密码学入门知识~发现密码学挺有意思啊
密码学入门知识

~密码学入门知识~发现密码学挺有意思啊一、几种常见密码形式:1、栅栏易位法。
即把将要传递的信息中的字母交替排成上下两行,再将下面一行字母排在上面一行的后边,从而形成一段密码。
举例:TEOGSDYUTAENNHLNETAMSHV AED解:将字母分截开排成两行,如下T E O G S D Y U T A E N NH L N E T A M S H V A E D再将第二行字母分别放入第一行中,得到以下结果THE LONGEST DAY MUST HA VE AN END.课后小题:请破解以下密码Teieeemrynwetemryhyeoetewshwsnvraradhnhyartebcmohrie2、恺撒移位密码。
也就是一种最简单的错位法,将字母表前移或者后错几位,例如:明码表:ABCDEFGHIJKLMNOPQRSTUVWXYZ密码表:DEFGHIJKLMNOPQRSTUVWXYZABC这就形成了一个简单的密码表,如果我想写frzy(即明文),那么对照上面密码表编成密码也就是iucb(即密文)了。
密码表可以自己选择移几位,移动的位数也就是密钥。
课后小题:请破解以下密码dtzwkzyzwjijujsixtsdtzwiwjfrx3、进制转换密码。
比如给你一堆数字,乍一看头晕晕的,你可以观察数字的规律,将其转换为10进制数字,然后按照每个数字在字母表中的排列顺序,拼出正确字母。
举例:110 10010 11010 11001解:很明显,这些数字都是由1和0组成,那么你很快联想到什么?二进制数,是不是?嗯,那么就试着把这些数字转换成十进制试试,得到数字6 18 26 25,对应字母表,破解出明文为frzy,呵呵~课后小题:请破解以下密码11 14 17 26 5 254、摩尔斯密码。
翻译不同,有时也叫摩尔密码。
*表示滴,-表示哒,如下表所示比如滴滴哒就表示字母U,滴滴滴滴滴就表示数字5。
另外请大家不要被滴哒的形式所困,我们实际出密码的时候,有可能转换为很多种形式,例如用0和1表示,迷惑你向二进制方向考虑,等等。
密码基础知识

密码基础知识密码学是一门研究如何保护信息安全,实现信息隐蔽与伪装的学科。
它涉及到许多基础知识,以下是一些主要的概念:密码学基本概念:密码学是研究编制密码和破译密码的技术科学,主要目的是保护信息的机密性、完整性和可用性。
它包括密码编码学和密码分析学两个分支。
加密算法:加密算法是用于将明文(可读的信息)转换为密文(不可读的信息)的一种数学函数或程序。
常见的加密算法包括对称加密算法(如AES)和非对称加密算法(如RSA)。
解密算法:解密算法是用于将密文转换回明文的一种数学函数或程序。
它通常与加密算法相对应,使用相同的密钥或不同的密钥(取决于加密算法的类型)来执行解密操作。
密钥:密钥是用于加密和解密信息的秘密参数。
在对称加密中,加密和解密使用相同的密钥;在非对称加密中,加密和解密使用不同的密钥(公钥和私钥)。
密码分析:密码分析是研究如何破译密码的一门科学。
它涉及到对加密算法、密钥和密文的分析,以尝试恢复出原始的明文信息。
密码协议:密码协议是用于在网络环境中实现安全通信的一系列规则和约定。
常见的密码协议包括SSL/TLS(用于保护Web通信)和IPSec(用于保护IP层通信)。
散列函数:散列函数是一种将任意长度的输入数据映射为固定长度输出的数学函数。
在密码学中,散列函数通常用于生成消息的摘要,以确保消息的完整性。
数字签名:数字签名是一种用于验证消息来源和完整性的技术。
它涉及到使用私钥对消息进行加密(或签名),然后使用公钥进行解密(或验证签名)。
我们可以继续深入探讨密码学的一些进阶概念和原理:密码体制分类:对称密码体制:加密和解密使用相同的密钥。
优点是加密速度快,缺点是密钥管理困难。
常见的对称加密算法有DES、AES、IDEA等。
非对称密码体制(公钥密码体制):加密和解密使用不同的密钥,其中一个密钥(公钥)可以公开,另一个密钥(私钥)必须保密。
优点是密钥管理简单,缺点是加密速度慢。
常见的非对称加密算法有RSA、ECC(椭圆曲线加密)等。
信息安全教学的密码学基础知识

信息安全教学的密码学基础知识信息安全教学是当今社会中的一项重要任务,而密码学作为信息安全的核心技术之一,具备着保护数据和信息的重要功能。
本文将介绍信息安全教学中的密码学基础知识,包括密码学的定义、加密算法的分类、常见加密技术以及密码学在实际应用中的作用等。
一、密码学概述密码学是研究和应用密码算法的科学,它主要涉及保护信息的机密性、完整性和可用性。
在信息安全教学中,密码学被广泛应用于数据加密、身份验证、数字签名以及防止网络攻击等方面。
二、加密算法分类加密算法是密码学中的关键技术,主要分为对称加密算法和非对称加密算法两大类。
1. 对称加密算法对称加密算法也称为共享密钥加密算法,加密和解密过程使用相同的密钥。
常见的对称加密算法有DES、3DES、AES等。
这些算法具有加密速度快、计算量小的特点,常用于保护大量数据的机密性。
2. 非对称加密算法非对称加密算法也称为公钥加密算法,加密和解密过程使用不同的密钥。
常见的非对称加密算法有RSA、DSA等。
这些算法具有密钥管理方便、实现数字签名等特点,常用于保护通信过程中的机密性和身份认证。
三、常见加密技术在信息安全教学中,常见的加密技术包括数据加密、数字签名、数字证书等。
1. 数据加密数据加密是将明文数据转换为密文数据的过程,确保数据在传输过程中不被未授权的人访问。
通过使用对称或非对称加密算法,可以有效地保护数据的机密性。
2. 数字签名数字签名是确保数据完整性和身份认证的一种技术手段。
发送方使用自己的私钥对数据进行加密生成数字签名,接收方使用发送方的公钥对数字签名进行解密验证,如果验证通过,则可以确定数据的完整性和发送方的身份。
3. 数字证书数字证书是用于确认用户身份和保证数据传输安全的一种技术手段。
数字证书中包含了用户的身份信息、公钥以及证书颁发机构的数字签名等信息,通过验证数字证书的有效性,可以确保通信双方的身份和加密通信过程的安全性。
四、密码学的应用密码学在实际应用中扮演着重要的角色,它广泛应用于各个领域,如电子商务、互联网金融等。
密码学基础知识

密码学基础知识密码学是一门研究数据的保密性、完整性以及可用性的学科,广泛应用于计算机安全领域、网络通信以及电子商务等方面。
密码学的基础知识是研究密码保密性和密码学算法设计的核心。
1. 对称加密和非对称加密在密码学中,最基本的加密方式分为两类:对称加密和非对称加密。
对称加密通常使用一个密钥来加密和解密数据,同时密钥必须保密传输。
非对称加密则使用一对密钥,分别为公钥和私钥,公钥可以公开发布,任何人都可以用它来加密数据,但只有私钥持有人才能使用私钥解密数据。
2. 散列函数散列函数是密码学中常用的一种算法,它将任意长度的消息压缩成一个固定长度的摘要,称为消息摘要。
摘要的长度通常为128位或更长,主要用于数字签名、证书验证以及数据完整性验证等。
常见的散列函数有MD5、SHA-1、SHA-256等。
3. 数字签名数字签名是一种使用非对称加密技术实现的重要保密机制,它是将发送方的消息进行加密以保证消息的完整性和真实性。
发送方使用自己的私钥对消息进行签名,然后将消息和签名一起发送给接收方。
接收方使用发送方的公钥来验证签名,如果消息被篡改或者签名无法验证,接收方将拒绝接收消息。
4. 公钥基础设施(PKI)PKI是一种包括数字证书、证书管理和证书验证的基础设施,用于管理数字证书和数字签名。
数字证书是将公钥与其拥有者的身份信息结合在一起的数字文件,它是PKI系统中最重要的组成部分之一。
数字证书通过数字签名来验证其真实性和完整性,在通信和数据传输中起着至关重要的作用。
总之,密码学是计算机科学中重要的领域之一,其应用广泛,影响深远。
掌握密码学基础知识非常有必要,对于安全性要求较高的企业和组织来说,更是至关重要。
密码学知识

密码学知识
密码学是研究如何保护信息安全和实现安全通信的学科。
它主要关注以下几个方面的内容:
1. 对称加密:对称加密算法使用同一个密钥进行加密和解密。
常见的对称加密算法有DES、AES等。
对称加密算法的优点是加密和解密速度快,但需要确保密钥的安全性。
2. 非对称加密:非对称加密算法使用一对密钥,包括公钥和私钥。
公钥用于加密,私钥用于解密。
常见的非对称加密算法有RSA、ElGamal等。
非对称加密算法的优点是密钥的分发和管理相对较简单,但加解密速度较慢。
3. 散列函数:散列函数将任意大小的数据映射为固定长度的散列值。
常见的散列函数有MD5、SHA-1、SHA-256等。
散列函数的主要应用包括数据完整性检验和密码存储。
4. 数字签名:数字签名用于验证信息的真实性和完整性。
发送者使用私钥对信息进行签名,接收者使用发送者的公钥验证签名是否有效。
常见的数字签名算法有RSA、DSA等。
5. 随机数生成:密码学中需要大量的随机数,它们被用于生成密钥、初始化向量等。
随机数生成器的质量对密码系统的安全性至关重要。
6. 密码协议:密码协议用于安全地传输和交换密钥,保证通信的机密性和完整性。
常见的密码协议有SSL/TLS、SSH等。
密码学的目标是确保信息的机密性、完整性和可用性。
它在互联
网、电子商务、移动通信等领域起着重要的作用,保护用户的隐私和数据安全。
密码学的基础知识与应用

密码学的基础知识与应用密码学是一门研究如何保护信息安全的学科,是信息安全领域中重要的一环。
本文将从密码学的基础知识和应用两个方面来探讨这门学科。
一、密码学的基础知识密码学的基础知识包括加密算法、解密算法和密钥管理。
1.加密算法加密算法是将明文变为密文的过程。
常见的加密算法有对称加密算法和非对称加密算法两种。
对称加密算法是指加密和解密使用相同密钥的算法。
例如,DES (Data Encryption Standard)、AES(Advanced Encryption Standard)等都属于对称加密算法。
对称加密算法的优点是加密解密速度快,密文加密难度大,缺点是密钥管理问题,如果密钥泄露则很容易被破解。
非对称加密算法是指加密和解密使用不同密钥的算法。
例如,RSA、DSA等都属于非对称加密算法。
非对称加密算法的优点是密钥管理便利,密钥可以公开,缺点是加解密速度较慢。
2.解密算法解密算法是将密文还原为明文的过程。
解密算法通常是对称加密算法的逆运算或非对称加密算法的配对算法。
例如,RSA的解密算法是通过对公钥和密文进行运算得出明文,而对称加密算法的解密算法则是通过使用加密时所用的密钥对密文进行运算。
3.密钥管理密钥管理是指对加密算法中的密钥进行管理的过程。
密钥管理包括密钥的生成、存储、传递、更新和撤销等一系列操作。
密钥的管理工作直接影响加密算法的安全性。
二、密码学的应用密码学的应用非常广泛,包括网络安全、数据传输、数字签名、身份验证等方面。
1.网络安全网络安全是密码学应用的重要领域之一。
网络安全的主要目的是保护计算机网络中的数据免受未经授权的访问、窃取、破坏和攻击。
密码学在网络安全中的应用主要包括数据加密、数字签名和身份认证等方面。
数据加密是保护网上通讯中数据的安全的重要手段。
在网上通讯的过程中,如果数据不加密,那么黑客可以窃取数据并进行恶意攻击。
因此,需要使用对称加密算法或非对称加密算法对数据进行加密,以保证数据安全。
密码学入门基础知识

密码学入门基础知识
密码学是一门涉及信息保密和安全的学科。
它的目标是通过使用
各种密码技术来确保数据传输和存储的机密性、完整性和可用性。
密码学的基础是对称密码和非对称密码。
对称密码指的是发送和
接收方使用相同的密钥来加密和解密信息。
这种密码技术简单、高效,但密钥的分发和管理是一个挑战。
非对称密码则使用一对密钥,公钥
和私钥。
公钥用于加密信息,私钥用于解密信息。
这种方法更安全,
但加密和解密过程可能较慢。
另外,密码学还涉及到哈希函数。
哈希函数将任意长度的数据映
射为固定长度的输出值,称为哈希值。
它被广泛用于验证数据的完整
性和数字签名。
密码学也包括诸如数字证书、数字签名和安全协议等领域。
数字
证书用于验证实体的身份和建立安全连接。
数字签名用于验证数据的
来源和完整性。
安全协议是指用于保护通信过程中的各种协议,例如SSL/TLS协议。
密码学的应用非常广泛。
它被用于保护互联网上的信息传输,例
如电子邮件、网上支付和在线购物。
在银行和金融机构中,密码学被
用于保护账户和交易信息。
还有许多其他领域,如军事通信、医疗保
密和智能卡系统,都需要密码学的支持。
总而言之,密码学是一门关乎信息安全的学科,它通过各种密码
技术来保护数据的机密性和完整性。
了解密码学的基础知识对于个人
和组织来说都非常重要,以保护他们的私密信息免受未经授权的访问。
密码科普小知识

密码科普小知识1. 密码学基本概念:密码学(Cryptography)是一门研究如何隐匿信息以确保其安全性的学科,包括加密算法的设计、分析以及各种密码系统的应用。
2. 加密与解密:加密是将明文(原始信息)通过特定的算法转化为密文的过程,目的是防止未经授权的人获取和理解信息内容。
解密则是将密文还原为原来的明文过程,只有拥有正确密钥的人才能进行有效解密。
3. 对称加密与非对称加密:对称加密(如DES、AES等):加密和解密使用同一密钥,优点是速度快效率高,但密钥管理相对复杂,需要保证密钥在通信双方的安全传输。
非对称加密(如RSA、ECC等):使用一对公钥和私钥,公钥用于加密,私钥用于解密。
安全性更高,因为私钥不需要在网络上传输。
4. 哈希函数:哈希函数(Hash Function)是一种特殊的密码学算法,它可以将任意长度的消息压缩成固定长度的摘要,如MD5、SHA 系列等,主要用于数据完整性校验和密码存储等领域。
5. 数字签名:数字签名利用非对称加密技术,确保信息的完整性和发送者的身份真实性,发送者用自己的私钥对消息摘要进行加密形成数字签名,接收者用发送者的公钥验证签名的真实性。
6. 密钥管理:密钥管理是密码学中的重要环节,涉及密钥的生成、分发、更新、撤销及销毁等一系列操作,对于信息安全至关重要。
7. 安全协议:SSL/TLS(Secure Sockets Layer/Transport Layer Security)协议广泛应用于互联网安全通信,采用混合加密方式确保网络数据传输的安全性。
8. 密码学的应用领域:除了传统的网络安全,现代密码学还应用于数字货币(如比特币中的椭圆曲线加密)、云计算环境的数据保护、物联网设备的身份认证等诸多场景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最近推理小说看多了~感觉密码学挺有意思的~改天在图书馆里找找看有没有好玩的密码学的书~~那个利用键盘的密码我没看懂~本少爷以后跟别人告白就用密码了~哈哈~一、几种常见密码形式:1、栅栏易位法。
即把将要传递的信息中的字母交替排成上下两行,再将下面一行字母排在上面一行的后边,从而形成一段密码。
举例:TEOGSDYUTAENNHLNETAMSHVAED解:将字母分截开排成两行,如下T E O G S D Y U T A E N NH L N E T A M S H V A E D再将第二行字母分别放入第一行中,得到以下结果THE LONGEST DAY MUST HAVE AN END.课后小题:请破解以下密码Teieeemrynwetemryhyeoetewshwsnvraradhnhyartebcmohrie2、恺撒移位密码。
也就是一种最简单的错位法,将字母表前移或者后错几位,例如:明码表:ABCDEFGHIJKLMNOPQRSTUVWXYZ密码表:DEFGHIJKLMNOPQRSTUVWXYZABC这就形成了一个简单的密码表,如果我想写frzy(即明文),那么对照上面密码表编成密码也就是iucb(即密文)了。
密码表可以自己选择移几位,移动的位数也就是密钥。
课后小题:请破解以下密码dtzwkzyzwjijujsixtsdtzwiwjfrx3、进制转换密码。
比如给你一堆数字,乍一看头晕晕的,你可以观察数字的规律,将其转换为10进制数字,然后按照每个数字在字母表中的排列顺序,拼出正确字母。
举例:110 10010 11010 11001解:很明显,这些数字都是由1和0组成,那么你很快联想到什么?二进制数,是不是?嗯,那么就试着把这些数字转换成十进制试试,得到数字6 18 26 25,对应字母表,破解出明文为frzy,呵呵~课后小题:请破解以下密码11 14 17 26 5 254、摩尔斯密码。
翻译不同,有时也叫摩尔密码。
*表示滴,-表示哒,如下表所示比如滴滴哒就表示字母U,滴滴滴滴滴就表示数字5。
另外请大家不要被滴哒的形式所困,我们实际出密码的时候,有可能转换为很多种形式,例如用0和1表示,迷惑你向二进制方向考虑,等等。
摩尔斯是我们生活中非常常见的一种密码形式,例如电报就用的是这个哦。
下次再看战争片,里面有发电报的,不妨自己试着破译一下电报内容,看看导演是不是胡乱弄个密码蒙骗观众哈~由于这密码也比较简单,所以不出小题。
A *-B -***C -*-*D -**E *F **-*G --*H **** I ** J *--- K -*- L *-** M -- N -*O --- P *--* Q --*- R *-* S *** T -U **- V ***- W *-- X -**- Y -*-- Z --**数字0 ----- 1 *---- 2 **--- 3 ***-- 4 ****-5 *****6 -****7 --***8 ---**9 ----*常用标点句号*-*-*- 逗号--**-- 问号**--**长破折号-***- 连字符-****- 分数线-**-*5、字母频率密码。
关于词频问题的密码,我在这里提供英文字母的出现频率给大家,其中数字全部是出现的百分比:a 8.2b 1.5c 2.8d 4.3e 12.7f 2.2g 2.0h 6.1i 7.0 j 0.2 k 0.8 l 4.0m 2.4 n 6.7 o 7.5 p 1.9q 0.1 r 6.0 s 6.3 t 9.1u 2.8 v 1.0 w 2.4 x 0.2y 2.0 z 0.1词频法其实就是计算各个字母在文章中的出现频率,然后大概猜测出明码表,最后验证自己的推算是否正确。
这种方法由于要统计字母出现频率,需要花费时间较长,本人在此不举例和出题了,有兴趣的话,参考《跳舞的小人》和《金甲虫》。
6、维热纳尔方阵。
上面所说的频率分析,很容易破解较长篇幅的密文,于是维热纳尔继承前人的经验,创造出了这个维热纳尔方阵,从而克服了词频分析轻易能够破解密码的弊端,成为一种较为强大的密码编译形式。
a b c d e f g h i j k l m n o p q r s t u v w x y z1 B C D E F G H I J K L M N O P Q R S T U V W X Y Z A2 C D E F G H I J K L M N O P Q R S T U V W X Y Z A B3 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C4 E F G H I J K L M N O P Q R S T U V W X Y Z A B C D5 F G H I J K L M N O P Q R S T U V W X Y Z A B C D E6 G H I J K L M N O P Q R S T U V W X Y Z A B C D E F7 H I J K L M N O P Q R S T U V W X Y Z A B C D E F G8 I J K L M N O P Q R S T U V W X Y Z A B C D E F G H9 J K L M N O P Q R S T U V W X Y Z A B C D E F G H I10 K L M N O P Q R S T U V W X Y Z A B C D E F G H I J11 L M N O P Q R S T U V W X Y Z A B C D E F G H I J K12 M N O P Q R S T U V W X Y Z A B C D E F G H I J K L13 N O P Q R S T U V W X Y Z A B C D E F G H I J K L M14 O P Q R S T U V W X Y Z A B C D E F G H I J K L M N15 P Q R S T U V W X Y Z A B C D E F G H I J K L M N O16 Q R S T U V W X Y Z A B C D E F G H I J K L M N O P17 R S T U V W X Y Z A B C D E F G H I J K L M N O P Q18 S T U V W X Y Z A B C D E F G H I J K L M N O P Q R19 T U V W X Y Z A B C D E F G H I J K L M N O P Q R S20 U V W X Y Z A B C D E F G H I J K L M N O P Q R S T21 V W X Y Z A B C D E F G H I J K L M N O P Q R S T U22 W X Y Z A B C D E F G H I J K L M N O P Q R S T U V23 X Y Z A B C D E F G H I J K L M N O P Q R S T U V W24 Y Z A B C D E F G H I J K L M N O P Q R S T U V W X25 Z A B C D E F G H I J K L M N O P Q R S T U V W X Y26 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z以上就是维热纳尔方阵,它由明码表(第一行的字母)、密码表(下面26行)和密钥组成,下面我举个例子说明。
举例:密钥:frzy密码:qfuc解:第一个字母,看以f开头第五行,对应明码表查找q字母所标示的字母为l。
以此类推找出后面字母。
所得明文为love。
这个也不出小题了,只要有密钥,再复杂的密码也能查出来,就是个查表的问题~二、一些新兴的密码形式:1、利用键盘无论是计算机键盘,还是收集键盘,都是出密码的好工具哦,可以用错位、或者排列形状等。
使用手机键盘和这个同理。
另外手机键盘还可以在键盘的字母上做文章,例如你可以用51表示字母j,用73表示字母r等。
举例:r4a6这个密码利用计算机键盘,将明文字母分别向上移动一个位置,得到密文。
破解结果为frzy。
852 74123 741236987 426978974123456 7412369这排数字是不是很晕?其实很简单,对照小键盘,依次打这些字母,看组成的形状就行了。
答案是I L O V E U。
课后小题:请破解以下密码18 29 19 34 13 172、字母形状本人曾经收到过这样一个密码短信,不幸被破解,导致发短信人被我非常严肃地奚落了一番!前面我不记得了,只记得后面是hep poo6。
这个你可以从手机里打出来,然后把手机倒过来看,形成了密码的明文,good day~~~课后小题:请破解以下密码AnnAW T2ULTHpin boop YA2T99W2 A 9VAHMA37b三、密码印象(本文写于2004年的学生时代)前言:本文是一篇人文性质的文章,并非技术文章。
对密码学感兴趣的读者,可以去图书馆查阅相关的书籍,或者去报考我校密码学权威——杨义先教授的研究生。
本篇重在宣扬人文理念,主要讲述了我这些年对密码方面的一些了解和随想,古典的味道比较浓。
好了,诸位看官,我们开始。
Case 1 达·芬奇密码13-3-2-21-1-1-8-5O Draconian devil !(啊,严酷的魔王!)Oh Lame Saint !(噢,瘸腿的圣徒!)这是畅销小说《达·芬奇密码》里面出现的第一段密码。
在故事中,卢浮宫博物馆馆长被人杀害,临死前用隐写笔在地上写下了这样一段令人费解的文字,其中隐藏了重要的信息。
主角是如何破译这段密码的呢?他通过分析发现开头的“13-3-2-21-1-1-8-5”是解密的关键所在。
将这一串数字从小到大重新排列,得到“1-1-2-3-5-8-13-21”,恰好是数学中著名的斐波那契数列。
这就暗示着,谜题中的文字也是经过乱序排列的。
于是,经过对文字的重新排序,主角得到了明文:Leonardo da Vinci !(莱昂纳多·达·芬奇!)The Mona Lisa !(蒙娜丽莎!)故事在这里终于出现了转机,读者从此开始了惊心动魄的密码之旅。
真是给人一种茅塞顿开的感觉。
当然,这只是浩如烟海的密码世界的一个比较典型的例子。
下面,就让我们切入正题。
Case 2 密码释义使用电脑多了的人,听到“密码”一词总会想到password。