
• (1)从根节点开始,自上而下选择最近的孩子节点 • (2)到达叶子节点后,检查最近的元组CFi能否吸收此数据点 • 是,更新CF值 • 否,是否可以添加一个新的元组 • 是,添加一个新的元组 • 否则,分裂最远的一对元组,作为种子,按最近距离重新分配其 它元组 • (3)更新每个非叶节点的CF信息,如果分裂节点,在父节点中插入 新的元组,检查分裂,直到root
Old party {2,3,4,5,6,7,8} {3,4,5,6,7,8} {4,5,6,7,8} {5,6,7,8} {5,6,7,8} 终止
算法方法的距离度量
• 最小距离:单连接 • 最大距离:全连接
BIRCH算法:使用聚类特征树的多阶段聚 类
• 为克服凝聚聚类伸缩性差和不能撤销先前步骤的缺点,产生了BIRCH • BIRCH算法特点: (1)BIRCH试图利用可用的资源来生成最好的聚类结果,给定有限的主 存,一个重要的考虑是最小化I/O时间。 (2)BIRCH采用了一种多阶段聚类技术:数据集的单边扫描产生了一个 基本的聚类,一或多遍的额外扫描可以进一步改进聚类质量。 (3)BIRCH是一种增量的聚类方法,因为它对每一个数据点的聚类的决 策都是基于当前已经处理过的数据点,而不是基于全局的数据点。 (4)如果簇不是球形的,BIRCH不能很好的工作,因为它用了半径或直 径的概念来控制聚类的边界。
RC (Ci , C j ) SEC (Ci , C j ) Ci Ci C j SEC (Ci ) Cj Ci C j SEC (C j )

数据挖掘方法聚类分析学习资料

数据挖掘方法聚类分析学习资料
* 距离越小,说明两个样本的性质越相似。 * 它的取值大小受量纲影响,不稳定。因此,
一般使用标准化的距离公式。
2、描述两个指标变量之间的相似程度:相似系数
令 Xs =(x 1 s … x i s … x n s )是第 s 个指标变 量, Xt =(x 1 t … x i t … x n t )是第 t 个指标变 量, 那么,指标变量 Xs和Xt之间的相关系数是:
A3
• 两点之间的距离:
A2
A1
– 欧氏距离(Euclidean distance)
– 欧氏距离的平方(squared Euclidean distance)
– 曼哈顿距离(Manhattan distance ; City-Block)
关于曼哈顿距离
曼哈顿距离——两点在南北方向上 的距离加上在东西方上的距离, 即D(I,J)=|XI-XJ|+|YI-YJ|。 对于一个具有正南正北、正东正 西方向规则布局的城镇街道,从 一点到达另一点的距离正是在南 北方向上旅行的距离加上在东西 方向上旅行的距离因此曼哈顿距 离又称为出租车距离。
聚类分析的统计量
数据
从几何学角度看,上面表中的每一行或每一列 都表示了空间中的一个点或一个向量。
1、描述两个样本之间的相似程度: 距离
令 Xi =(x i 1 … x i t … x i k )是第 i 个样本观察 值, Xj =(x j 1 … x j t … x j k )是第 j 个样本观 察值,那么,样本 Xi 和 Xj 之间的欧氏距离是:
• 1967年由学者J. B. MacQueen 所提出,也是最 早的组群化计算技术。
The K-Means Clustering Method
• Example

聚类分析孤立点分析

聚类分析孤立点分析
13
基于统计学的孤立点检测
结果非常依赖于模型F的选择
Oi可能在一个模型下是孤立点, 在另一个模型下是非常有 效的值
替代分布在决定检验的能力上是非常重要的
不同的替代分布
固有的替代分布(inherent alternative distribution):所有对 象来自分布F的工作假设被拒绝, 而所有对象来自另一个 分布G的替代假设被接受
第7章. 聚类分析
什么是聚类(Clustering)分析? 聚类分析中的数据类型 主要聚类方法分类 划分方法(Partitioning Methods) 层次方法(Hierarchical Methods) 基于密度的方法(Density-Based Methods) 基于网格的方法(Grid-Based Methods) 基于模型的聚类方法(Model-Based Clustering Methods) 孤立点分析(Outlier Analysis) 小结
16
基于距离的孤立点检测
为了解决统计学方法带来的一些限制,引入了基于距离的 孤立点的概念
基于距离的孤立点: DB(p, d)-孤立点是数据集T中的一个对象o, 使得 T中的 对象至少有p部分与o的距离大于d
将基于距离的孤立点看作是那些没有“足够多”邻居的对 象. 这里的邻居是基于距给定对象的距离来定义的
6
检测一元正态分布中的离群点
y
1
x2
e2
2
7
检测一元正态分布中的离群点
若考察的属性服从正态分布,可以用属性的出现概率确定 是否离群点.出现概率低于一个阈值,就可以认为该属性是 一个离群点.确定的方法由下面定义:
8
检测一元正态分布中的离群点
出现概率在2.5%左边或者右边的属性都可以作 为离群点,因为概率小于给定的阈.

数据挖掘中的特征选择和聚类分析

数据挖掘中的特征选择和聚类分析

数据挖掘中的特征选择和聚类分析数据挖掘是一种利用计算机技术对大量数据进行深入分析和处理的方法。

数据挖掘可以帮助我们从大量数据中发现规律、模式和趋势等信息。

其中,特征选择和聚类分析是数据挖掘中的两个重要步骤。

本文将深入探讨这两个步骤的相关概念、方法和应用。

一、特征选择特征选择是数据挖掘中的一项重要技术。

其目的是从原始数据中选择出最具有代表性和有效性的特征子集,以提高数据挖掘的准确性和效率。

特征选择可以帮助我们减少数据的维度,减少数据处理的时间和成本,还可以帮助我们发现数据中的规律和模式。

下面将介绍特征选择的方法和应用。

1.方法(1)过滤式特征选择:过滤式特征选择是在特征提取之前对所有特征进行筛选,选出与分类或回归任务相关性最高的特征。

常用的方法有相关系数法、卡方检验法、互信息法等。

(2)包裹式特征选择:包裹式特征选择是将特征选择嵌入到分类或回归模型中,通过评估分类或回归结果的精度来选择最佳特征子集。

常用的方法有遗传算法、模拟退火算法、梯度下降法等。

(3)嵌入式特征选择:嵌入式特征选择是将特征选择嵌入到分类或回归算法中,通过自动学习特征的权重和重要性来选择最佳特征子集。

常用的方法有决策树、支持向量机、神经网络等。

2.应用特征选择可以在许多领域中得到广泛应用,例如医学诊断、金融风险管理、文本分类等。

在医学诊断中,可以使用特征选择方法选择最具有代表性和有效性的生物标志物,以提高疾病的诊断准确性和治疗效果。

在金融风险管理中,可以使用特征选择方法选择最具有代表性和有效性的财务指标,以预测市场波动和风险。

在文本分类中,可以使用特征选择方法选择最具有代表性和有效性的单词或短语,以自动判断文本的主题和情感。

二、聚类分析聚类分析是数据挖掘中的一项常用技术。

其目的是将相似的数据点划分到同一类别中,以发现数据的内在结构和特征。

聚类分析可以帮助我们识别数据中的模式、群组和异常值等信息,还可以帮助我们预测未来的趋势和变化。

数据挖掘--聚类方法

数据挖掘--聚类方法

数据挖掘--聚类方法(1)聚类就是将数据对象分组成多个类或者簇,划分的原则是在同一个粗中的对象之间具有较高的相似度,而不同簇中的对象差别较大。

属于一种无指导的学习方法。

好的聚类算法应该满足以下几个方面:(1)可伸缩型:无论对小数据量还是大数据量应该都是有效的。

(2)具有处理不同类型属性的能力。

(3)能够发现任意形状的聚类。

(4)输入参数对领域知识的弱依赖性(5)对于输入记录顺序不敏感(6)能够处理很多维度的数据,而不止是对3维左右的数据有效(7)处理噪声数据的能力(8)基于约束的距离:既能找到满足特定的约束,又具有良好聚类特性的数据分组(9)挖掘出来的信息是可理解的和可用的。

聚类分析主要在以下几个方面应用:(1)可以作为其他算法的预处理步骤(2)可以作为一个独立的工具来获得数据的分布情况(3)可以完成孤立点挖掘,用来预示欺诈行为的存在。

基本概念聚类分析的输入可以用一组有序对(X,s)或(X,d)表示,这里X表示一组样本,s和d分别是度量样本间相似度或相异度(距离)的标准。

聚类系统的输出是一个分区C={C1,C2,…,Ck},其中Ci是X的子集,成为类。

类的特征可以用如下几种方式表示: 通过类的中心或类的边界点表示一个类。

使用聚类树中的结点图形化地表示一个类。

使用样本属性的逻辑表达式表示类。

聚类分析的方法:聚类分析有很多大量的、经典的算法,比如k-平均、k-中心点、PAM、CLARANS, BIRTH,CURE,OPTICS,DBSCAN,STING,CLIQUE,WAVECLUSTER等。

度量标准:一个聚类分析过程的质量取决于对度量标准的选择,因此必须仔细选择度量标准。

(1)距离函数明可夫斯基距离:x, y 是相应的特征,n是特征的维数。

则明可夫斯基距离d(x,y)表示如下,r=2为欧式距离。

二次型距离:余弦距离二元特征样本的距离假定x和y分别是n维特征,xi和yi分别表示每维特征,且xi和yi的取值为二元类型数值{0,1}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档