(完整版)(数学分析教案)第四章函数的连续性

合集下载

函数的连续性优质课教案

函数的连续性优质课教案

课 题:2.5函数的连续性教学目的:1.理解掌握函数在一点连续须满足的三个条件的基础上,会判断函数在一点是否连续.2.要会说明函数在一点不连续的理由.3.要了解并掌握函数在开区间或闭区间连续的定义.4.要了解闭区间上连续函数的性质,即最大值最小值定理教学重点:函数在一点连续必须满足三个条件.教学难点: 借助几何图象得出最大值最小值定理.授课类型:新授课 课时安排:1课时教学过程:一、复习引入:1.000lim ()lim ()lim ()x x x x x x f x a f x f x a -+→→→=⇔== 其中0lim ()x x f x a -→=表示当x 从左侧趋近于0x 时的左极限,0lim ()x x f x a +→=表示当x 从右侧趋近于0x 时的右极限2. 我们前面学习了数列极限和函数极限、数列可以看成是一种特殊的函数,不同的是函数的定义域往往是连续的.而数列的定义域是自然数集,是一个一个离散的点.而在我们日常生活中,也会碰到这种情况.比如温度计的水银柱高度会随着温度的改变而连续地上升或下降,这是一种连续变化的情况;再比如邮寄信件的邮费,随邮件质量的增加而作阶梯式的增加(打个比方:20克以内是8毛钱邮票,21克~30克是1元,31克~40克是1.2元)等等.这就要求我们去研究函数的连续与不连续问题二、讲解新课:1.观察图像 如果我们给出一个函数的图象,从直观上看,一个函数在一点x=x0处连续,就是说图象在点x=x0处是不中断的.下面我们一起来看一下几张函数图象,并观察一下,它们在x=x0处的连续情况,以及极限情况.分析图,第一,看函数在x0是否连续.第二,在x0是否有极限,若有与f(x0)的值关系如何: 图(1),函数在x0连续,在x0处有极限,并且极限就等于f(x0).图(2),函数在x0不连续,在x0处有极限,但极限不等于f(x0),因为函数在x0处没有定义. 图(3),函数在x0不连续,在x0处没有极限.图(4),函数在x0处不连续,在x0处有极限,但极限不等于f(x0)的值.函数在点x=x0处要有定义,是根据图(2)得到的,根据图(3),函数在x=x0处要有极限,根据图(4),函数在x=x0处的极限要等于函数在x=x0处的函数值即f(x0). 函数在一点连续必须满足刚才的三个条件. .函数f(x)在点x=x0处连续必须满足下面三个条件.(1)函数f(x)在点x=x0处有定义;(2)0lim x x →f(x)存在;(3)0lim x x →f(x)=f(x0),即函数f(x)在点x0处的极限值等于这一点的函数值.如果上述三个条件中有一个条件不满足,就说函数f(x)在点x0处不连续.那根据这三个条件,我们就可以给出函数在一点连续的定义.2. 函数在一点连续的定义: 如果函数f(x)在点x=x0处有定义,0lim x x →f(x)存在,且0lim x x →f(x)=f(x0),那么函数f(x)在点x=x0处连续.由第三个条件,0lim x x →f(x)=f(x0)就可以知道0lim x x →f(x)是存在的,所以我们下定义时可以再简洁一点. 函数f(x)在点x0处连续的定义.如果函数y=f(x)在点x=x0处及其附近有定义,并且0lim x x →f(x)=f(x0),就说函数f(x)在点x0处连续. 那怎么根据在一点连续的定义来定义在一个开区间(a ,b)内连续的定义. 区间是由点构成的,只要函数f(x)在开区间内的每一个点都连续,那么它在开区间内也就连续了.3.函数f(x)在(a ,b)内连续的定义:如果函数f(x)在某一开区间(a ,b)内每一点处连续,就说函数f(x)在开区间(a ,b)内连续,或f(x)是开区间(a ,b)内的连续函数.f(x)在开区间(a ,b)内的每一点以及在a 、b 两点都连续,现在函数f(x)的定义域是[a ,b ],若在a 点连续,则f(x)在a 点的极限存在并且等于f(a),即在a 点的左、右极限都存在,且都等于f(a), f(x)在(a ,b)内的每一点处连续,在a 点处右极限存在等于f(a),在b 点处左极限存在等于f(b).4.函数f(x)在[a ,b ]上连续的定义:如果f(x)在开区间(a ,b)内连续,在左端点x=a 处有+→a x lim f(x)=f(a),在右端点x=b 处有-→b x lim f(x)=f(b),就说函数f(x)在闭区间[a ,b ]上连续,或f(x)是闭区间[a ,b ]上的连续函数.如果函数f(x)在闭区间[a ,b ]上是连续函数,那它的图象肯定是一条连续曲线.我们来看这张图,它是连续的,在a 、b 两点的值都是取到,所以它一定有一个最高点和一个最低点,假设在x1这点最高;那么它的函数值最大,就是说[a ,b ]区间上的各个点的值都不大于x1处的值,用数学语言表示就是f(x1)≥f(x),x ∈[a ,b ],同理,设x2是最低点,f(x2)≤f(x),x ∈[a ,b ].5.最大值 f(x)是闭区间[a ,b ]上的连续函数,如果对于任意x ∈[a ,b ],f(x1)≥f(x),那么f(x)在点x1处有最大值f(x1).6.最小值 f(x)是闭区间[a ,b ]上的连续函数,如果对于任意x ∈[a ,b ],f(x2)≤f(x),那么f(x)在点x2处有最小值f(x2).由图我们可以知道,函数f(x)在[a ,b ]上连续,则一定有最大最小值,这是闭区间上连续函数的一个性质.最大,最小值可以在(a ,b)内的点取到,也可以在a ,b 两个端点上取到.7.最大值最小值定理如果f(x)是闭区间[a ,b ]上的连续函数,那么f(x)在闭区间[a ,b ]上有最大值和最小值 我们现在已经学习了函数在一点连续的定义,和需要满足的三个条件,下面看两个例子,看在给定点处是否连续,都要说明理由的三、讲解范例:例1 讨论下列函数在给定点处的连续性. (1)f(x)=x 1,点x=0. (2)g(x)=sinx ,点x=0.分析:我们如果要很直观地看在给定点是否连续,画图方法最方便.我们已经画出了两个函数的图象了.从图中,我们可以直接看出在x=0处函数连续的情况,函数f(x)=x 1在点x=0处不连续,因为函数f(x)=x 1在点x=0处没有定义.函数g(x)=sinx 在点x=0处连续,因为函数g(x)=sinx ,在x=0及附近都有定义,0lim →x sinx 存在且0lim→x sinx=0而sin0=0.解:(1)∵函数f(x)=x 1在点x=0处没有定义 ∴它在点x=0处不连续.解:(2)∵0lim →n sinx=0=sin0,∴函数g(x)=sinx 在点x=0处是连续的.点评:写g(x)=sinx 在点x=0处连续只要把第三个条件写一下就可以,因为它已经包含前两个条件了,我们已经知道函数在一点连续的定义了.四、课堂练习:2,1104P五、小结 :这节课主要学习了函数在一点连续的定义,以及必须满足的三个条件:①函数f(x)在点x=x0处有定义.②0lim x x →f(x)存在.③0lim x x →f(x)=f(x0).还有函数在开区间,闭区间上连续的定义.以及闭区间上连续函数有最大值.最小值的定义和最大值最小值定理六、课后作业:4,3,2105P。

数学分析 第四章 第一节

数学分析 第四章 第一节

§1连续性概念【教学目的】使学生深刻理解函数在一点连续包括单侧连续的定义,使学生清楚区分“连续函数”与“函数连续”所表述的不同内涵。

【教学重点】函数连续性概念,间断点分类。

【教学难点】函数连续性概念。

一 函数在一点的连续性定义1 设函数f 在某 U(x 0)内有定义。

若lim x x → f (x ) = f (x 0) (1) 则称f 在点x 0 连续。

例如,函数f(x)=2x+1在点 x=2连续,因为2lim →x f ( x )= 2lim →x f ( 2x+1 ) = 5 = f (2). 又如,函数1sin ,0,0,0x x x x ≠=f(x)={在点x=0连续,因为 001lim ()lim sin 0(0)x x f x x f x →→=== 为引入函数y= f (x)在点0x 连续的另一种表述,记0x x x ∆=- ,称为自变量x(在点0x )的增量或改变量。

设00()y f x =,相应的函数y 的增量记为0000()()()()y f x f x f x x f x y y ∆=-=+∆-=-.注 自变量的增量x ∆或函数的增量y ∆可以是正数,也可以是0或负数。

引进了增量的概念之后,易见“函数y= f (x) 在点0x 连续”等价于0lim 0x y ∆→∆=由于函数在一点的连续性是通过极限定义的,因而也可直接退敌ε-δ方式来叙述,即:若对任给的ε>O ,存在δ>O ,使得当0x x -<δ 时有0()()f x f x ε-<, (2) 则称函数f 在点0x 连续由上述定义,我们可得出f 在点0x 处有极限与f 在0x 连续这两个概念之间 的联系。

首先,f 在点0x 有极限是f 在0x 连续的必要条件;进一步说,“f 在点0x 连续”不仅要求f 在点0x 有极限,而且其极限值应等于f 在0x 函数值0()f x 。

其次,在讨论极限时,我们假定f 在点0x 的某空心领域00()U x 内有定义(f 在点0x 可以没有定义),而“f 在点0x 连续”则要求f 在某 0()U x 内(包括点0x )有定义,此时由于(2)式当0x x =时总是成立的,所以在极限定义中的“00x x δ<-<”换成了在连续定义中的“0x x δ-<”。

数学分析4.2连续函数的性质(讲义)

数学分析4.2连续函数的性质(讲义)

第四章函数的连续性2 连续函数的性质一、连续函数的局部性质定理4.2(局部有界性):若函数f在x0连续,则f在某U(x0)内有界.定理4.3(局部保号性):若函数f在x0连续,且f(x0)>0(或<0),则任何正数r<f(x0)(或r<-f(x0)),存在某U(x0),使得对一切x∈U(x0),有f(x)>r(或f(x)<-r).注:在应用保号性时,常取r=f(x0).定理4.4(四则运算):若函数f和g在x0连续,则f±g,f·g,f/g(g(x0)≠0)也在点x0连续.定理4.5:若函数f在x0连续,g在u0连续,u0=f(x0),则复合函数g(f(x))在点x0连续.证1:∵g在u0连续,∴对∀ε>0,有δ1>0,使当|u-u0|<δ1时有|g(u)-g(u0)|<ε;又u0=f(x0),及u=f(x)在点x0连续,∴对δ1,有δ>0,使当|x-x0|<δ时有|u-u0|=|f(x)-f(x0)|<δ1;∴对∀ε>0,有δ>0,当|x-x0|<δ时有|g(f(x))-g(f(x0))| <ε;∴复合函数g(f(x))在点x0连续.证2:∵u=f(x)在点x0连续,∴=x0;又u0=f(x0),∴u→u0 (x→x0);又g在u0连续,∴===g(f(x0));∴复合函数g(f(x))在点x0连续.复合函数极限公式:==g(f(x0)).例1:求sin(1-).解:sin(1-)=sin ((1-))=sin 0=0.注:若内函数f当x→x0时极限为a,而a≠f(x0)或f在x0无定义(即x0为f的可去间断点),又外函数g在u=a连续,则仍可应用上述复合函数的极限公式。

.例2:求极限:(1);(2).解:(1)==1.(2)==.二、闭区间上连续函数的基本性质定义1:设f为定义在数集D上的函数。

函数的连续性教案示例

函数的连续性教案示例

函数的连续性教案⽰例函数的连续性·教案⽰例⽬的要求了解函数在⼀点处连续的定义,知道已学过的基本初等函数及由它们经过有限次四则运算所产⽣的函数在定义区间内每⼀点都连续,会从⼏何直观上理解闭区间上的连续函数有最⼤值和最⼩值.内容分析1.在微积分中我们所研究的函数主要是连续函数,⽽连续概念是建⽴在极限概念的基础上的.本节课介绍函数f(x)在点x =x 0处连续的概念时,除借助图形直观描述外,主要以函数值、极限值都存→f(x )lim f(x)0x x 0在且两者相等为定义⽅式,这种定义与极限关系密切,所以将连续作为本章的最后部分既是承上启下的,⼜是顺理成章的.2.⼈们对事物的认识是不断加深的,研究也是由浅⼊深的.对函数的定义域、值域、单调性、奇偶性、周期性等进⾏了研究,本课再⽤学过的极限概念对函数的连续性加以研究,使我们对函数的了解认识更进⼀步,更完善.3.本课时的重点是函数在x =x 0处连续的定义.定义包含三层意思:(1)f(x)在点x =x 0处及其附近有定义;(2)lim f(x)(3)lim f(x)f(x )x x x x 000→→存在;=可结合图形说明,只要缺其中的任意⼀个条件,就说f(x)在点x 0处不连续.难点是对连续的理解,由于连续较抽象,故要对照图形讲解.4.函数在区间连续是建⽴在函数在⼀点连续的基础上的.如果函数f(x)在开区间(a ,b)内每⼀点都连续,就说函数f(x)在开区间(a ,b)内连续;如果在开区间,内连续,在=处有=,在=处有=,就说在闭区间,上连续.这种环环相扣、→→f(x)(a b)x a lim f(x)f(a)x b lim f(x)f(b)f(x)[a b]x ax b +-层层推进的定义⽅式能很好地培养学⽣严谨的逻辑思维.5.指出已学过的基本初等函数及由它们经过有限次四则运算所产⽣的函数在其定义区间⾥每⼀点都是连续的.6.从⼏何直观上讲解函数的连续性和连续函数的性质.7.从连续函数的定义可知,所谓函数y =f(x)在它的定义域内某点x 0处连续,意思是说,当⾃变量x ⽆限接近x 0时,相应的函数值f(x)也就⽆限地接近函数值f(x 0).也可⽤“增量”(改变量)来说明函数的连续性:设⾃变量x 的增量为Δx =x -x 0,则函数值的改变量为Δy =f(x +x 0)-f(x 0).所谓f(x)在点x 0处连续,就是指当Δx →0时,相应的增量Δy也趋向零,即Δ=.通过这些不同的说法,加深对极限概念的Δ→lim y 0x 0认识.教学过程1.实例引⼊概念,图形直观说明(1)⽔银柱⾼度随温度的改变⽽连续变化;(2)邮费随邮件重量的增加⽽作阶梯式的增加.函数值是否会因为⾃变量的细⼩变化⽽“⼤起⼤落”,这就是要研究的问题.引出课题:函数的连续性从下列图形中分析:问:(1)函数f(x)在点x =x 0是否有定义?(2)lim f(x)(3)lim f(x)f(x )x x x x 000→→是否存在?是否与相等?答:图(1)满⾜3条;图(2)不满⾜(1);图(3)不满⾜条件(2);图(4)不满⾜条件(3).由此概括出函数在⼀点处连续的定义.2.函数在⼀点处连续的定义:如果函数=在点=处及其附近有定义,⽽且=→y f(x)x x lim f(x)0x x 0f(x 0),就说函数f(x)在点x 0处连续.指出=包含两层意思:存在;极限值与函数值相等.→→→lim f(x)f(x )(1)lim f(x)(2)lim f(x)f(x )00x x x x x x 000提问:连续函数在图形上有何特点?3.举例应⽤例讨论下列函数在给定点处的连续性:(1)f(x)x 0=,点=;1x(2)g(x)=sinx ,点x =0.解:画图.(1)f(x)x 0x 0函数=在=处没有定义,因⽽它在点=处不连续.1x(2)lim sinx 0sin0g(x)sinx x 0因为==,因此=在点=处是连续的.→x 0课堂练习:教科书第97页练习第1、2题(不连续的指出不满⾜定义中的哪⼀条),第98页习题2.6第2、4题.4.函数在区间⾥连续(1)在开区间连续:如果函数在某⼀开区间(a ,b)内每⼀点处都连续,就说函数在开区间(a ,b)内连续,或说函数是开区间内的连续函数.(2)在闭区间连续:如果函数f(x)在开区间(a ,b)内连续,在左端点x=处有=,在右端点处有=,就说函数在闭→→a lim f(x)f(a)lim f(x)f(b)f(x)x a x b+- 区间[a ,b]上连续.5.闭区间上连续函数的性质性质(最⼤值最⼩值定理):如果f(x)是闭区间[a ,b]上的连续函数,那么f(x)在闭区间[a ,b]上有最⼤值和最⼩值.6.归纳⼩结(1)函数在⼀点处连续的定义.(2)判定函数在⼀点处是否连续:⽅法1:由定义说明,⽅法2:由图象直观说明.(3)闭区间上连续函数的性质.想⼀想:函数在某⼀点的极限与连续有何关系?布置作业教科书第98页习题2.6第1、3题。

函数的连续性(东南大学工科数学分析教案)

函数的连续性(东南大学工科数学分析教案)

lim F ( x) F ( x ) 。
1 x 2
例 5.求函数 y ln arcsinx 的连续区间,并求 lim ln arcsin x 。
解:∵ y ln arcsin x 是初等函数,其定义区间为(0, 1] ,
∴ y ln arcsin x 的连续区间为(0, 1] 。
x0
lim y 0
点 x 是函数 则称函数 f ( x )在点 x 处连续,并称 f ( x) 的连续点。
x x ; ∵ x x x , ∴当x 0 时,有
∵ lim y lim [ f ( x) f ( x )] 0 ,
x0 x x
∴ lim f ( x) f ( x ) 。
(证明从略)
定理 3 是说连续函数的复合函数仍是连续函数。其结论为
xx
lim f [ g ( x)] f [ g ( x )] f [ lim g ( x)]
xx
" f " 在函数连续时可以交换次序。 极限符号" lim" 与函数符号
2 y sin u 例如:∵ ,u x 均为连续函数,
② lim f ( x) 存在;
xx
③ lim f ( x) f ( x ) 。
xx
若条件之一不满足,则称点 x为 f ( x) 的一个间断点
(或不连续点)。
定义 3 若 o , 0,
x x 时,恒有
f ( x ) f ( x ) ,则称函数 f ( x )在点 x 处连续。
点 x 的函数值。 极限值 u 未必 是函数 u g ( x) 在
1 loga (1 x) 例如: y loga (1 x) x ,可看作由

高中数学(人教版)第4章函数的连续性连续函数的性质课件

高中数学(人教版)第4章函数的连续性连续函数的性质课件
数学分析 第四章 函数的连续性
§1 连续函数的性质
一、连续函数的局部性质
二、闭区间上连续函数的 性质 三、反函数的连续性 四、一致连续性
*点击以上标题可直接前往对应内容
在本节中 , 我们将 介绍连续函数的局部 性质与整体性质 .熟练 地掌握和运用这些性 质是具有分析修养的 重要标志.
§1 连续函数的性质
证 因为 f 在 x0 连续, 所以对正数 0 f (x0 ) r , 存在 0, 当 x ( x0 , x0 ) 时, 有 | f ( x ) f ( x0 ) | 0 f ( x0 ) r , 于是证得 f ( x ) r 0.
连续函数的局部性质
所谓连续函数局部性质就是指: 若函数 f 在点x0 连续(左连续或右连续), 则可推知 f 在点 x0 的某 个局部邻域(左邻域或右邻域)内具有有界性、保 号性、四则运算的保连续性等性质.
连续函数的局部 性质
后退 前进 目录 退出
连续函数的局部 性质
定理4.2(局部有界性)
若函数 f 在点 x0 连续, 则f 在某邻域U ( x0 ) 上有界.
连续函数的局部 性质
(2) 若 g( u) 在 u0 连续 , lim f ( x ) u0 , 则有
x x0
x x0
lim g ( f ( x )) g ( u0 ) g ( lim f ( x )).
x x0
(* )
事实上,只要补充定义(或者重新定义) f ( x0 ) u0
定理4.6(最大、最小值定理)
若函数 f ( x ) 在闭区间[a, b]上连续, 则 f ( x ) 在[a, b]上有最大、最小值.
这个定理刻画了闭区间上连续函数的一个深刻的

数学分析4.1函数连续性概念(讲义)

数学分析4.1函数连续性概念(讲义)

第四章函数的连续性1 连续性概念一、函数在一点的连续性定义1:设函数f在U(x0)内有定义. 若=f(x0),则称f在点x0连续.如:∵==5=f(2),∴f(x)=2x+1在点x=2连续.对函数f(x)=有==0=f(0),∴f(x)在点x=0连续.记△x=x-x0,称为自变量x(在点x0)的增量或改变量.设y0=f(x0),相应的函数y(在点x0)的增量记为:△y=f(x)-f(x0)=f(x0+△x)-f(x0)=y-y0. 当=0时,函数y=f(x)在点x0连续。

若对任给的ε>0,存在δ>0,使得当|x-x0|<δ时有|f(x)-f(x0)|<ε,则称函数f在点x0连续。

f在x0连续时,=f(x),即与f具有可交换性.例1:证明函数f(x)=xD(x)在点x=0连续,其中D(x)为狄利克雷函数.证:由f(0)=0,且|D(x)|≤1,对∀ε>0,要使|f(x)-f(0)|=|xD(x)|≤|x|<ε,只要取δ=ε,则当|x-0|<δ时,就有|f(x)-f(0)| <ε,∴f在点x=0连续.定义2:设函数f在U+(x0)(或U-(x0))内有定义. 若=f(x0)(或=f(x0)),则称f在点x0右(或左)连续.定理4.1:函数f在x0连续的充要条件是:f在点x0既是右连续,又是左连续.例2:讨论函数f(x)=在点x=0的连续性.解:∵==2=f(0),== -2≠f(0),即函数f(x)在点x=0是右连续,不是左连续,∴f(x)在点x=0不连续.二、间断点及其分类定义3:设函数f在某U⁰(x0)内有定义. 若f在点x0无定义,或f在点x0有定义不连续,则称点x0为函数f的间断点或不连续点。

即以下情形之一:(1)f在点x0无定义或极限不存在;(2)f在点x0有定义且极限存在,但≠f(x0).1、若=A,而f在点x0无定义,或有定义但f(x0)≠A,则称点x0为f的可去间断点.如:对于函数f(x)=|sgn x|,因f(0)=0,而=1≠f(0),∴x=0为f(x)=|sgn x|的可去间断点.对于函数g(x)=,因=1,而g在x=0无定义,∴x=0为函数g的可去间断点.设x0为函数f的可去间断点,且=A. 可定义函数:当x≠x0时,(x)=f(x);当x=x0时,(x0)=A. 则x0是的连续点.如,对g(x)=,可定义(x)=, 则在x=0连续.2、若函数f在点x0的左右极限存在,但≠,则称点x0为f 的跳跃间断点.如:对于函数f(x)=[x],当x=n(n为整数)时,有=n-1≠=n,∴整数点都是函数f(x)=[x]的跳跃间断点.对于函数sgn x在点x=0处的左、右极限分别为-1和1,∴x=0是sgn x的跳跃间断点.可去间断点和跳跃间断点统称为第一类间断点. 其特点是函数在该点处的左、右极限都存在.3、至少有一侧极限不存在的点,称为第二类间断点。

分析方法 第四章 函数的连续性

分析方法  第四章 函数的连续性

定理4.3局部保号性 若函数f ( x)在点x0连续, 且f ( x0 ) 0 0, 则存在x0的某
若函数f ( x), g ( x)在点连续, 则f ( x) g ( x), f ( x) g ( x), 定理4.4四则运算法则
即 lim f ( x) g ( x) f ( x0 ) g ( x0 ), lim f ( x) g ( x) f ( x0 ) g ( x0 ),
例如, 函数sin x在0,2 上的最大值为 1, 最小之为1.
y
1

1
而函数f ( x) x在0,1上没有最大值与最小值 .
0
y
2
x
y 1 x
1 x 0,1, 函数g ( x) x 在0,1上也没有最大与最小值 . 2 x 0与1. 若函数f ( x)在闭区间 定理4.6最大、与最小值定理
注 若f (u )在u0连续 , u g ( x), u0 lim g ( x), 则 lim f g ( x) f lim g ( x). x x0 x x0 x x0
例1 求 lim sin 1 x 2 .
x 1


解 sin 1 x 2 为连续函数sin u与u 1 x 2的复合函数 , 于是
x 0 x 0
x x0 例2 讨论f ( x) x 0 x 0 , 在点x 0的连续性. x x 0
于是f ( x)在x 0既左连续 , 又右连续 , 从而连续
x 2 x 0 例3 讨论函数f ( x) , 在点x 0的连续性. x 2 x 0
f (u) f (u0 )
再由g( x)在x0的连续性 , 及u0 g( x0 ),对以上 0, 0, x x0 时, 有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章函数的连续性(14学时)● 引言在数学分析中,要研究种种不同性质的函数,其中有一类重要的函数,就是连续函数。

从今天开始,我们就来看看这类函数的特点。

主要讲以下几个问题:1.什么是“函数的连续性”?2.“间断"或“不连续”有哪些情形? 3.连续函数有哪些性质?4.初等函数的连续性有何特点?§1 连续性概念教学目标:使学生深刻掌握函数连续性的概念和连续函数的概念。

教学要求:(1)使学生深刻理解函数在一点连续包括单侧连续的定义,并能熟练写出函数在一点连续的各种等价叙述;(2)应使学生从分析导致函数在一点不连续的所有可能的因素出发,理解函数在一点间断以及函数间断点的概念,从反面加深对函数在一点连续这一概念的理解力并能熟练准确地识别不同类型的间断点;(3)明确函数在一区间上连续是以函数在一点连续的概念为基础的,使学生清楚区分“连续函数”与“函数连续”所表述的不同内涵.教学重点:函数连续性概念。

教学难点:函数连续性概念。

学时安排: 4学时 教学程序:● 引言“连续”与“间断"(不连续)照字面上来讲,是不难理解的.例如下图1中的函数()y f x =,我们说它是连续的,而图2中的函数在0x 处是间断的。

由此可见,所谓“连续函数”,从几何上表现为它的图象是坐标平面上一条连绵不断的曲线。

而所谓“不连续函数”从几何上表现为它的图象在某些点处“断开”了。

当然,我们不能满足于这种直观的认识,因为单从图形上看是不行的,图形只能帮助我们更形象地理解概念,而不能揭示概念的本质属性.例如,可以举出这样的例子,它在每点都连续但却无法用图形表示出来(如Rieman 函数)。

因此,为了给出“连续”的定义,需要对此作进一步分析和研究。

从图2看出,在0x 处,函数值有一个跳跃,当自变量从1x 左侧的近傍变到1x 右侧的近旁时,对应的函数值发生了显著的变化.而在其它点处(如1x 处),情况则完全相反。

:当自变量从1x 向左侧或向右侧作微小改变时,对应的函数值也只作微小的改变;这就是说,当自变量x 靠近1x 时,函数值就靠近1()f x ,而当1x x →时,1()()f x f x →。

换句话说,当1x x →时,()f x 以1()f x 为极限,即11lim ()()x x f x f x →=。

根据这一分析,引入下面的定义:一 函数在一点的连续性1.函数f 在点0x 连续的定义定义1(f 在点0x 连续)设函数f 在某0()U x 内有定义,若00lim ()()x x f x f x →=,则称f 在点0x 连续。

注 000lim ()()(lim )x x x x f x f x f x →→==,即“f 在点0x 连续"意味着“极限运算与对应法则f 可交换。

2.例子例1.0,sin ,cos x R x x ∀∈在0x 处连续.例2.2lim(21)5(2)x x f →+==。

例3.讨论函数1sin,0()0,0x x f x xx ⎧≠⎪=⎨⎪=⎩在点x=0处连续性。

3.函数f 在点0x 连续的等价定义1) 记号:0x x x ∆=-——自变量x 在点的增量或改变量。

设00()y f x =,0000()()()()y f x f x f x x f x y y ∆=-=+∆-=-——函数y 在点0x 的增量。

注:自变量的增量x ∆或函数的增量y ∆可正、可负、也可为零。

(区别于“增加”)。

2) 等价定义1:函数f 在点0x 连续⇔0lim 0x y ∆→∆=。

3) 等价定义2:函数f 在点0x 连续⇔0,0εδ∀>∃>,当0||x x δ-<时,0|()()|f x f x ε-<。

注:一个定义是等价的,根据具体的问题选用不同的表述方式。

如用三种定义,可以证明以下命题: 例4.证明函数()()f x xD x =在点0x =连续,其中()D x 为Dirichlet 函数。

4.函数f 在点0x 有极限与函数f 在点0x 连续之间的关系1) 从对邻域的要求看:在讨论极限时,假定f 在00()U x 内不定义(f 在点0x 可以没有定义)。

而f 在点0x 连续则要求f 在某0()U x 内有定义(包括0x )。

2) 在极限中,要求00||x x δ<-<,而当“f 在点0x 连续"时,由于x=0x 时,0|()()|f x f x ε-<恒成立。

所以换为:0||x x δ-<。

3) 从对极限的要求看:“f 在点0x 连续”不仅要求“f 在点0x 有极限",而且00lim ()()x x f x f x →=;而在讨论0lim ()x x f x →时,不要求它等于0()f x ,甚至于0()f x 可以不存在。

总的来讲,函数在点0x 连续的要求是:①()f x 在点0x 有定义;②0lim ()x x f x →存在;③00lim ()()x x f x f x →=.任何一条不满足,f 在点0x 就不连续。

同时,由定义可知,函数在某点是可连续,是函数在这点的局部性质。

5.f 在点0x 左(右)连续定义① 定义2:设函数f 在点0()U x +(0()U x -内有定义),若00lim ()()x x f x f x +→=(00lim ()()x x f x f x -→=),则称f在点0x 右(左)连续.②f 在点0x 连续的等价刻划定理4.1 函数f 在点0x 连续⇔f 在点0x 既是右连续,又是左连续.如上例4:00lim ()lim 0(0)x x xD x x f ++→→===(右连续),00lim ()lim 0(0)x x xD x x f --→→===(左连续)。

例5.讨论函数2,0()2,0x x f x x x +≥⎧=⎨-<⎩在点0x =的连续性. 二 区间上的连续函数 1.定义若函数f 在区间I上每一点都连续,则称f 为I上的连续函数。

对于闭区间或半开半闭区间的端点,函数在这些点上连续是指左连续或右连续。

若函数f 在区间[,]a b 上仅有有限个第一类间断点,则称f 在[,]a b 上分段连续。

2.例子(1)函数,,sin ,cos y C y x y x y x ====是R上的连续函数;(2)函数y =(1,1)-内每一点都连续.在1x =处为左连续,在1x =-处为右连续,因而它在[1,1]-上连续.命题:初等函数在其定义区间上为连续函数.函数[]y x =,sgn y x =在[1,1]-上是分段连续的[]y x =在R上是分段连续吗? sgn x 在R上是分段连续吗?三 间断点及其分类1.不连续点(间断点)定义定义3 设函数f 在某00()U x 内有定义,若f 在点0x 无定义,或f 在点0x 有定义而不2,不则称点0x 为函数f 的间断点或不连续点。

注 这个定义不好;还不如说:设f 在00()U x 内不定义,如果()f x 在0x 不连续,则称0x 是()f x 的不连续点(或间断点)。

由上述分析可见,若0x 为函数f 的间断点,则必出现下列情形之一:①()f x 在点0x 无定义;②0lim ()x x f x →不存在;③00lim ()()x x f x f x →≠。

据此,对函数的间断点作如下分类:2.间断点分类1) 可去间断点 若lim ()x x f x A→=,而f 在点0x 无定义,或有定义但0()f x A ≠,则称0x 为f 的可去间断点。

例如:0x =是函数sin ()|sgn |,()xf x xg x x ==的可去间断点。

“可去间断点”名称何来?通过一定的手段,可以“去掉”.设0x 是()f x 的可去间断点,且0lim ()x x f x A →=。

0(),(),f x x x f x A x x =⎧⎨≠⎩则0x 是()f x 的连续点.例如,对sin ()xg x x =,定义sin ,0()1,0xx g x x x ⎧≠⎪=⎨⎪=⎩,则()g x 在0x =连续。

2) 跳跃间断点 若lim (),lim ()x x x x f x f x +-→→存在,但00(0),(0)f x f x +-,则称点0x 为函数f 的跳跃间断点。

例如,对[]y x =,00lim[]0,lim[]1x x x x +-→→==-故0x =是它的跳跃间断点。

再如0x =是sgn x 的跳跃间断点。

可去间断点与跳跃间断点统称为第一类间断点,其特点的函数在该点处的左、右极限都存在。

3) 第二类间断点 函数的所有其它形式的间断点(即使称函数至少有一侧极限不存在的点)称为函数的第二类间断点。

例如,0x =是函数1x ,1sinx 的第二类间断点。

§2 连续函数的性质教学目标:熟悉连续函数的性质并能灵活应用。

教学要求:(1)掌握连续的局部性质(有界性、保号性),连续函数的有理运算性质,并能加以证明;熟知复合函数的连续和反函数的连续性.能够在各种问题的讨论中正确运用连续函数的这些重要性质;(2)掌握闭区间上连续函数的主要性质 ,理解其几何意义,并能在各种有关的具体问题中加以运用;(3)理解函数在某区间上一致连续的概念,并能清楚地认识到函数在一区间上连续与在这一区间上一致连续这二者之间的联系与原则区别。

教学重点:闭区间上连续函数的性质; 教学难点:一致连续的概念. 学时安排:4学时 教学程序:引言函数的连续性是通过极限来定义的,因而有关函数极限的诸多性质,都可以移到连续函数中来。

一 连续函数的局部性质性质1(局部有界性)若f 在0x 连续.则f 在某0()U x 有界.性质2(局部保号性)若f 在0x 连续,且0()0(0)f x or ><则对任何正数0(0,())r f x ∈0(((),0))r f x ∈,存在某0()U x 有()0(()0)f x r f x r >><<。

注 ①在具体应用局部保号性时,r 取一些特殊值,如当0()0f x >时,可取0()2f x r =,则存在0()U x ,使得当0()x U x ∈有0()()2f x f x >;②与极限相应的性质做比较可见,这里只是把“极限存在”,改为“连续",把0()U x 改为00()U x 其余一致.性质3.(四则运算)若f 和g 在0x 点连续,则0,,(()0)ff g f g g x g ±⋅≠也都在点0x 连续。

问题 两个不连续函数或者一个连续而另一个不连续的函数的和、积、商是否仍旧连续? 性质4(复合函数的连续性)若f 在点0x 连续,记00()f x u =,函数g 在0u 连续,则复合函数g f 在点0x 连续。

相关文档
最新文档