甘肃省张掖市山丹县第一中学2020-2021学年高一数学上学期期末模拟考试试题

合集下载

2020-2021高一数学上期末一模试题附答案(4)

2020-2021高一数学上期末一模试题附答案(4)

2020-2021高一数学上期末一模试题附答案(4)一、选择题1.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞2.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =- 3.设23a log =,b =23c e =,则a b c ,,的大小关系是( ) A .a b c <<B .b a c <<C .b c a <<D . a c b <<4.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B.2C .14,2 D .14,4 5.已知函数()2log 14x f x x ⎧+=⎨+⎩00x x >≤,则()()3y f f x =-的零点个数为( )A .3B .4C .5D .66.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃7.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( )A .1B .-1C .-3D .38.已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且R A B ⊆ð,则a 的取值范围是( )A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a >9.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( )A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<10.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。

2020-2021高一数学上期末一模试卷(及答案)

2020-2021高一数学上期末一模试卷(及答案)

2020-2021高一数学上期末一模试卷(及答案)一、选择题1.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =-2.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭3.函数()()212log 2f x x x =-的单调递增区间为( )A .(),1-∞B .()2,+∞C .(),0-∞D .()1,+∞4.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( ) A .1B .2C .3D .45.已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1()21f x x =-有2022个不同的实数根i x (1,2,3,2022i =),则1232022x x x x ++++=( )A .1010B .2020C .1011D .20226.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x + B .(1)f x -C .()1f x +D .()1f x -7.函数ln x y x=的图象大致是( )A .B .C .D .8.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( ) A .(1)(2)(0)f f f -<< B .(1)(0)(2)f f f -<< C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<9.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x10.已知3log 2a =,0.12b =,sin 789c =,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<11.若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( ) A .13B .14C .3D .412.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩.若关于x 的方程,()f x k =有两个不同的实根,则实数k 的取值范围是____________.14.已知函数()22ln 0210x x f x x x x ⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d 、、、,有()()()()f a f b f c f d ===,则+++a b c d 的取值范围是______.15.若当0ln2x ≤≤时,不等式()()2220x xxx a e e ee ---+++≥恒成立,则实数a 的取值范围是_____.16.对于复数a bc d ,,,,若集合{}S a b c d =,,,具有性质“对任意x y S ∈,,必有xy S ∈”,则当221{1a b c b===,,时,b c d ++等于___________17.已知函数1()41xf x a =+-是奇函数,则的值为________. 18.函数()()()310310x x x f x x -⎧+<⎪=⎨-+≥⎪⎩,若函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是______.19.已知函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-成立,则实数a 的取值范围为__________.20.定义在R 上的函数()f x 满足()()2=-+f x f x ,()()2f x f x =-,且当[]0,1x ∈时,()2f x x =,则方程()12f x x =-在[]6,10-上所有根的和为________. 三、解答题21.已知函数()21log 1x f x x +=-. (1)判断()f x 的奇偶性并证明; (2)若对于[]2,4x ∈,恒有()2log (1)(7)mf x x x >-⋅-成立,求实数m 的取值范围.22.已知()()()22log 2log 2f x x x =-++. (1)求函数()f x 的定义域; (2)求证:()f x 为偶函数;(3)指出方程()f x x =的实数根个数,并说明理由. 23.已知函数()2log 11m f x x ⎛⎫=+⎪-⎝⎭,其中m 为实数. (1)若1m =,求证:函数()f x 在()1,+∞上为减函数; (2)若()f x 为奇函数,求实数m 的值. 24.计算或化简:(1)112320412730.1log 321664π-⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭; (2)6log 3332log 27log 2log 36lg 2lg 5-⋅---. 25.已知.(1)若函数的定义域为,求实数的取值范围; (2)若函数在区间上是递增的,求实数的取值范围.26.已知函数()xf x a =(0a >,且1a ≠),且(5)8(2)f f =. (1)若(23)(2)f m f m -<+,求实数m 的取值范围; (2)若方程|()1|f x t -=有两个解,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=, 且()()f x f x -=-,所以()()f x f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=- 故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.2.B解析:B 【解析】 【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.3.C解析:C 【解析】 【分析】求出函数()()212log 2f x x x =-的定义域,然后利用复合函数法可求出函数()y f x =的单调递增区间. 【详解】解不等式220x x ->,解得0x <或2x >,函数()y f x =的定义域为()(),02,-∞+∞.内层函数22u x x =-在区间(),0-∞上为减函数,在区间()2,+∞上为增函数, 外层函数12log y u =在()0,∞+上为减函数,由复合函数同增异减法可知,函数()()212log 2f x x x =-的单调递增区间为(),0-∞. 故选:C. 【点睛】本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能力,属于中等题.4.B解析:B 【解析】 【分析】先求出函数()ln 310f x x x =+-的零点的范围,进而判断0x 的范围,即可求出[]0x . 【详解】由题意可知0x 是()ln 310f x x x =+-的零点, 易知函数()f x 是(0,∞+)上的单调递增函数,而()2ln2610ln240f =+-=-<,()3ln3910ln310f =+-=->, 即()()230f f <所以023x <<,结合[]x 的性质,可知[]02x =. 故选B. 【点睛】本题考查了函数的零点问题,属于基础题.5.C解析:C 【解析】 【分析】 函数()f x 和121=-y x 都关于1,02⎛⎫⎪⎝⎭对称,所有1()21f x x =-的所有零点都关于1,02⎛⎫⎪⎝⎭对称,根据对称性计算1232022x x x x ++++的值.【详解】()()10f x f x ++-=,()f x ∴关于1,02⎛⎫⎪⎝⎭对称,而函数121=-y x 也关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的所有零点关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的2022个不同的实数根i x (1,2,3,2022i =),有1011组关于1,02⎛⎫ ⎪⎝⎭对称,122022...101111011x x x ∴+++=⨯=.故选:C 【点睛】本题考查根据对称性计算零点之和,重点考查函数的对称性,属于中档题型.6.D解析:D 【解析】 【分析】首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果. 【详解】设()y g x =图象上任意一点的坐标为(,)x y , 则其关于直线y x =的对称点为(,)y x , 再将点(,)y x 向左平移一个单位,得到(1,)y x +, 其关于直线y x =的对称点为(,1)x y +,该点在函数()f x 的图象上,所以有1()y f x +=, 所以有()1y f x =-,即()()1g x f x =-, 故选:D. 【点睛】该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目.7.C解析:C 【解析】 分析:讨论函数ln x y x=性质,即可得到正确答案.详解:函数ln x y x=的定义域为{|0}x x ≠ ,ln ln x x f x f x xxx--==-=-()(), ∴排除B , 当0x >时,2ln ln 1-ln ,,x x xy y xx x===' 函数在()0,e 上单调递增,在(),e +∞上单调递减, 故排除A,D , 故选C .点睛:本题考查了数形结合的思想应用及排除法的应用.8.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=,则()()()012f f f <-<故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.9.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.10.B解析:B 【解析】 【分析】 【详解】由对数函数的性质可知343333log 2log 342a =<=<, 由指数函数的性质0.121b =>,由三角函数的性质00000sin 789sin(236069)sin 69sin 60c ==⨯+=>,所以3c ∈, 所以a c b <<,故选B.11.C解析:C 【解析】 【分析】根据自变量范围代入对应解析式,化简得结果. 【详解】f (log 43)=log434=3,选C. 【点睛】本题考查分段函数求值,考查基本求解能力,属基础题.12.B解析:B 【解析】由题意,f (﹣x )+f (x )=0可知f (x )是奇函数, ∵()()f x g x x =+,g (﹣1)=1, 即f (﹣1)=1+1=2 那么f (1)=﹣2.故得f (1)=g (1)+1=﹣2, ∴g (1)=﹣3, 故选:B二、填空题13.【解析】作出函数的图象如图所示当时单调递减且当时单调递增且所以函数的图象与直线有两个交点时有 解析:(1,2)【解析】作出函数()f x 的图象,如图所示,当4x ≥时,4()1f x x =+单调递减,且4112x<+≤,当04x <<时,2()log f x x =单调递增,且2()log 2f x x =<,所以函数()f x 的图象与直线y k =有两个交点时,有12k <<.14.【解析】【分析】不妨设根据二次函数对称性求得的值根据绝对值的定义求得的关系式将转化为来表示根据的取值范围求得的取值范围【详解】不妨设画出函数的图像如下图所示二次函数的对称轴为所以不妨设则由得得结合图解析:341112,1e e e ⎡⎫+--⎪⎢⎣⎭【解析】 【分析】不妨设,0,,0a b c d ≤>,根据二次函数对称性求得+a b 的值.根据绝对值的定义求得,c d 的关系式,将d 转化为c 来表示,根据c 的取值范围,求得+++a b c d 的取值范围. 【详解】不妨设,0,,0a b c d ≤>,画出函数()f x 的图像如下图所示.二次函数221y x x =--+的对称轴为1x =-,所以2a b +=-.不妨设c d <,则由2ln 2ln c d +=+得2ln 2ln c d --=+,得44,e cd e d c--==,结合图像可知12ln 2c ≤+<,解得(43,c e e --⎤∈⎦,所以(()4432,e a b c d c c e e c ---⎤+++=-++∈⎦,由于42e y x x-=-++在(43,e e --⎤⎦上为减函数,故4341112,21e e e c c e -⎡⎫+--++∈⎢⎣-⎪⎭.【点睛】本小题主要考查分段函数的图像与性质,考查二次函数的图像,考查含有绝对值函数的图像,考查数形结合的数学思想方法,属于中档题.15.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【 解析:25[,)6-+∞ 【解析】 【分析】用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值. 【详解】设x x t e e -=-,1xxx x t e e e e -=-=-是增函数,当0ln2x ≤≤时,302t ≤≤, 不等式()()2220x xxx a e eee ---+++≥化为2220at t +++≥,即240t at ++≥,不等式240t at ++≥在3[0,]2t ∈上恒成立,0t =时,显然成立,3(0,]2t ∈,4a t t-≤+对3[0,]2t ∈上恒成立,由对勾函数性质知4y t t=+在3(0,]2是减函数,32t =时,min 256y =,∴256a -≤,即256a ≥-. 综上,256a ≥-. 故答案为:25[,)6-+∞. 【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.16.-1【解析】由题意可得:结合集合元素的互异性则:由可得:或当时故当时故综上可得:解析:-1 【解析】由题意可得:21,1b a == ,结合集合元素的互异性,则:1b =- , 由21c b ==- 可得:c i = 或c i =- , 当c i = 时,bc i S =-∈ ,故d i =- , 当c i =- 时,bc i S =∈ ,故d i = , 综上可得:1b c d ++=- .17.【解析】函数是奇函数可得即即解得故答案为解析:12【解析】 函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x x a a -+=----,即41214141x x x a =-=--,解得12a =,故答案为1218.【解析】【分析】作出函数的图象如下图所示得出函数的值域由图象可得m 的取值范围【详解】作出函数的图象如下图所示函数的值域为由图象可得要使函数的图像与函数的图像有公共点则m 的取值范围是故答案为:【点睛】 解析:[)()0,11,2⋃【解析】 【分析】作出函数()f x 的图象如下图所示,得出函数()f x 的值域,由图象可得m 的取值范围.【详解】作出函数()f x 的图象如下图所示,函数()f x 的值域为[)()0,11,2⋃,由图象可得要使函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是[)()0,11,2⋃, 故答案为:[)()0,11,2⋃.【点睛】本题考查两函数图象交点问题,关键在于作出分段函数的图象,运用数形结合的思想求得范围,在作图象时,注意是开区间还是闭区间,属于基础题.19.【解析】若对任意的实数都有成立则函数在上为减函数∵函数故计算得出:点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段解析:13,8⎛⎤-∞ ⎥⎝⎦【解析】若对任意的实数12x x ≠都有1212()()0f x f x x x -<-成立, 则函数()f x 在R 上为减函数,∵函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,故22012(2)12a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩, 计算得出:13,8a ⎛⎤∈-∞ ⎥⎝⎦. 点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.20.【解析】【分析】结合题意分析出函数是以为周期的周期函数其图象关于直线对称由可得出函数的图象关于点对称据此作出函数与函数在区间上的图象利用对称性可得出方程在上所有根的和【详解】函数满足即则函数是以为周 解析:16【解析】 【分析】结合题意分析出函数()y f x =是以4为周期的周期函数,其图象关于直线1x =对称,由()()22f x f x -=-+可得出函数()y f x =的图象关于点()2,0对称,据此作出函数()y f x =与函数12y x =-在区间[]6,10-上的图象,利用对称性可得出方程()12f x x =-在[]6,10-上所有根的和. 【详解】函数()y f x =满足()()2f x f x =-+,即()()()24f x f x f x =-+=+,则函数()y f x =是以4为周期的周期函数;()()2f x f x =-,则函数()y f x =的图象关于直线1x =对称;由()()2f x f x =-+,()()2f x f x =-,有()()22f x f x -=-+,则函数()y f x =的图象关于点()2,0成中心对称; 又函数12y x =-的图象关于点()2,0成中心对称,则函数()y f x =与函数12y x =-在区间[]6,10-上的图象的交点关于点()2,0对称,如下图所示:由图象可知,函数()y f x =与函数12y x =-在区间[]6,10-上的图象共有8个交点, 4对交点关于点()2,0对称,则方程()12f x x =-在[]6,10-上所有根的和为4416⨯=. 故答案为:16. 【点睛】本题考查方程根的和的计算,将问题转化为利用函数图象的对称性求解是解答的关键,在作图时也要注意推导出函数的一些基本性质,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1)奇函数,证明见解析;(2)015m << 【解析】 【分析】(1)先求出函数定义域,再利用函数奇偶性的定义判断即可; (2)由题意,101(1)(7)x m x x x +>>---对[]2,4x ∀∈恒成立,转化为0(1)(7)m m x x >⎧⎨<+-⎩恒成立,求出函数()()()17g x x x =+-的最小值进而得解. 【详解】 (1)因为101x x +>-,解得1x <-或1x >, 所以函数()f x 为奇函数,证明如下: 由(1)知函数()f x 的定义域关于原点对称,又因为1222111()log log log ()111x x x f x f x x x x --+-+⎛⎫-====- ⎪--+-⎝⎭, 所以函数()f x 为奇函数; (2)若对于[]2,4x ∈,2()log (1)(7)mf x x x >--恒成立,即221log log 1(1)(7)x mx x x +>---对[]2,4x ∈恒成立, 即101(1)(7)x m x x x +>>---对[]2,4x ∈恒成立, 因为[]2,4x ∈,所以107mx x+>>-恒成立, 即0(1)(7)m m x x >⎧⎨<+-⎩恒成立,设函数()()()17g x x x =+-,求得()g x 在[]2,4上的最小值是15, 所以015m <<. 【点睛】本题考查函数奇偶性的判断及不等式的恒成立问题,考查分离变量法的运用,考查分析问题及解决问题的能力,难度不大.22.(1)()2,2-;(2)证明见解析;(3)两个,理由见解析. 【解析】 【分析】(1)根据对数函数的真数大于0,列出不等式组求出x 的取值范围即可; (2)根据奇偶性的定义即可证明函数()f x 是定义域上的偶函数.(3)将方程()f x x =变形为()22log 4x x -=,即242xx-=,设()242xg x x =--(22x -≤≤),再根据零点存在性定理即可判断. 【详解】 解:(1)()()()22log 2log 2f x x x =-++2020x x ->⎧∴⎨+>⎩,解得22x -<<,即函数()f x 的定义域为()2,2-; (2)证明:∵对定义域()2,2-中的任意x , 都有()()()()22log 2log 2f x x x f x -=++-= ∴函数()f x 为偶函数;(3)方程()f x x =有两个实数根, 理由如下:易知方程()f x x =的根在()2,2-内, 方程()f x x =可同解变形为()22log 4x x -=,即242xx-=设()242x gx x =--(22x -≤≤).当[]2,0x ∈-时,()g x 为增函数,且()()20120g g -⋅=-<, 则在()2,0-内,函数()g x 有唯一零点,方程()f x x =有唯一实根,又因为偶函数,在()0,2内,函数()g x 也有唯一零点,方程()f x x =有唯一实根, 所以原方程有两个实数根. 【点睛】本题考查函数的定义域和奇偶性的应用问题,函数的零点,函数方程思想,属于基础题. 23.(1)证明见解析(2)0m =或2m = 【解析】 【分析】(1)对于1x ∀,()21,x ∈+∞,且12x x <,计算()()120f x f x ->得到证明.(2)根据奇函数得到()()0f x f x -+=,代入化简得到()22211x m x --=-,计算得到答案. 【详解】(1)当1m =时,()221log 1log 11x f x x x ⎛⎫⎛⎫=+=⎪ ⎪--⎝⎭⎝⎭, 对于1x ∀,()21,x ∈+∞,且12x x <,()()12122212log log 11x x f x f x x x -=---1212122121221log log 1x x x x x x x x x x ⎛⎫--=⋅= ⎪--⎝⎭因为12x x <,所以12x x ->-,所以121122x x x x x x ->-, 又因1x ,()21,x ∈+∞,且12x x <,所以()1222110x x x x x -=->, 即1211221x x x x x x ->-,所以1212122log 0x x x x x x ⎛⎫-> ⎪-⎝⎭,()()120f x f x ->.所以函数()f x 在()1,+∞上为减函数. (2)()221log 1log 11m x m f x x x +-⎛⎫⎛⎫=+=⎪ ⎪--⎝⎭⎝⎭, 若()f x 为奇函数,则()()f x f x -=-,即()()0f x f x -+=. 所以211log log 11x m x m x x -+-+-⎛⎫⎛⎫+⎪ ⎪---⎝⎭⎝⎭211log 11x m x m x x -+-+-⎛⎫⎛⎫=⋅ ⎪ ⎪---⎝⎭⎝⎭2(1)1log 11x m x m x x --+-⎛⎫⎛⎫= ⎪⎪+-⎝⎭⎝⎭2222(1)log 01x m x ⎛⎫--== ⎪-⎝⎭, 所以()22211x m x --=-,所以()211m -=,0m =或2m =. 【点睛】本题考查了单调性的证明,根据奇偶性求参数,意在考查学生对于函数性质的灵活运用. 24.(1)99;(2)3-. 【解析】 【分析】(1)直接根据指数与对数的性质运算即可; (2)直接利用对数运算性质即可得出. 【详解】(1)原式21123325249131log 216104-⎡⎤⎛⎫⎛⎫⎛⎫=++--⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦7351001442=++-- 99=.(2)原式323log 313lg 10=---31422=-- 3=-.【点睛】本题主要考查了指数对数运算性质,考查了推理能力与计算能力,属于中档题. 25.(1)(2)【解析】试题分析:(1)由于函数定义域为全体实数,故恒成立,即有,解得;(2)由于在定义域上是减函数,故根据复合函数单调性有函数在上为减函数,结合函数的定义域有,解得.试题解析:(1)由函数的定义域为可得:不等式的解集为,∴解得,∴所求的取值范围是(2)由函数在区间上是递增的得: 区间上是递减的, 且在区间上恒成立;则,解得26.(1)(,5)-∞;(2)()0,1. 【解析】 【分析】(1)由(5)8(2)f f =求得a 的值,再利用指数函数的单调性解不等式,即可得答案; (2)作出函数|()1|y f x =-与y t =的图象,利用两个图象有两个交点,可得实数t 的取值范围. 【详解】 (1)∵(5)8(2)f f = ∴5328a a a==则2a = 即()2x f x =,则函数()f x 是增函数由(23)(2)f m f m -<+,得232m m -<+ 得5m <,即实数m 的取值范围是(,5)-∞.(2)()2x f x =,由题知21xy =-图象与y t =图象有两个不同交点,t由图知:(0,1)【点睛】本题考查指数函数的解析式求解、单调性应用、图象交点问题,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力.。

2020-2021高一数学上期末模拟试卷及答案(5)

2020-2021高一数学上期末模拟试卷及答案(5)

2020-2021高一数学上期末模拟试卷及答案(5)一、选择题1.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞ B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞2.已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为( )A .B .C .D .3.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-154.已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( )A .3B .4C .5D .65.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.96.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( )A .1B .-1C .-3D .37.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A .1033 B .1053 C .1073D .10938.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( )A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<9.已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( ) A .1sin x +B .1sin x -C .1sin x --D .1sin x -+10.若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( ) A .13B .14C .3D .411.设函数()1x2,x 12f x 1log x,x 1-≤⎧=->⎨⎩,则满足()f x 2≤的x 的取值范围是( )A .[]1,2-B .[]0,2C .[)1,∞+D .[)0,∞+ 12.若不等式210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 的取值范围为( )A .0a ≥B .2a ≥-C .52a ≥-D .3a ≥-二、填空题13.已知1,0()1,0x f x x ≥⎧=⎨-<⎩,则不等式(2)(2)5x x f x +++≤的解集为______.14.对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0,则称x 0是f (x )的一个不动点,已知f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,则实数a 的取值范围______.15.已知关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内,则a 的取值范围是__________. 16.求值: 233125128100log lg -+= ________ 17.函数()()4log 521x f x x =-+-的定义域为________.18.函数()f x 与()g x 的图象拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A 、(1,1)B 、(0,0)O 、(1,1)C --、(0,1)D -五个点,若()f x 的图象关于原点对称的图形即为()g x 的图象,则其中一个函数的解析式可以为__________.19.已知()f x 、()g x 分别是定义在R 上的偶函数和奇函数,且()()2xf xg x x -=-,则(1)(1)f g +=__________.20.已知函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,其中0a >且1a ≠,若()f x 的值域为[)3,+∞,则实数a 的取值范围是______.三、解答题21.已知二次函数()f x 满足:()()22f x f x +=-,()f x 的最小值为1,且在y 轴上的截距为4.(1)求此二次函数()f x 的解析式;(2)若存在区间[](),0a b a >,使得函数()f x 的定义域和值域都是区间[],a b ,则称区间[],a b 为函数()f x 的“不变区间”.试求函数()f x 的不变区间;(3)若对于任意的[]10,3x ∈,总存在[]210,100x ∈,使得()1222lg 1lg mf x x x <+-,求m 的取值范围.22.已知函数2()()21xx a f x a R -=∈+是奇函数.(1)求实数a 的值;(2)用定义法证明函数()f x 在R 上是减函数;(3)若对于任意实数t ,不等式()2(1)0f t kt f t -+-≤恒成立,求实数k 的取值范围. 23.已知函数()()4412log 2log 2f x x x ⎛⎫=-- ⎪⎝⎭. (1)当[]2,4x ∈时,求该函数的值域;(2)求()f x 在区间[]2,t (2t >)上的最小值()g t . 24.已知集合,,.(1)若,求的值; (2)若,求的取值范围.25.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2019年不仅净利润创下记录,海外增长同祥强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投人固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210200,040()100008019450,40x x x R x x x x ⎧+<<⎪=⎨+-⎪⎩…,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完.(Ⅰ)求出2020年的利润()Q x (万元)关于年产量x (千部)的函数关系式(利润=销售额-成本);(Ⅱ)2020年产量x 为多少(千部)时,企业所获利润最大?最大利润是多少? (说明:当0a >时,函数ay x x=+在)a 单调递减,在(,)a +∞单调递增) 26.设函数()()2log xxf x a b=-,且()()211,2log 12f f ==.(1)求a b ,的值; (2)求函数()f x 的零点;(3)设()xxg x a b =-,求()g x 在[]0,4上的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】由题意作函数()y f x =与y m =的图象,从而可得122x x +=-,240log 2x <…,341x x =g ,从而得解【详解】 解:因为22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,,可作函数图象如下所示:依题意关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,即函数()y f x =与y m =的图象有四个不同的交点,由图可知令1234110122x x x x <-<<<<<<<, 则122x x +=-,2324log log x x -=,即2324log log 0x x +=,所以341x x =,则341x x =,()41,2x ∈ 所以12344412x x x x x x +++=-++,()41,2x ∈ 因为1y x x =+,在()1,2x ∈上单调递增,所以52,2y ⎛⎫∈ ⎪⎝⎭,即44152,2x x ⎛⎫+∈ ⎪⎝⎭1234441120,2x x x x x x ⎛⎫∴+++=-++∈ ⎪⎝⎭故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用.属于中档题2.B解析:B 【解析】试题分析:设()ln(1)g x x x =+-,则()1xg x x'=-+,∴()g x 在()1,0-上为增函数,在()0,∞+上为减函数,∴()()00g x g <=,1()0()f x g x =<,得0x >或10x -<<均有()0f x <排除选项A ,C ,又1()ln(1)f x x x =+-中,10ln(1)0x x x +>⎧⎨+-≠⎩,得1x >-且0x ≠,故排除D.综上,符合的只有选项B.故选B. 考点:1、函数图象;2、对数函数的性质. 3.A解析:A 【解析】 【分析】设()2f x ax bx c =++,可知1、3为方程()20f x x +=的两根,且0a <,利用韦达定理可将b 、c 用a 表示,再由方程()60f x a +=有两个相等的根,由0∆=求出实数a 的值. 【详解】由于不等式()2f x x >-的解集为()1,3,即关于x 的二次不等式()220ax b x c +++>的解集为()1,3,则0a <.由题意可知,1、3为关于x 的二次方程()220ax b x c +++=的两根,由韦达定理得2134b a +-=+=,133ca=⨯=,42b a ∴=--,3c a =, ()()2423f x ax a x a ∴=-++,由题意知,关于x 的二次方程()60f x a +=有两相等的根, 即关于x 的二次方程()24290ax a x a -++=有两相等的根,则()()()224236102220a a a a ∆=+-=+-=,0a <Q ,解得15a =-,故选:A. 【点睛】本题考查二次不等式、二次方程相关知识,考查二次不等式解集与方程之间的关系,解题的关键就是将问题中涉及的知识点进行等价处理,考查分析问题和解决问题的能力,属于中等题.4.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.5.C解析:C 【解析】 【分析】利用零点存在定理和精确度可判断出方程的近似解. 【详解】根据表中数据可知()1.750.140f =-<,()1.81250.57930f =>,由精确度为0.1可知1.75 1.8≈,1.8125 1.8≈,故方程的一个近似解为1.8,选C. 【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.6.C解析:C 【解析】 【分析】由(1)(3)0f x f x ++-=结合()f x 为奇函数可得()f x 为周期为4的周期函数,则(2019)(1)f f =-,要使函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,结合图像可得(1)3f =,即可得到答案.【详解】Q ()f x 为定义在R 上的奇函数,∴()()f x f x -=-,又Q (1)(3)0(13)(33)0f x f x f x f x ++-=⇔+++--=,(4)()0(4)()()f x f x f x f x f x ++-=⇔+=--=∴, ∴()f x 在R 上为周期函数,周期为4, ∴(2019)(50541)(1)(1)f f f f =⨯-=-=-Q 函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,令6()m x x = ,则5()6m x x '=,所以(,0)x ∈-∞为函数6()m x x =减区间,(0,)x ∈+∞为函数6()m x x =增区间,令()(1)cos 43x f x ϕ=⋅-,则()x ϕ为余弦函数,由此可得函数()m x 与函数()x ϕ的大致图像如下:由图分析要使函数()m x 与函数()x ϕ只有唯一交点,则(0)(0)m ϕ=,解得(1)3f =∴(2019)(1)3f f =-=-,故答案选C . 【点睛】本题主要考查奇函数、周期函数的性质以及函数的零点问题,解题的关键是周期函数的判定以及函数唯一零点的条件,属于中档题.7.D解析:D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log n a a M n M =.8.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-Q 在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数Q 函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=Q ,则()()()012f f f <-< 故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.9.B解析:B 【解析】 【分析】 【详解】因为()y f x =是以π为周期,所以当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()()3πf x f x =-, 此时13,02x -π∈-π⎡⎤⎢⎥⎣⎦,又因为偶函数,所以有()()3π3πf x f x -=-, 3π0,2x π⎡⎤-∈⎢⎥⎣⎦,所以()()3π1sin 3π1sin f x x x -=--=-,故()1sin f x x =-,故选B.10.C解析:C 【解析】 【分析】根据自变量范围代入对应解析式,化简得结果. 【详解】f (log 43)=log434=3,选C. 【点睛】本题考查分段函数求值,考查基本求解能力,属基础题.11.D解析:D 【解析】 【分析】分类讨论:①当x 1≤时;②当x 1>时,再按照指数不等式和对数不等式求解,最后求出它们的并集即可. 【详解】当x 1≤时,1x 22-≤的可变形为1x 1-≤,x 0≥,0x 1∴≤≤. 当x 1>时,21log x 2-≤的可变形为1x 2≥,x 1∴≥,故答案为[)0,∞+. 故选D . 【点睛】本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.12.C解析:C 【解析】 【分析】 【详解】210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭成立, 则等价为a ⩾21x x--对于一切x ∈(0,1 2)成立,即a ⩾−x −1x 对于一切x ∈(0,12)成立, 设y =−x −1x ,则函数在区间(0,12〕上是增函数 ∴−x −1x <−12−2=52-, ∴a ⩾52-. 故选C.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x >,若()0f x <恒成立,转化为max ()0f x <;(3)若()()f x g x >恒成立,可转化为min max ()()f x g x >.二、填空题13.【解析】当时解得;当时恒成立解得:合并解集为故填:解析:3{|}2x x ≤【解析】当20x +≥时,()()()22525x x f x x x +++≤⇔++≤,解得 322x -≤≤;当20x +<时,()()()22525x x f x x x +++≤⇔-+≤,恒成立,解得:2x <-,合并解集为32x x ⎧⎫≤⎨⎬⎩⎭ ,故填:32x x ⎧⎫≤⎨⎬⎩⎭. 14.【解析】【分析】不动点实际上就是方程f (x0)=x0的实数根二次函数f (x )=x2+ax+4有不动点是指方程x=x2+ax+4有实根即方程x=x2+ax+4有两个不同实根然后根据根列出不等式解答即可解析:10,33⎡⎫--⎪⎢⎣⎭【解析】 【分析】不动点实际上就是方程f (x 0)=x 0的实数根,二次函数f (x )=x 2+ax +4有不动点,是指方程x =x 2+ax +4有实根,即方程x =x 2+ax +4有两个不同实根,然后根据根列出不等式解答即可. 【详解】解:根据题意,f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,得x =x 2+ax +4在[1,3]有两个实数根,即x 2+(a ﹣1)x +4=0在[1,3]有两个不同实数根,令g (x )=x 2+(a ﹣1)x +4在[1,3]有两个不同交点,∴2(1)0(3)01132(1)160g g a a ≥⎧⎪≥⎪⎪⎨-<<⎪⎪-->⎪⎩,即24031001132(1)160a a a a +≥⎧⎪+≥⎪⎪⎨-<<⎪⎪-->⎪⎩, 解得:a ∈10,33⎡⎫--⎪⎢⎣⎭; 故答案为:10,33⎡⎫--⎪⎢⎣⎭.【点睛】本题考查了二次函数图象上点的坐标特征、函数与方程的综合运用,属于中档题.15.【解析】【分析】根据方程的解在区间内将问题转化为解在区间内即可求解【详解】由题:关于的方程的解在区间内所以可以转化为:所以故答案为:【点睛】此题考查根据方程的根的范围求参数的取值范围关键在于利用对数 解析:()23log 11,1-+【解析】 【分析】根据方程的解在区间()3,8内,将问题转化为23log x a x+=解在区间()3,8内,即可求解. 【详解】由题:关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内, 所以()224log 3log +-=x x a 可以转化为:23log x a x+=, ()3,8x ∈,33111,28x x x +⎛⎫=+∈ ⎪⎝⎭, 所以()23log 11,1a ∈-+ 故答案为:()23log 11,1-+ 【点睛】此题考查根据方程的根的范围求参数的取值范围,关键在于利用对数运算法则等价转化求解值域.16.【解析】由题意结合对数指数的运算法则有:解析:32-【解析】由题意结合对数、指数的运算法则有:()2log 31532lg 3210022=-+-=-. 17.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次 解析:[)0,5【解析】 【分析】根据题意,列出不等式组50210xx ->⎧⎨-≥⎩,解出即可. 【详解】要使函数()()4log 5f x x =-+有意义,需满足50210x x ->⎧⎨-≥⎩,解得05x <≤,即函数的定义域为[)0,5,故答案为[)0,5. 【点睛】本题主要考查了具体函数的定义域问题,属于基础题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数部分大于0;4、0的0次方无意义;5、对于正切函数tan y x =,需满足,2x k k Z ππ≠+∈等等,当同时出现时,取其交集.18.【解析】【分析】先根据图象可以得出f(x)的图象可以在OC 或CD 中选取一个再在AB 或OB 中选取一个即可得出函数f(x)的解析式【详解】由图可知线段OC 与线段OB 是关于原点对称的线段CD 与线段BA 也是解析:()1x f x ⎧=⎨⎩1001x x -<<<< 【解析】 【分析】先根据图象可以得出f (x )的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,即可得出函数f (x ) 的解析式. 【详解】由图可知,线段OC 与线段OB 是关于原点对称的,线段CD 与线段BA 也是关于原点对称的,根据题意,f (x) 与g (x) 的图象关于原点对称,所以f (x)的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,比如其组合形式为: OC 和AB , CD 和OB , 不妨取f (x )的图象为OC 和AB ,OC 的方程为: (10)y x x =-<<,AB 的方程为: 1(01)y x =<<,所以,10()1,01x x f x x -<<⎧=⎨<<⎩,故答案为:,10()1,01x x f x x -<<⎧=⎨<<⎩【点睛】本题主要考查了函数解析式的求法,涉及分段函数的表示和函数图象对称性的应用,属于中档题.19.【解析】【分析】根据函数的奇偶性令即可求解【详解】、分别是定义在上的偶函数和奇函数且故答案为:【点睛】本题主要考查了函数的奇偶性属于容易题 解析:32【解析】【分析】根据函数的奇偶性,令1x =-即可求解. 【详解】()f x Q 、()g x 分别是定义在R 上的偶函数和奇函数, 且()()2x f x g x x -=- ∴13(1)(1)(1)(1)212f g f g ----=+=+=, 故答案为:32【点睛】本题主要考查了函数的奇偶性,属于容易题.20.【解析】【分析】运用一次函数和指数函数的图象和性质可得值域讨论两种情况即可得到所求a 的范围【详解】函数函数当时时时递减可得的值域为可得解得;当时时时递增可得则的值域为成立恒成立综上可得故答案为:【点解析:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭【解析】 【分析】运用一次函数和指数函数的图象和性质,可得值域,讨论1a >,01a <<两种情况,即可得到所求a 的范围. 【详解】函数函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,当01a <<时,2x ≤时,()53f x x =-≥,2x >时,()22xf x a a =++递减,可得()22222a f x a a +<<++,()f x 的值域为[)3,+∞,可得223a +≥,解得112a ≤<; 当1a >时,2x ≤时,()53f x x =-≥,2x >时,()22xf x a a =++递增,可得()2225f x a a >++>,则()f x 的值域为[)3,+∞成立,1a >恒成立. 综上可得()1,11,2a ⎡⎫∈⋃+∞⎪⎢⎣⎭.故答案为:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭. 【点睛】本题考查函数方程的转化思想和函数的值域的问题解法,注意运用数形结合和分类讨论的思想方法,考查推理和运算能力,属于中档题.三、解答题21.(1)23()(2)14f x x =-+;(2)[1,4];(3)[2,)+∞. 【解析】 【分析】(1)由()()22f x f x +=-,得对称轴是2x =,结合最小值可用顶点法设出函数式,再由截距求出解析式;(2)根据二次函数的单调性确定函数的最大值和最小值,然后求解. (3)求出()f x 在[0,3]的最大值4,对函数()2lg 1lg mg x x x=+- 换元lg t x =,得()21m g x y t t ==+-,[1,2]t ∈,由421mt t≤+-用分离参数法转化. 【详解】(1)∵()()22f x f x +=-,∴对称轴是2x =,又函数最小值是1,可设2()(2)1f x a x =-+(0a >),∴(0)414f a =+=,34a =. ∴23()(2)14f x x =-+. (2)若2a b ≤≤,则min ()1f x a ==,7(1)24f =<,∴3b ≥且23()(2)14f b b b =-+=,解得4b =.∴1,4a b ==,不变区间是[1,4];若02a b <<≤,则()f x 在[,]a b 上是减函数,∴223()(2)14433()(2)14f a a b a b f b b a⎧=-+=⎪⎪∴==⎨⎪=-+=⎪⎩或4,因为02a b <<≤,所以舍去;若2a b ≤<,则()f x 在[,]a b 上是增函数,∴223()(2)143()(2)14f a a a f b b b⎧=-+=⎪⎪⎨⎪=-+=⎪⎩,∴,a b 是方程()f x x =的两根,由()f x x =得23(2)14x x -+=,124,43x x ==,不合题意. 综上1,4a b ==;(3)23()(2)14f x x =-+,[0,3]x ∈时,max ()(0)4f x f ==, 设2lg 1lg my x x=+-,令lg t x =,当[10,100]x ∈时,[1,2]t ∈. 21my t t=+-, 由题意存在[1,2]t ∈,使421mt t≤+-成立,即225m t t ≥-+, [1,2]t ∈时,22525252()48t t t -+=--+的最小值是222522-⨯+⨯=,所以[2,)m ∈+∞.【点睛】本题考查求二次函数解析式,考查二次函数的创新问题,考查不等式恒成立和能成立问题.二次函数的解析式有三种形式:2()(),f x a x m h =-+12()()(),f x a x x x x =--2()f x ax bx c =++,解题时要根据具体的条件设相应的解析式.二次函数的值域问题要讨论对称轴与区间的关系,以确定函数的单调性,得最值.难点是不等式问题,对于任意的1[0,3]x ∈,说明不等式恒成立,而存在[10,100]x ∈,说明不等式“能”成立.一定要注意是转化为求函数的最大值还是最小值.22.(1) 1a =;(2)证明见解析;(3) 13k k ≥≤-或 【解析】 【分析】(1)根据函数是奇函数,由(0)0f =,可得a 的值; (2)用定义法进行证明,可得函数()f x 在R 上是减函数;(3)根据函数的单调性与奇偶性的性质,将不等式()2(1)0f t kt f t -+-≤进行化简求值,可得k 的范围. 【详解】解:(1)由函数2()()21xx a f x a R -=∈+是奇函数,可得:(0)0f =,即:1(0)02a f -==,1a =; (2)由(1)得:12()21xx f x -=+,任取12x x R ∈,且12x x <,则122112*********(22)()()=2121(21)(21)xx x x x x x x f x f x -----=++++, Q 12x x <,∴21220x x ->,即:2112122(22)()()=(21)(201)x x x x f x f x --++>, 12()()f x f x >,即()f x 在R 上是减函数;(3)Q ()f x 是奇函数,∴不等式()2(1)0f t kt f t -+-≤恒成立等价为()2(1)(1)f t kt f t f t -≤--=-恒成立,Q ()f x 在R 上是减函数,∴21t kt t -≥-,2(1)10t k t -++≥恒成立,设2()(1)1g t t k t =-++,可得当0∆≤时,()0g t ≥恒成立, 可得2(1)40k +-≥,解得13k k ≥≤-或, 故k 的取值范围为:13k k ≥≤-或. 【点睛】本题主要考查函数单调性的判断与证明及函数恒成立问题,体现了等价转化的数学思想,属于中档题.23.(1)1,08⎡⎤-⎢⎥⎣⎦(2)()2442log 3log 1,21,8t t t g t t ⎧-+<<⎪=⎨-≥⎪⎩【解析】 【分析】(1)令4log m x =,则可利用换元法将题转化为二次函数值域问题求解; (2)根据二次函数的性质,分类讨论即可. 【详解】(1)令4log m x =,则[]2,4x ∈时,1,12m ⎡⎤∈⎢⎥⎣⎦,则()()22131()222312248f x h m m m m m m ⎛⎫⎛⎫==--=-+=-- ⎪ ⎪⎝⎭⎝⎭, 故当34m =时,()f x 有最小值为18-,当12m =或1时,()f x 有最大值为0, ∴该函数的值域为1,08⎡⎤-⎢⎥⎣⎦;(2)由(1)可知()2231()231248f x h m m m m ⎛⎫==-+=-- ⎪⎝⎭, []2,x t ∈Q ,41,log 2m t ⎡⎤∴∈⎢⎥⎣⎦,当413log 24t <<,即222t <<时,函数()h m 在41,log 2t ⎡⎤⎢⎥⎣⎦单调递减, ()()()4min log g t h m h t ==2442log 3log 1t t =-+,当43log 4t ≥,即22t ≥时, 函数()h m 在13,24⎡⎤⎢⎥⎣⎦上单调递减,在43,log 4t ⎛⎤ ⎥⎝⎦上单调递增, ()()min 3148g t h m h ⎛⎫===- ⎪⎝⎭,综上所述:()2442log 3log 1,2221,228t t t g t t ⎧-+<<⎪=⎨-≥⎪⎩. 【点睛】本题考查对数函数综合应用,需结合二次函数相关性质答题,属于中档题. 24.(1) 或;(2) .【解析】 试题分析:(1)由题意结合集合相等的定义分类讨论可得:的值为或. (2)由题意得到关于实数a 的不等式组,求解不等式组可得 .试题解析: (1)若,则,∴. 若,则,,∴.综上,的值为或. (2)∵,∴∴. 25.(Ⅰ)()210600250,040,100009200,40.x x x Q x x x x ⎧-+-<<⎪∴=⎨--+≥⎪⎩(Ⅱ)2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元. 【解析】 【分析】(Ⅰ)根据题意知利润等于销售收入减去可变成本及固定成本,分类讨论即可写出解析式(Ⅱ)利用二次函数求040x <<时函数的最大值,根据对勾函数求40x ≥时函数的最大值,比较即可得函数在定义域上的最大值. 【详解】(Ⅰ)当040x << 时,()()228001020025010600250Q x x x x x x =-+-=-+- ;当40x ≥时,()100001000080080194502509200Q x x x x x x ⎛⎫=-+--=--+ ⎪⎝⎭. ()210600250,040,100009200,40.x x x Q x x x x ⎧-+-<<⎪∴=⎨--+≥⎪⎩(Ⅱ)当040x <<时,()()210308750Q x x =--+,()()max 308750Q x Q ∴==万元;当40x ≥时,()100009200Q x x x ⎛⎫=-++ ⎪⎝⎭,当且仅当100x =时, ()()max 1009000Q x Q ==万元.所以,2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元. 【点睛】本题主要考查了分段函数,函数的最值,函数在实际问题中的应用,属于中档题. 26.(1)4,2a b ==(2)21log 2x +=(3)()[]0,240g x ∈ 【解析】 【分析】(1)由()()211,2log 12f f ==解出即可 (2)令()0f x =得421x x -=,即()22210xx --=,然后解出即可(3)()42xxg x =-,令2x t =,转化为二次函数 【详解】(1)由已知得()()()()222221log 12log log 12f a b f a b ⎧=-=⎪⎨=-=⎪⎩,即22212a b a b -=⎧⎨-=⎩, 解得4,2a b ==;(2)由(1)知()()2log 42xxf x =-,令()0f x =得421xx -=,即()22210x x --=,解得2x =,又120,22x x >∴=,解得21log 2x =; (3)由(1)知()42xxg x =-,令2x t =,则()221124g t t t t ⎛⎫=-=-- ⎪⎝⎭,[]1,16t ∈,因为()g t 在[]1,16t ∈上单调递增 所以()[]0,240g x ∈,。

2020-2021高一数学上期末一模试卷(附答案)(3)

2020-2021高一数学上期末一模试卷(附答案)(3)

2020-2021高一数学上期末一模试卷(附答案)(3)一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>3.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =- 4.设23a log =,b =23c e =,则a b c ,,的大小关系是( ) A .a b c <<B .b a c <<C .b c a <<D . a c b <<5.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]6.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃7.若函数ya >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1B .2C .3D .48.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5B .()3,5C .[]4,6D .()4,69.已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( ) A .1sin x +B .1sin x -C .1sin x --D .1sin x -+10.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( ) A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭11.曲线1(22)y x =-≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( ) A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.若155325a b c ===,则111a b c+-=__________. 14.已知函数2,1,(){1,1,x ax x f x ax x -+≤=->若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,则实数a 的取值范围是 .15.已知函数()22ln 0210x x f x x x x ⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d 、、、,有()()()()f a f b f c f d ===,则+++a b c d 的取值范围是______.16.已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.17.已知函数2()2f x x ax a =-+++,1()2x g x +=,若关于x 的不等式()()f x g x >恰有两个非负整数....解,则实数a 的取值范围是__________. 18.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.19.已知二次函数()f x ,对任意的x ∈R ,恒有()()244f x f x x +-=-+成立,且()00f =.设函数()()()g x f x m m =+∈R .若函数()g x 的零点都是函数()()()h x f f x m =+的零点,则()h x 的最大零点为________.20.设是两个非空集合,定义运算.已知,,则________.三、解答题21.已知函数2()ln(3)f x x ax =-+.(1)若()f x 在(,1]-∞上单调递减,求实数a 的取值范围; (2)当3a =时,解不等式()x f e x ≥. 22.已知函数()10()mf x x x x=+-≠. (1)若对任意(1)x ∈+∞,,不等式()2log 0f x >恒成立,求m 的取值范围. (2)讨论()f x 零点的个数.23.已知函数()x xk f x a ka -=+,(k Z ∈,0a >且1a ≠).(1)若1132f ⎛⎫=⎪⎝⎭,求1(2)f 的值; (2)若()k f x 为定义在R 上的奇函数,且01a <<,是否存在实数λ,使得(cos 2)(2sin 5)0k k f x f x λ+->对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立若存在,请写出实数λ的取值范围;若不存在,请说明理由.24.已知函数()log (1)2a f x x =-+(0a >,且1a ≠),过点(3,3). (1)求实数a 的值;(2)解关于x 的不等式()()123122xx f f +-<-.25.已知函数21()f x x x=-是定义在(0,)+∞上的函数. (1)用定义法证明函数()f x 的单调性;(2)若关于x 的不等式()220f x x m ++<恒成立,求实数m 的取值范围.26.记关于的不等式的解集为,不等式的解集为.(1)若,求集合; (2)若且,求的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2x y =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.D解析:D 【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:2log 1a e =>,()21ln 20,1log b e ==∈,12221log log 3log 3c e ==>, 据此可得:c a b >>. 本题选择D 选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.3.C解析:C 【解析】 【分析】 当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=, 且()()f x f x -=-,所以()()f x f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=- 故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.4.A解析:A 【解析】 【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小. 【详解】因为23a log =,b =23c e =令()2f x log x =,()g x =函数图像如下图所示:则()2442f log ==,()442g == 所以当3x =时23log 3>,即a b <3b =23c e = 则66327b ==,626443 2.753.1c e e ⎛⎫⎪==>≈ ⎪⎝⎭所以66b c <,即b c < 综上可知, a b c << 故选:A 【点睛】本题考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.5.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D.【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.6.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 7.C解析:C 【解析】 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y[0,1]上单调递减,值域是[0,1], 所以f (0)1,f (1)=0, 所以a =2,所log a56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.8.D解析:D 【解析】由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.9.B解析:B 【解析】 【分析】 【详解】因为()y f x =是以π为周期,所以当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()()3πf x f x =-, 此时13,02x -π∈-π⎡⎤⎢⎥⎣⎦,又因为偶函数,所以有()()3π3πf x f x -=-, 3π0,2x π⎡⎤-∈⎢⎥⎣⎦,所以()()3π1sin 3π1sin f x x x -=--=-,故()1sin f x x =-,故选B.10.D解析:D试题分析:由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111{log 31,53log 51a a a a <<>-⇒<<<-,故D 正确. 考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.11.A解析:A 【解析】试题分析:1(22)y x =-≤≤对应的图形为以()0,1为圆心2为半径的圆的上半部分,直线24y kx k =-+过定点()2,4,直线与半圆相切时斜率512k =,过点()2,1-时斜率34k =,结合图形可知实数k 的范围是53(,]124考点:1.直线与圆的位置关系;2.数形结合法12.B解析:B 【解析】由题意,f (﹣x )+f (x )=0可知f (x )是奇函数, ∵()()f x g x x =+,g (﹣1)=1, 即f (﹣1)=1+1=2 那么f (1)=﹣2. 故得f (1)=g (1)+1=﹣2, ∴g (1)=﹣3, 故选:B二、填空题13.1【解析】故答案为解析:1155325a b c ===因为,1553log 25,log 25,log 25a b c ∴===,252525111log 15log 5log 3a b c∴+-=+-25log 251==,故答案为1. 14.【解析】【分析】【详解】故答案为 解析:【解析】 【分析】 【详解】故答案为.15.【解析】【分析】不妨设根据二次函数对称性求得的值根据绝对值的定义求得的关系式将转化为来表示根据的取值范围求得的取值范围【详解】不妨设画出函数的图像如下图所示二次函数的对称轴为所以不妨设则由得得结合图解析:341112,1e e e ⎡⎫+--⎪⎢⎣⎭【解析】 【分析】不妨设,0,,0a b c d ≤>,根据二次函数对称性求得+a b 的值.根据绝对值的定义求得,c d 的关系式,将d 转化为c 来表示,根据c 的取值范围,求得+++a b c d 的取值范围. 【详解】不妨设,0,,0a b c d ≤>,画出函数()f x 的图像如下图所示.二次函数221y x x =--+的对称轴为1x =-,所以2a b +=-.不妨设c d <,则由2ln 2ln c d +=+得2ln 2ln c d --=+,得44,e cd e d c--==,结合图像可知12ln 2c ≤+<,解得(43,c e e --⎤∈⎦,所以(()4432,e a b c d c c e e c ---⎤+++=-++∈⎦,由于42e y x x-=-++在(43,e e --⎤⎦上为减函数,故4341112,21e e e c c e -⎡⎫+--++∈⎢⎣-⎪⎭.【点睛】本小题主要考查分段函数的图像与性质,考查二次函数的图像,考查含有绝对值函数的图像,考查数形结合的数学思想方法,属于中档题.16.【解析】【分析】根据函数奇偶性和单调性的性质作出的图象利用数形结合进行求解即可【详解】偶函数的图象过点且在区间上单调递减函数的图象过点且在区间上单调递增作出函数的图象大致如图:则不等式等价为或即或即 解析:()(),20,2-∞-⋃【解析】 【分析】根据函数奇偶性和单调性的性质作出()f x 的图象,利用数形结合进行求解即可. 【详解】Q 偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,∴函数()f x 的图象过点()2,0-,且在区间(),0-∞上单调递增,作出函数()f x 的图象大致如图:则不等式()0xf x >等价为()00x f x >⎧>⎨⎩或()00x f x <⎧<⎨⎩,即02x <<或2x <-,即不等式的解集为()(),20,2-∞-⋃, 故答案为()(),20,2-∞-⋃ 【点睛】本题主要考查不等式的解集的计算,根据函数奇偶性和单调性的性质作出()f x 的图象是解决本题的关键.17.【解析】【分析】由题意可得f (x )g (x )的图象均过(﹣11)分别讨论a >0a <0时f (x )>g (x )的整数解情况解不等式即可得到所求范围【详解】由函数可得的图象均过且的对称轴为当时对称轴大于0由题解析:310,23⎛⎤⎥⎝⎦【解析】 【分析】由题意可得f (x ),g (x )的图象均过(﹣1,1),分别讨论a >0,a <0时,f (x )>g (x )的整数解情况,解不等式即可得到所求范围. 【详解】由函数2()2f x x ax a =-+++,1()2x g x +=可得()f x ,()g x 的图象均过(1,1)-,且()f x 的对称轴为2ax =,当0a >时,对称轴大于0.由题意可得()()f x g x >恰有0,1两个整数解,可得(1)(1)310(2)(2)23f g a f g >⎧⇒<≤⎨≤⎩;当0a <时,对称轴小于0.因为()()11f g -=-,由题意不等式恰有-3,-2两个整数解,不合题意,综上可得a 的范围是310,23⎛⎤⎥⎝⎦.故答案为:310,23⎛⎤ ⎥⎝⎦. 【点睛】本题考查了二次函数的性质与图象,指数函数的图像的应用,属于中档题.18.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没解析:{|2m m >或2}3m <- 【解析】 【分析】分类讨论m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围. 【详解】解:∵函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则函数2(2)2y mx m x m =+-+-有最大值或最小值,且y 取最值时,0y >.当0m =时,22y x =--,由于y 没有最值,故()f x 也没有最值,不满足题意. 当0m >时,函数y 有最小值,没有最大值,()f x 有最大值,没有最小值.故y 的最小值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->,求得 2m >;当0m <时,函数y 有最大值,没有最小值,()f x 有最小值,没有最大值.故y 的最大值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->,求得23m <-. 综上,m 的取值范围为{|2m m >或2}3m <-. 故答案为:{|2m m >或2}3m <-. 【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,二次函数的最值,属于中档题.19.4【解析】【分析】采用待定系数法可根据已知等式构造方程求得代入求得从而得到解析式进而得到;设为的零点得到由此构造关于的方程求得;分别在和两种情况下求得所有零点从而得到结果【详解】设解得:又设为的零点解析:4【解析】 【分析】采用待定系数法可根据已知等式构造方程求得,a b ,代入()00f =求得c ,从而得到()f x 解析式,进而得到()(),g x h x ;设0x 为()g x 的零点,得到()()0000g x h x ⎧=⎪⎨=⎪⎩,由此构造关于m 的方程,求得m ;分别在0m =和3m =-两种情况下求得()h x 所有零点,从而得到结果. 【详解】设()2f x ax bx c =++()()()()2222244244f x f x a x b x c ax bx c ax a b x ∴+-=++++---=++=-+ 44424a a b =-⎧∴⎨+=⎩,解得:14a b =-⎧⎨=⎩又()00f = 0c ∴= ()24f x x x ∴=-+()24g x x x m ∴=-++,()()()222444h x x x x x m =--++-++设0x 为()g x 的零点,则()()0000g x h x ⎧=⎪⎨=⎪⎩,即()()2002220000404440x x m x x x x m ⎧-++=⎪⎨--++-++=⎪⎩即240m m m --+=,解得:0m =或3m =- ①当0m =时()()()()()()()22222244444442h x x x x x x x x x x x x =--++-+=-+-+=---()h x ∴的所有零点为0,2,4②当3m =-时()()()()()2222244434341h x x x x x x x x x =--++-+-=--+--+-()h x ∴的所有零点为1,3,2综上所述:()h x 的最大零点为4 故答案为:4 【点睛】本题考查函数零点的求解问题,涉及到待定系数法求解二次函数解析式、函数零点定义的应用等知识;解题关键是能够准确求解二次函数解析式;对于函数类型已知的函数解析式的求解,采用待定系数法,利用已知等量关系构造方程求得未知量.20.01∪2+∞【解析】【分析】分别确定集合AB 然后求解A×B 即可【详解】求解函数y=2x-x2的定义域可得:A=x|0≤x≤2求解函数y=2xx>0的值域可得B=x|x>1则A ∪B=x|x≥0A∩B=解析:【解析】 【分析】分别确定集合A ,B ,然后求解即可.【详解】 求解函数的定义域可得:,求解函数的值域可得,则,结合新定义的运算可知:,表示为区间形式即.【点睛】本题主要考查集合的表示及其应用,新定义知识的应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1)24a ≤<;(2){0x x ≤或}ln3x ≥ 【解析】 【分析】(1)根据复合函数单调性的性质,结合二次函数性质即可求得a 的取值范围.(2)将3a =代入函数解析式,结合不等式可变形为关于x e 的不等式,解不等式即可求解. 【详解】(1)()f x Q 在(,1]-∞上单调递减,根据复合函数单调性的性质可知23y x ax =-+需单调递减则12130aa ⎧≥⎪⎨⎪-+>⎩解得24a ≤<.(2)将3a =代入函数解析式可得2()ln(33)f x x x =-+则由()xf e x ≥,代入可得()2ln 33x x e e x -+≥同取对数可得233x x x e e e -+≥ 即2(e )430x xe -+≥, 所以()(e 1)30x xe --≥ 即e 1x ≤或3x e ≥0x ∴≤或ln x ≥3,所以原不等式的解集为{}0ln 3x x x ≤≥或【点睛】本题考查了对数型复合函数单调性与二次函数单调性的综合应用,对数不等式与指数不等式的解法,属于中档题. 22.(1)14m >;(2)当14m >或14m <-时,有1个零点;当14m =或0m =或14m =-时,有2个零点;当104m <<或104m -<<时,有 3个零点【解析】 【分析】(1)利用不等式恒成立,进行转化求解即可,(2)利用函数与方程的关系进行转化,利用参数分离法结合数形结合进行讨论即可. 【详解】解:(1)由()20f log x >得,2210mlog x log x+-> 当(1,)x ∈+∞时,20log x >变形为()2220log x log x m -+>,即()222m log x log x >-+而()222221412log x log x log x ⎛⎫+ ⎪-⎭--⎝+= 当212log x =即x =时,()()2ma 22x14log x log x =-+ 所以14m >(2)由()0f x =可得00()x x x m x -+=≠,变为()0m x x x x =-+≠令()222211,024,0,011,024x x x x x g x x x x x x x x x ⎧⎛⎫--+>⎪ ⎪⎧-+>⎪⎝⎭=-==⎨⎨+<⎩⎛⎫⎪+-< ⎪⎪⎝⎭⎩ 作()y g x =的图像及直线y m =,由图像可得:当14m >或14m <-时,()f x 有1个零点.当14m =或0m =或14m =-时,()f x 有2个零点:当104m <<或104m -<<时,()f x 有 3个零点.【点睛】本题考查不等式恒成立以及函数的单调性的应用,考查函数的零点的判断,考查分类讨论的思想方法,考查运算能力,属于中档题. 23.(1)47;(2)存在,3λ< 【解析】 【分析】(1)由指数幂的运算求解即可.(2)由函数()k f x 的性质可将问题转化为cos252sin x x λ<-对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立,分离变量后利用均值不等式求最值即可得解. 【详解】解:(1)由已知11221132f a a -⎛⎫=+= ⎪⎝⎭,21112229a a a a --⎛⎫∴+=++= ⎪⎝⎭,17a a -∴+=, ()2122249a a a a --∴+=++=,2247a a -∴+=,即221(2)47f a a -=+=.(2)若()k f x 为定义在R 上的奇函数, 则(0)10k f k =+=,解得1k =-,01a <<Q ,()x xk f x a a -∴=-,在R 上为减函数,则(cos 2)(2sin 5)0k k f x f x λ+->,可化为(cos 2)(2sin 5)(52sin )k k k f x f x f x λλ>--=-,即cos252sin x x λ<-对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立, 即25cos 22sin 42sin 2sin 2sin sin x x x x x xλ-+<==+,对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立,令sin ,t x =[0,1]t ∈,则2y t t=+为减函数, 当1t =时,y 取最小值为3, 所以3λ<. 【点睛】本题考查了不等式恒成立问题,重点考查了均值不等式,属中档题. 24.(1)2(2){}2log 5x|2<x < 【解析】 【分析】(1)将点(3,3)代入函数计算得到答案.(2)根据函数的单调性和定义域得到1123122x x +<-<-,解得答案. 【详解】(1)()()3log 3123,log 21,2a a f a =-+=∴=∴=∴ ()()2log 12f x x =-+. (2)()()2log 12f x x =-+Q 的定义域为{}|1x x >,并在其定义域内单调递增, ∴()()1123122,123122xx xx f f ++-<-∴<-<-,不等式的解集为{}22<log 5x x <.【点睛】本题考查了函数解析式,利用函数单调性解不等式,意在考查学生对于函数知识的综合应用.25.(1)证明见解析(2)m 1≥ 【解析】 【分析】(1)12,(0,)x x ∀∈+∞,且12x x <,计算()()120f x f x ->得到证明.(2)根据单调性得到221x x m ++>,即()221212m x x x >--=-++,得到答案. 【详解】(1)函数单调递减,12,(0,)x x ∀∈+∞,且12x x <,()()()()2221121212122222121211x x x x x x f x f x x x x x x x -++⎛⎫⎛⎫-=---= ⎪ ⎪⎝⎭⎝⎭ ∵120x x <<,∴210x x ->,2212120x x x x ++>,22110x x >∴12()()f x f x >,∴()f x 在(0,)+∞单调递减; (2)()()2201f x x m f ++<=,故221x x m ++>,()221212m x x x >--=-++,(0,)x ∈+∞,故m 1≥.【点睛】本题考查了定义法证明函数单调性,利用单调性解不等式,意在考查学生对于函数性质的灵活运用.26.(1)(2)【解析】试题分析:(1)当时,利用分式不等式的解法,求得;(2)根据一元二次不等式的求解方法,解得,由于,故.,则.试题解析:(1)当时,原不等式为:集合(2)易知:,;由,则,∴的取值范围为。

2020-2021高一数学上期末一模试卷及答案

2020-2021高一数学上期末一模试卷及答案

2020-2021高一数学上期末一模试卷及答案一、选择题1.函数()12cos 12x x f x x ⎛⎫-= ⎪+⎝⎭的图象大致为()n n A .B .C .D .2.已知函数3()3(,)f x ax bx a b =++∈R .若(2)5f =,则(2)f -=( )A .4B .3C .2D .13.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<4.已知函数()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭5.已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<6.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-157.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>8.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B 22 C .14,2 D .14,4 9.已知函数()0.5log f x x =,则函数()22f x x-的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,210.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .411.若不等式210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 的取值范围为( ) A .0a ≥B .2a ≥-C .52a ≥-D .3a ≥-12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.若函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),∞∞-+上单调递增,则m 的取值范围是__________.14.已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12bf x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________. 15.已知函数2,1,(){1,1,x ax x f x ax x -+≤=->若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,则实数a 的取值范围是 .16.函数22log (56)y x x =--单调递减区间是 .17.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.18.已知函数2,01,()1(1),13,2x x f x f x x ⎧<≤⎪=⎨-<≤⎪⎩则关于x 的方程4()0xf x k -=的所有根的和的最大值是_______.19.若幂函数()af x x =的图象经过点1(3)9,,则2a -=__________.20.()()sin cos f x x π=在区间[]0,2π上的零点的个数是______.三、解答题21.已知函数2()ln(3)f x x ax =-+.(1)若()f x 在(,1]-∞上单调递减,求实数a 的取值范围;(2)当3a =时,解不等式()x f e x ≥.22.已知函数()2()log 21xf x kx =+-为偶函数. (1)求实数k 的值; (2)若不等式1()2f x a x >-恒成立,求实数a 的取值范围; (3)若函数1()2()24f x x x h x m +=+⋅,[1,2]x ∈,是否存在实数m ,使得()h x 的最小值为2,若存在,请求出m 的值;若不存在,请说明理由.23.为保障城市蔬菜供应,某蔬菜种植基地每年投入20万元搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入2万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的经验,发现种西红柿的年收入()f x 、种黄瓜的年收入()g x 与大棚投入x 分别满足()8f x =+1()124g x x =+.设甲大棚的投入为a ,每年两个大棚的总收入为()F a .(投入与收入的单位均为万元)(Ⅰ)求(8)F 的值.(Ⅱ)试问:如何安排甲、乙两个大棚的投入,才能使年总收人()F a 最大?并求最大年总收入.24.已知函数31()31x xf x m -=⋅+是定义域为R 的奇函数. (1)求证:函数()f x 在R 上是增函数; (2)不等式()21cos sin 32f x a x --<对任意的x ∈R 恒成立,求实数a 的取值范围. 25.已知幂函数()()223m m f x xm --=∈Z 为偶函数,且在区间()0,∞+上单调递减.(1)求函数()f x 的解析式;(2)讨论()()bF x xf x =的奇偶性.(),a b R ∈(直接给出结论,不需证明)26.已知函数()()20f x ax bx c a =++≠,满足()02f =,()()121f x f x x +-=-. (1)求函数()f x 的解析式; (2)求函数()f x 的单调区间;(3)当[]1,2x ∈-时,求函数的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】函数f (x )=(1212xx-+)cosx ,当x=2π时,是函数的一个零点,属于排除A ,B ,当x ∈(0,1)时,cosx >0,1212x x -+<0,函数f (x )=(1212xx-+)cosx <0,函数的图象在x 轴下方. 排除D . 故答案为C 。

甘肃省张掖市2021届高一数学上学期期末调研测试题

甘肃省张掖市2021届高一数学上学期期末调研测试题

甘肃省张掖市2021届高一数学上学期期末调研测试题一、选择题1.生活中有这样一个实际问题:如果一杯糖水不够甜,可以选择加糖的方式,使得糖水变得更甜.若*0b a n R ∈>>,,则下列数学模型中最能刻画“糖水变得更甜”的是( ) A .a b b n +>+B .a n ab n b +>+ C .a n b n +<+ D .a n ab n b+<+ 2.设n S 是等差数列{}n a 的前n 项和,若4815S S =,则816S S =( ) A.13B.15C.513D.225 3.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,1cos 9C =,且边2c =,则ABC ∆面积的最大值为( ) AB.9CD4.已知函数的零点是和(均为锐角),则( )A.B. C.D.5.已知数列{}n a 的前n 项和为n S ,满足2=31n n S a -,则通项公式n a 等于( ).A .12n n a -=B .2nn a =C .13-=n n aD .3nn a =6.已知D ,E 是ABC 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+,则xy 的取值范围是( ) A .14,99⎡⎤⎢⎥⎣⎦B .11,94⎡⎤⎢⎥⎣⎦C .21,92⎡⎤⎢⎥⎣⎦D .21,94⎡⎤⎢⎥⎣⎦7.要得到函数2sin(2)6y x π=+的图像,只需将函数2sin 2y x =的图像( )A .向左平移6π个单位 B .向右平移6π个单位 C .向左平移12π个单位D .向右平移12π个单位8.为了得到sin 26y x π⎛⎫=+⎪⎝⎭的图像,可以将函数sin2y x =的图像向右平移....ϕ(0ϕ>)个单位长度,则ϕ的最小值为( ) A .6π B .12π C .116πD .1112π9.已知函数()sin cos ()f x x a x a R =+∈图象的一条对称轴是6x π=,则a 的值为()A .5BC .3D10.已知a →,b →为非零向量,则“•0a b >”是“a →与b →夹角为锐角”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件11.函数()133log 1xf x x =-的零点个数为( )A.1B.2C.3D.412.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE内部的概率等于A .14B .13C .12D .23二、填空题13.已知sin 2cos 0αα+=,则tan α=_____;22sin 2cos αα-=_____. 14.已知sin 6πα⎛⎫+ ⎪⎝⎭=13,则cos 223πα⎛⎫-⎪⎝⎭=________.15.函数()12f x x =-的定义域为________. 16.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若角A ,B ,C 依次成等差数列,且a=1,S △ABC =______. 三、解答题17.已知函数()()()2f x x x a =-+.(1)若()f x 的图像关于直线1x =对称,求a 的值;(2)若()f x 在区间[]01,上的最小值是2,求a 的值. 18.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 19.已知正项数列{}n a 的前n 项和为n S ,对任意n *∈N ,点都在函数的图象上.(1)求数列{}n a 的通项公式; (2)若数列,求数列{}n b 的前n 项和n T ;(3)已知数列{}n c 满足,若对任意n *∈N ,存在使得成立,求实数a 的取值范围.20.如图,某住宅小区的平面图呈圆心角120︒为的扇形AOB ,小区的两个出入口设置在点 A 及点 C 处,且小区里有一条平行于 BO 的小路CD 。

2020-2021学年度高一年级第一学期期末考试数学试题及答案

2020-2021学年度高一年级第一学期期末考试数学试题及答案

2020—2021学年度高一年级第一学期期末考试数学试卷一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1.已知全集U ={1,2,3,4,5},集合A ={2,4},B ={3,4},则A (U B)=A .{2,3,4}B .{1,2,4,5}C .{2,5}D .{2}2.sin(﹣1080°)= A .12- B .1 C .0 D .﹣1 3.命题“∀x ∈R ,x 2﹣x +1=0”的否定为A .∀x ∈R ,x 2﹣x +1≠0B .∃x ∈R ,x 2﹣x +1=0C .∃x ∈R ,x 2﹣x +1≠0D .∃x ∉R ,x 2﹣x +1≠04.已知a =1ge ,b =ln0.8,c =20.1,则A .a <b <cB .b <a <cC .c <a <bD .b <c <a5.已知集合A ={}2log , 2y y x x =<,B =1, 22x y y x ⎧⎫=<⎨⎬⎩⎭,则A B = A .(0,14) B .(0,1) C .(-∞,14) D .(14,1)6.已知幂函数()y f x =的图像过点(2),则下列关于()f x 说法正确的是 A .奇函数 B .偶函数C .定义域为[0,+∞)D .在(0,+∞)单调递减7.已知函数3()log 3f x x x =+,()33x g x x =+,3()3h x x x =+的零点分别1x ,2x ,3x ,则1x ,2x ,3x 的大小关系为A .2x <3x <1xB .1x <2x <3xC .2x <1x <3xD .3x <2x <1x8.“不等式mx 2+x +m >0在R 上恒成立”的一个必要不充分条件是A .m >12B .0<m <1C .m >14D .m >1 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数是A .e x y =B .e e x x y -=-C .2ln(1)y x =+D .cos y x =10.已知a >0,b >0,给出下列四个不等式,其中正确的不等式有A .2a b +≥B .11()()4a b a b++≥C .22a b ab ≥+D .111a a +>+ 11.函数()Asin()f x x ωϕ=+(A ,ω,ϕ是常数,A >0,ω>0)的部分图象如图所示,下列结论正确的是A .(0)1f =B .在区间[3π-,0]上单调递增C .将()f x 的图象向左平移6π个单位,所得到的函数是 偶函数D .2()()3f x f x π=-- 第11题 12.已知函数211(), 122()(2), 1x x f x x x ⎧+≤⎪=⎨⎪->⎩,函数()()g x b f x =-,且b >0,则()g x 零点的个数可能为A .4B .3C .2D .1三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.若sin(6x π-)=13-,则cos(3x π+)= . 14.当x >0时,函数2()1x f x x =+的最大值为 . 15.将函数y =sin x 图象上所有的点向右平行移动6π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式为 .16.某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度v (单位:m/s )与其耗氧量Q 之间的关系为2Q log 10v a =(其中a 、b 是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为18m/s ,则a = ;若这种候鸟飞行的速度不能低于60m/s ,其耗氧量至少要 个单位.四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)计算下列各式的值: (1)113241()8814+-; (2)33252log 2log 36log 5log 4-+⨯.18.(本小题满分12分)已知A ={}2log (32)0x x -<,B ={}2(2)20x x a x a -++<.若A ⊆B ,求a 的取值范围.19.(本小题满分12分) 已知函数2()2sin sin(2)6f x x x π=++. (1)求()f x 的最小正周期;(2)若x ∈[2π-,12π],求()f x 的值域.20.(本小题满分12分)某工厂进行废气回收再利用,把二氧化硫转化为一种可利用的化工产品.已知该单位每月的处理量最少为200吨,最多为500吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为2150400004y x x =-+,且每处理一吨二氧化硫得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的月平均处理成本最低?(2)该工厂每月进行废气回收再利用能否获利?如果获利,求月最大利润;如果不获利,求月最大亏损额.21.(本小题满分12分)已知定义域为R 的函数13()33xx n f x +-=+是奇函数. (1)求()y f x =的解析式;(2)若428(log log )(42)0f x f a x⋅+->恒成立,求实数a 的取值范围.22.(本小题满分12分)如图,在Rt △ACB 中,斜边AB =2,BC =1,在以AB 为直径的半圆上有一点D (不含端点),∠DAB =θ,设△ABD 的面积S 1,△ACD 的面积S 2.(1)若S 1=S 2,求 θ;(2)令S =S 1﹣S 2,求S 的最大值及此时的θ.。

2020-2021高一数学上期末模拟试卷(及答案)

2020-2021高一数学上期末模拟试卷(及答案)

2020-2021高一数学上期末模拟试卷(及答案)一、选择题1.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<2.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12BCD .23.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-154.若函数()2log ,?0,? 0x x x f x e x >⎧=⎨≤⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .1eB .eC .21e D .2e5.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]6.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃7.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2B .()2,+∞C.(D.)28.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5B .()3,5C .[]4,6D .()4,69.定义在[]7,7-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为A .(]2,7B .()(]2,02,7-UC .()()2,02,-+∞UD .[)(]7,22,7--U10.点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .11.函数()f x 是周期为4的偶函数,当[]0,2x ∈时,()1f x x =-,则不等式()0xf x >在[]1,3-上的解集是 ( ) A .()1,3 B .()1,1-C .()()1,01,3-UD .()()1,00,1-U12.函数y =11x -在[2,3]上的最小值为( ) A .2 B .12 C .13D .-12二、填空题13.已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12bf x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________. 14.已知()()22,02,0x a b x x f x x ⎧+++≤=⎨>⎩,其中a 是方程lg 4x x +=的解,b 是方程104x x +=的解,如果关于x 的方程()f x x =的所有解分别为1x ,2x ,…,n x ,记121==+++∑nin i xx x x L ,则1ni i x ==∑__________.15.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.16.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________.17.函数()()()310310xx x f x x -⎧+<⎪=⎨-+≥⎪⎩,若函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是______.18.若幂函数()af x x =的图象经过点1(3)9,,则2a -=__________.19.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.20.若集合{}{}2|560|20A x x x B x ax a Z =-+≤=-=∈,,,且B A ⊆,则实数a =_____.三、解答题21.已知函数f (x )=2x的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.对于函数()()()2110f x ax b x b a =+++-≠,总存在实数0x ,使()00f x mx =成立,则称0x 为()f x 关于参数m 的不动点.(1)当1a =,3b =-时,求()f x 关于参数1的不动点;(2)若对任意实数b ,函数()f x 恒有关于参数1两个不动点,求a 的取值范围; (3)当1a =,5b =时,函数()f x 在(]0,4x ∈上存在两个关于参数m 的不动点,试求参数m 的取值范围. 23.已知函数()22xxf x k -=+⋅,()()log ()2xa g x f x =-(0a >且1a ≠),且(0)4f =.(1)求k 的值;(2)求关于x 的不等式()0>g x 的解集; (3)若()82xtf x ≥+对x ∈R 恒成立,求t 的取值范围. 24.已知幂函数()()223mm f x x m --=∈Z 为偶函数,且在区间()0,∞+上单调递减.(1)求函数()f x 的解析式;(2)讨论()()bF x xf x =的奇偶性.(),a b R ∈(直接给出结论,不需证明)25.已知函数()()()()log 1log 301a a f x x x a =-++<<. (1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为4-,求a 的值.26.设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁R B ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.2.A解析:A 【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A .本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.3.A解析:A 【解析】 【分析】设()2f x ax bx c =++,可知1、3为方程()20f x x +=的两根,且0a <,利用韦达定理可将b 、c 用a 表示,再由方程()60f x a +=有两个相等的根,由0∆=求出实数a 的值. 【详解】由于不等式()2f x x >-的解集为()1,3,即关于x 的二次不等式()220ax b x c +++>的解集为()1,3,则0a <.由题意可知,1、3为关于x 的二次方程()220ax b x c +++=的两根,由韦达定理得2134b a +-=+=,133ca=⨯=,42b a ∴=--,3c a =, ()()2423f x ax a x a ∴=-++,由题意知,关于x 的二次方程()60f x a +=有两相等的根, 即关于x 的二次方程()24290ax a x a -++=有两相等的根,则()()()224236102220a a a a ∆=+-=+-=,0a <Q ,解得15a =-,故选:A. 【点睛】本题考查二次不等式、二次方程相关知识,考查二次不等式解集与方程之间的关系,解题的关键就是将问题中涉及的知识点进行等价处理,考查分析问题和解决问题的能力,属于中等题.4.A解析:A 【解析】 【分析】直接利用分段函数解析式,认清自变量的范围,多重函数值的意义,从内往外求,根据自变量的范围,选择合适的式子求解即可. 【详解】因为函数2log ,0(),0x x x f x e x >⎧=⎨≤⎩,因为102>,所以211()log 122f ==-,又因为10-<,所以11(1)f ee--==, 即11(())2f f e=,故选A. 【点睛】该题考查的是有关利用分段函数解析式求函数值的问题,在解题的过程中,注意自变量的取值范围,选择合适的式子,求解即可,注意内层函数的函数值充当外层函数的自变量.5.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D.该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.6.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 7.D解析:D 【解析】∵对于任意的x ∈R ,都有f (x −2)=f (2+x ),∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[−2,0]时,f (x )=1 2x⎛⎫ ⎪⎝⎭−1,且函数f (x )是定义在R 上的偶函数, 若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解, 则函数y =f (x )与y =()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f (−2)=f (2)=3,则对于函数y =()log 2a x +,由题意可得,当x =2时的函数值小于3,当x =6时的函数值大于3,即4a log <3,且8a log >3,34a <2, 故答案为34,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解8.D解析:D由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.9.B解析:B 【解析】 【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(]2,7,再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-⋃.【详解】当07x <≤时,()26xf x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤< 时,()f x 在[7,0)-上单调递增,且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<,所以不等式()0f x >的解集为(2,0)(2,7]-⋃ 【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.10.C解析:C 【解析】 【分析】认真观察函数图像,根据运动特点,采用排除法解决. 【详解】由函数关系式可知当点P 运动到图形周长一半时O,P 两点连线的距离最大,可以排除选项A,D,对选项B 正方形的图像关于对角线对称,所以距离y 与点P 走过的路程x 的函数图像应该关于2l对称,由图可知不满足题意故排除选项B , 故选C . 【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力.11.C解析:C 【解析】若[20]x ∈-,,则[02]x -∈,,此时1f x x f x -=--Q (),()是偶函数,1f x x f x ∴-=--=()(), 即1[20]f x x x =--∈-(),,, 若[24]x ∈, ,则4[20]x -∈-,, ∵函数的周期是4,4413f x f x x x ∴=-=---=-()()(),即120102324x x f x x x x x ---≤≤⎧⎪=-≤≤⎨⎪-≤≤⎩,(),, ,作出函数f x ()在[13]-, 上图象如图, 若03x ≤<,则不等式0xf x ()> 等价为0f x ()> ,此时13x <<,若10x -≤≤ ,则不等式0xfx ()>等价为0f x ()< ,此时1x -<<0 , 综上不等式0xf x ()> 在[13]-, 上的解集为1310.⋃-(,)(,)故选C.【点睛】本题主要考查不等式的求解,利用函数奇偶性和周期性求出对应的解析式,利用数形结合是解决本题的关键.12.B解析:B 【解析】 y =11x -在[2,3]上单调递减,所以x=3时取最小值为12,选B. 二、填空题13.【解析】【分析】由函数是偶函数求出这样可求得集合得的取值范围从而可得结论【详解】∵函数是偶函数∴即平方后整理得∴∴由得∴故答案为:【点睛】本题考查函数的奇偶性考查解一元二次不等式解题关键是由函数的奇 解析:[2015,2019]【解析】 【分析】由函数()f x 是偶函数,求出a ,这样可求得集合D ,得b 的取值范围,从而可得结论. 【详解】∵函数()12bf x x a a -=-+-是偶函数,∴()()f x f x -=,即1122b bx a a x a a ---+-=--+-, x a x a -=+,平方后整理得0ax =,∴0a =,∴2{|20}{|20}D x x x x x =+≤=-≤≤, 由b D ∈,得20b -≤≤. ∴22015201532019a b ≤-+≤. 故答案为:[2015,2019]. 【点睛】本题考查函数的奇偶性,考查解一元二次不等式.解题关键是由函数的奇偶性求出参数a .14.【解析】【分析】根据互为反函数的两个图像与性质可求得的等量关系代入解析式可得分段函数分别解方程求得方程的解即可得解【详解】是方程的解是方程的解则分别为函数与函数和图像交点的横坐标因为和互为反函数所以 解析:1-【解析】 【分析】根据互为反函数的两个图像与性质,可求得a ,b 的等量关系,代入解析式可得分段函数()f x .分别解方程()f x x =,求得方程的解,即可得解.【详解】a 是方程lg 4x x +=的解,b 是方程104x x +=的解,则a ,b 分别为函数4y x =-+与函数lg y x =和10xy =图像交点的横坐标 因为lg y x =和10x y =互为反函数,所以函数lg y x =和10x y =图像关于y x =对称 所以函数4y x =-+与函数lg y x =和10xy =图像的两个交点也关于y x =对称 所以函数4y x =-+与y x =的交点满足4y x y x =-+⎧⎨=⎩,解得22x y =⎧⎨=⎩根据中点坐标公式可得4a b += 所以函数()242,02,0x x x f x x ⎧++≤=⎨>⎩ 当0x ≤时,()242f x x x =++,关于x 的方程()f x x =,即242x x x ++= 解得2,1x x =-=-当0x >时,()2f x =,关于x 的方程()f x x =,即2x =所以()()12121ni i x ==-+-+=-∑故答案为:1-【点睛】本题考查了函数与方程的关系,互为反函数的两个函数的图像与性质,分段函数求自变量,属于中档题.15.【解析】【分析】根据为奇函数且在上是减函数可知即令根据函数在上单调递增求解的取值范围即可【详解】为奇函数且在上是减函数在上是减函数∴即令则在上单调递增若使得不等式在上都成立则需故答案为:【点睛】本题 解析:0a ≤【解析】【分析】根据()f x 为奇函数,且在[)0,+∞上是减函数,可知12ax x -≤-,即11a x≤-,令11y x =-,根据函数11y x=-在[]1,2x ∈上单调递增,求解a 的取值范围,即可. 【详解】 Q ()f x 为奇函数,且在[)0,+∞上是减函数∴()f x 在R 上是减函数.∴12ax x -≤-,即11a x ≤-. 令11y x =-,则11y x=-在[]1,2x ∈上单调递增.若使得不等式()()12f ax f x -≤-在[]1,2x ∈上都成立. 则需min 111101a x ⎛⎫≤-=-= ⎪⎝⎭. 故答案为:0a ≤【点睛】本题考查函数的单调性与奇偶性的应用,属于中档题.16.(-22)【解析】【详解】∵函数f(x)是定义在R 上的偶函数且在(-∞0)上是增函数又f(2)=0∴f(x)在(0+∞)上是增函数且f(-2)=f(2)=0∴当-2<x <2时f(x)<0即f(x)<解析:(-2,2)【解析】【详解】∵函数f(x)是定义在R 上的偶函数,且在(-∞,0)上是增函数,又f(2)=0,∴f(x)在(0,+∞)上是增函数,且f(-2)=f(2)=0,∴当-2<x <2时,f(x)<0,即f(x)<0的解为(-2,2),即不等式的解集为(-2,2),故填(-2,2).17.【解析】【分析】作出函数的图象如下图所示得出函数的值域由图象可得m 的取值范围【详解】作出函数的图象如下图所示函数的值域为由图象可得要使函数的图像与函数的图像有公共点则m 的取值范围是故答案为:【点睛】 解析:[)()0,11,2⋃【解析】【分析】作出函数()f x 的图象如下图所示,得出函数()f x 的值域,由图象可得m 的取值范围.【详解】作出函数()f x 的图象如下图所示,函数()f x 的值域为[)()0,11,2⋃,由图象可得要使函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是[)()0,11,2⋃, 故答案为:[)()0,11,2⋃.【点睛】本题考查两函数图象交点问题,关键在于作出分段函数的图象,运用数形结合的思想求得范围,在作图象时,注意是开区间还是闭区间,属于基础题.18.【解析】由题意有:则:解析:14【解析】 由题意有:13,29a a =∴=-, 则:()22124a --=-=. 19.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没 解析:{|2m m >或2}3m <-【解析】【分析】分类讨论m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围.【详解】解:∵函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值, 则函数2(2)2y mx m x m =+-+-有最大值或最小值,且y 取最值时,0y >. 当0m =时,22y x =--,由于y 没有最值,故()f x 也没有最值,不满足题意. 当0m >时,函数y 有最小值,没有最大值,()f x 有最大值,没有最小值.故y 的最小值为24(2)(2)4m m m m---,且 24(2)(2)04m m m m --->, 求得 2m >;当0m <时,函数y 有最大值,没有最小值,()f x 有最小值,没有最大值.故y 的最大值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->, 求得23m <-. 综上,m 的取值范围为{|2m m >或2}3m <-.故答案为:{|2m m >或2}3m <-.【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,二次函数的最值,属于中档题. 20.或【解析】【分析】先解二次不等式可得再由讨论参数两种情况再结合求解即可【详解】解:解不等式得即①当时满足②当时又则解得又则综上可得或故答案为:或【点睛】本题考查了二次不等式的解法空集的定义及集合的包 解析:0或1【解析】【分析】先解二次不等式可得{}|23A x x =≤≤,再由B A ⊆,讨论参数0a =,0a ≠两种情况,再结合a Z ∈求解即可.【详解】解:解不等式2560x x -+≤,得23x ≤≤,即{}|23A x x =≤≤,①当0a =时,B φ=,满足B A ⊆,②当0a ≠时,2B a ⎧⎫=⎨⎬⎩⎭,又B A ⊆,则223a ≤≤,解得213a ≤≤,又a Z ∈,则1a =,综上可得0a =或1a =,故答案为:0或1.【点睛】本题考查了二次不等式的解法、空集的定义及集合的包含关系,重点考查了分类讨论的数学思想方法,属基础题.三、解答题21.(1)g (x )=22x -2x +2,{x |0≤x ≤1}.(2)最小值-4;最大值-3.【解析】【分析】【详解】(1)f (x )=2x 的定义域是[0,3],设g (x )=f (2x )-f (x +2), 因为f(x)的定义域是[0,3],所以,解之得0≤x≤1. 于是 g(x)的定义域为{x|0≤x≤1}.(2)设. ∵x ∈[0,1],即2x ∈[1,2],∴当2x=2即x=1时,g(x)取得最小值-4;当2x=1即x=0时,g(x)取得最大值-3. 22.(1)4或1-;(2)()0,1;(3)(]10,11.【解析】【分析】(1)当1a =,3b =-时,结合已知可得2()24f x x x x =--=,解方程可求;(2)由题意可得,2(1)1ax b x b x +++-=恒有2个不同的实数根(0)a ≠,结合二次方程的根的存在条件可求;(3)当1a =,5b =时,转化为问题2()64f x x x mx =++=在(0,4]上有两个不同实数解,进行分离m ,结合对勾函数的性质可求.【详解】解:(1)当1a =,3b =-时,2()24f x x x =--,由题意可得,224x x x --=即2340x x --=,解可得4x =或1x =-,故()f x 关于参数1的不动点为4或1-;(2)由题意可得,2(1)1ax b x b x +++-=恒有2个不同的实数根(0)a ≠,则210ax bx b ++-=恒有2个不同的实数根(0)a ≠,所以△24(1)0b a b =-->恒成立,即2440b ab a -+>恒成立,∴216160a a ∆=-<,则01a <<,∴a 的取值范围是()0,1;(3)1a =,5b =时,2()64f x x x mx =++=在(0,4]上有两个不同实数解, 即46m x x-=+在(0,4]上有两个不同实数解, 令4()h x x x=+,04x <≤, 结合对勾函数的性质可知,465m <-≤,解可得,1011m <≤.故m 的范围为(]10,11.【点睛】本题以新定义为载体,主要考查了函数性质的灵活应用,属于中档题.23.(1) 3k =;(2) 当1a >时,()2,log 3x ∈-∞;当01a <<时,()2log 3,x ∈+∞;(3)(],13-∞-【解析】【分析】(1)由函数过点()0,4,待定系数求参数值;(2)求出()g x 的解析式,解对数不等式,对底数进行分类讨论即可.(3)换元,将指数型不等式转化为二次不等式,再转化为最值求解即可.【详解】(1)因为()22x x f x k -=+⋅且(0)4f =,故:14k +=, 解得3k =.(2)因为()()log ()2x a g x f x =-,由(1),将()f x 代入得:()log (32?)x a g x -=n ,则log (32?)0x a ->n ,等价于:当1a >时,321x ->n ,解得()2,log 3x ∈-∞当01a <<时,321x -<n ,解得()2log 3,x ∈+∞.(3)()82xt f x ≥+在R 上恒成立,等价于: ()()228230x x t --+≥n 恒成立; 令2x m =,则()0,m ∈+∞,则上式等价于:2830m m t --+≥,在区间()0,+∞恒成立.即:283t m m ≤-+,在区间()0,+∞恒成立,又()2283413m m m -+=--,故: 2(83)m m -+的最小值为:-13,故:只需13t ≤-即可.综上所述,(],13t ∈-∞-.【点睛】本题考查待定系数求参数值、解复杂对数不等式、由恒成立问题求参数范围,属函数综合问题.24.(1)()4f x x -=(2)见解析 【解析】【分析】(1)由幂函数()f x 在()0,∞+上单调递减,可推出2230m m --<(m Z ∈),再结合()f x 为偶函数,即可确定m ,得出结论;(2)将()f x 代入,即可得到()F x ,再依次讨论参数,a b 是否为0的情况即可.【详解】(1)∵幂函数()()223m m f x x m --=∈Z 在区间()0,∞+上是单调递减函数,∴2230m m --<,解得13m -<<,∵m Z ∈,∴0m =或1m =或2m =.∵函数()()223mm f x x m --=∈Z 为偶函数,∴1m =,∴()4f x x -=;(2)()()4bb F x xf x x x-==⋅23ax bx -=-, 当0a b ==时,()F x 既是奇函数又是偶函数;当0a =,0b ≠时,()F x 是奇函数;当0a ≠,0b =时,()F x 是偶函数;当0a ≠,0b ≠时,()F x 是非偶非偶函数.【点睛】本题主要考查了幂函数单调性与奇偶性的综合应用,学生需要熟练掌握好其定义并灵活应用.25.(1)()3,1.-(2)1-±3 【解析】【分析】(1)根据对数的真数大于零,列出不等式组并求出解集,函数的定义域用集合或区间表示出来;(2)利用对数的运算性质对解析式进行化简,再由()=0f x ,即223=1x x --+,求此方程的根并验证是否在函数的定义域内;(3)把函数解析式化简后,利用配方求真数在定义域内的范围,再根据对数函数在定义域内递减,求出函数的最小值log 4a ,得log 44a =-利用对数的定义求出a 的值.【详解】(1)由已知得10,30,x x ->⎧⎨+>⎩, 解得31x -<<所以函数()f x 的定义域为()3,1.- (2)()()()()()()2log 1log 3log 13log 23a a a a f x x x x x x x =-++=-+=--+,令()=0f x ,得223=1x x --+,即222=0x x +-,解得1x =-±∵1(-3,1)-,∴函数()f x 的零点是1-(3)由2知,()()()22log 23log 14a a f x x x x ⎡⎤=--+=-++⎣⎦, ∵31x -<<,∴()20144x <-++≤.∵01a <<,∴()2log 14log 4a a x ⎡⎤-++≥⎣⎦, ∴()min log 44a f x ==-,∴1442a -==. 【点睛】本题是关于对数函数的综合题,考查了对数的真数大于零、函数零点的定义和对数型的复合函数求最值,注意应在函数的定义域内求解,灵活转化函数的形式是关键.26.见解析【解析】【分析】根据题意,在数轴上表示出集合,A B ,再根据集合的运算,即可得到求解.【详解】解:如图所示.∴A∪B={x|2<x<7},A∩B={x|3≤x<6}.∴∁R(A∪B)={x|x≤2或x≥7},∁R(A∩B)={x|x≥6或x<3}.又∵∁R A={x|x<3或x≥7},∴(∁R A)∩B={x|2<x<3}.又∵∁R B={x|x≤2或x≥6},∴A∪(∁R B)={x|x≤2或x≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甘肃省张掖市山丹县第一中学2020-2021学年高一数学上学期期末模拟考试试题(考试时间:120分钟 试卷满分:150分)第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U =R ,{}239xA x =<≤,{}02B y y =<≤,则有A .AB A = B .A B B =C .()AB ≠∅RD .()A B =RR2.下列四个图象中(如图),属于函数图象的是(1) (2) (3) (4)A .(1)(2)B .(1)(3)(4)C .(2)(3)(4)D .(1)(2)(3)(4)3.利用二分法求方程log 3x =5–x 的近似解,可以取得一个区间 A .(0,1)B .(1,2)C .(2,3)D .(3,4)4.若直线l 1:ax +2y +6=0与直线l 2:x +(a –1)y +5=0垂直,则实数a 的值是 A .23B .1C .12D .25.直线x y m +=与圆22(0)x y m m +=>相切,则m =A .12B .2 C .2D .26.下列函数既是奇函数又在(0,)+∞上单调递减的是A .4()f x x =B .1()f x x x=+C .2()lg(1)f x x x =+-D .3()f x x =7.直线l :(k +1)x –(k –1)y –2k =0恒过定点 A .(–1,1)B .(1,–1)C .(–1,–1)D .(1,1)8.如图,已知一个圆柱的底面半径为3,高为2,若它的两个底面圆周均在球O 的球面上,则球O 的表面积为A .323πB .16πC .8πD .4π9.已知 1.50.1 1.30.2,2,0.2a b c ===,则,,a b c 的大小关系是A .a b c <<B .a c b <<C .c a b <<D .b c a <<10.已知m ,n 是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m ⊥α,n ⊥β,m ⊥n ,则α⊥β;②若m ∥α,n ∥β,m ⊥n ,则α∥β; ③若m ⊥α,n ∥β,m ⊥n ,则α∥β;④若m ⊥α,n ∥β,α∥β,则m ⊥n .其中所有正确命题的序号是 A .①④B.②④C .①D .④11.函数()()111f x x x =--的最大值是A .43 B .34C .45D .5412.已知函数()()2ln1421f x x x =+-+,则()1lg 2lg 2f f ⎛⎫+ ⎪⎝⎭等于A .–1B .0C .1D .2第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.函数()2log 1f x x =-的定义域是__________.14.若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为__________.15.设f (x 3)=ln x ,则f (e )=__________.16.函数()122100x x f x x x -⎧-≤⎪=⎨⎪>⎩,满足f (x )>1的x 的取值范围是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知函数3,1,(),1x x f x x x ⎧≤=⎨->⎩,(1)求((1))f f 的值;(2)求函数()f x 的值域.18.(本小题满分12分)(1)已知函数f (x )为二次函数,且f (x –1)+f (x )=2x 2+4,求f (x )的解析式;(2)已知f (x )满足()123f x f x x ⎛⎫+=⎪⎝⎭,求f (x )的解析式. 19.(本小题满分12分)已知过点()1,0P ,且斜率为1-的直线l ,点13,2B ⎛⎫ ⎪⎝⎭,55,6C ⎛⎫-⎪⎝⎭,在直线l 上是否存在一点A ,使AB BC ⊥?若存在,请求出点A 的坐标;若不存在,请说明理由. 20.(本小题满分12分)如图,在直四棱柱ABCD –A 1B 1C 1D 1中,点E 为AB 1的中点,点F 为A 1D 的中点.(1)求证:EF ∥平面ABCD ; (2)求证:AA 1⊥EF . 21.(本小题满分12分)函数()f x 是定义在R 上的偶函数,且对任意实数x ,都有(1)(1)f x f x +=-+成立.已知当[1,2]x ∈时,()log a f x x =.(1)求[0,1]x ∈时,函数()f x 的表达式;(2)若函数()f x 的最大值为12,在区间[1,3]-上,解关于x 的不等式1()4f x >.22.(本小题满分12分)某家具厂生产一种办公桌,每张办公桌的成本为100元,出厂单价为160元,该厂为鼓励销售商多订购,决定一次订购量超过100张时,每超过一张,这批订购的全部办公桌出厂单价降低1元.根据市场调查,销售商一次订购量不会超过150张.(1)设一次订购量为x 张,办公桌的实际出厂单价为P 元,求P 关于x 的函数关系式P (x );(2)当一次性订购量x 为多少时,该家具厂这次销售办公桌所获得的利润f (x )最大?其最大利润是多少元?(该家具厂出售一张办公桌的利润=实际出厂单价–成本)高一数学·参考答案13.[2,+∞) 14.3π 15.1316.x <–1或x >117.【解析】(1)因为3,1,(),1,x x f x x x ⎧≤=⎨->⎩,所以(1)3f =,所以((1))(3)3f f f ==-.(5分)(2)当1x ≤时,()3(0,3]xf x =∈,当1x >时,()(,1)f x x =-∈-∞-,所以函数()f x 的值域为(,1)(0,3]-∞-.(10分)18.【解析】(1)设f (x )=ax 2+bx +c (a ≠0)∴a (x –1)2+b (x –1)+c +ax 2+bx +c =2ax 2+(2b –2a )x +a –b +2c =2x 2+4∴2222024a b a a b c =⎧⎪-=⎨⎪-+=⎩,解得112a b c =⎧⎪=⎨⎪=⎩. ∴f (x )=x 2+x +2.(6分)(2)()123f x f x x ⎛⎫+=⎪⎝⎭, 用1x替换x 得:()132f f x x x ⎛⎫+= ⎪⎝⎭, 消去1f x ⎛⎫⎪⎝⎭可得()336f x x x =-, 故()()120f x x x x=-≠.(12分) 19.【解析】假设存在,设点()00,A x y .点A 在l 上,0011y x ∴=--,即001y x =-+.①(4分) 由AB BC ⊥,得005116221353ABBCy kk x ---⋅=⋅=---, 即()0013322y x -=-.②(9分) 由①、②解得02x =,01y =-.(12分) 20.【解析】(1)连接A 1B ,BD ,∵在直四棱柱ABCD –A 1B 1C 1D 1中,点E 为AB 1的中点, ∴点E 为A 1B 的中点,∴EF ∥BD ,又EF ⊄平面ABCD ,BD ⊂平面ABCD ,∴EF ∥平面ABCD .(6分)(2)取AA 1的中点G ,连接GE ,GF ,∵AA 1⊥GE ,AA 1⊥GF ,且GE ∩GF =G ,∴AA 1⊥平面GEF , 又∵EF ⊂平面GEF ,∴AA 1⊥EF .(12分)21.【解析】(1)∵()()11f x f x +=-+,则()f x 图象关于1x =对称,∴()()()[]2log 2,0,1a f x f x x x -==-∈.故所求的表达式为()()[]log 2,0,1a f x x x =-∈.(4分) (2)∵()f x 是R 上的偶函数且()f x 图象关于1x =对称, ∴()()2f x f x +=,即函数()f x 是以2为周期,故只需考查区间[]1,1-. 若1a >时,由函数()f x 的最大值为12知()()max 10log 22a f f x ===,即4a =, 当01a <<时,则当11x x ==-或时,()f x 有最大值,即()1log 212a -=,舍去, 综上可得,4a =.(8分)当[]1,1x ∈-时,若[]1,0x ∈-,则()41log 24x +>220x <≤,若(]0,1x ∈,则()41log 24x ->,∴02x <<∴此时满足不等式的解集为2,2-.∵()f x 是以2为周期的周期函数, 当(]1,3x ∈时,()14f x >的解集为-,综上,()14f x >的解集为(2,22,4.(12分)22.【解析】(1)P (x )1600100260100150x x x x x <≤∈⎧=⎨-<≤∈⎩N N ,,,,.(4分)(2)当0<x ≤100,f (x )=60x , 故x =100时,f (x )max =f (100)=6000,当100<x ≤150时,f (x )=(160–x )x =–x 2+160x =–(x –80)2+6400,(8分) ∴f (x )在(100,150]上单调递减, 故f (x )<–(100–80)2+6400=6000, 综上所述,f (x )的最大值为6000.答:当第一次订购量为100张时,该家具厂在这次订购中所获得的利润最大, 其最大利润是6000元.(12分)。

相关文档
最新文档