抑制载波双边带调幅和解调的实现

合集下载

实验三模拟乘法器调幅及解调实验

实验三模拟乘法器调幅及解调实验

实验三模拟乘法器调幅〔AM、DSB、SSB〕及解调实验〔包络检涉及同步检波实验〕一、实验目的1.掌握用集成模拟乘法器实现全载波调幅、抑止载波双边带调幅和单边带调幅的方法。

2.研究已调波与调制信号以及载波信号的关系。

3.掌握调幅系数的测量与计算方法。

4.通过实验比照全载波调幅、抑止载波双边带调幅和单边带调幅的波形。

5.了解模拟乘法器〔MC1496〕的工作原理,掌握调整与测量其特性参数的方法。

6.进一步了解调幅波的原理,掌握调幅波的解调方法。

7.掌握二极管峰值包络检波的原理。

8.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克制的方法。

9. 掌握用集成电路实现同步检波的方法。

二、实验内容1.调测模拟乘法器MC1496正常工作时的静态值。

2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。

3.实现抑止载波的双边带调幅波。

4.实现单边带调幅。

5.完成普通调幅波的解调。

6.观察抑制载波的双边带调幅波的解调。

7.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。

三、实验原理及实验电路说明1、调幅局部幅度调制就是载波的振幅〔包络〕随调制信号的参数变化而变化。

本实验中载波是由晶体振荡产生的465KHz高频信号,1KHz的低频信号为调制信号。

振幅调制器即为产生调幅信号的装置。

1.集成模拟乘法器的内部构造集成模拟乘法器是完成两个模拟量〔电压或电流〕相乘的电子器件。

在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。

采用集成模拟乘法器实现上述功能比采用别离器件如二极管和三极管要简单得多,而且性能优越。

所以目前无线通信、播送电视等方面应用较多。

集成模拟乘法器常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。

(1)MC1496的内部构造在本实验中采用集成模拟乘法器MC1496来完成调幅作用。

双边带抑制载波调幅实验报告

双边带抑制载波调幅实验报告

计算机与信息工程学院验证性实验报告专业:年级: 2013—2014学年第一学期课程名称通信原理指导教师本组成员学号姓名实验地点实验时间项目名称双边带抑制载波调幅与解调实验类型一、实验目的1.掌握双边带抑制载波调幅的原理及实现方法。

2.掌握用matlab仿真软件观察双边带抑制载波调幅与解调。

二、实验内容1.观察双边带调幅的波形。

2.观察双边带调幅波形的频谱。

3.观察双边带解调的波形。

三、实验仪器装有matlab软件的计算机一台四、实验原理1.双边带调幅在常规双边带调幅时,由于已调波中含有不携带信息的载泼分量,故调制效率较低。

为了提高调制效率,在常规调幅的基础上抑制掉载波分量,使总功率全部包含在双边带中。

这种调制方式称为抑制载波双边带调制。

简称双边带调制(DSB)。

f t w t双边带调制信号的时域表达式:SDSB(t)=()cos cSDSB=++-双边带调制信号的频域表达式:(w)[F(w w)F(w w)]/2c c实现双边带调制就是完成调制信号与载波信号的相乘运算。

原则上,可以选用很多种非线性器件或时变参量电路来实现乘法器的功能,如平衡调制器或环形调制器。

双边带调制节省了载波功率,提高了调制效率,但已调信号的带宽仍与调幅信号一样,是基带信号带宽的两倍。

如果输入的基带信号没有直流分量,则得到的输出信号便是无载波分量的双边带信号。

双边带调制实质上就是基带信号与载波相乘。

2.双边带解调双边带解调只能采用相干解调,把已调信号乘上一个与调制器同频同相的波,将已调信号的频谱搬回到原点位置,时域表达式为:2c c (t)cos(*t)m(t)*cos (*)1(t)*(1cos(2**T))2DSB c S t m ωωω===+然后通过低通滤波器,滤除高频分量,是的无失真地恢复出原始调制信号。

五、实验程序及结果clear;clc;t=-2:0.001:2; %%信号f(t)y1=sinc(t*200);subplot(231),plot(t,y1) %画出原始信号title('已知信号');xlabel('时间:s');ylabel('幅度');grid onxlim([-0.1,0.1]);fs=2000; %%信号频谱t1=-2:0.0001:2;y11=sinc(t1*200);yk=fft(y11,50000); %对信号做傅里叶变换yw=2*pi/40000*abs(fftshift(yk)); %频谱搬移fw=[-25000:24999]/50000*fs;subplot(232),plot(fw,yw);title('已知信号的频谱');xlabel('频率:hz');ylabel('幅度');grid onxlim([-40,40]);y3=cos(2*pi*200*t); %%载波信号subplot(233),plot(t,y3);title('载波信号');xlabel('时间:s');ylabel('幅度');grid onxlim([-0.04,0.04]);y4=sinc(t*200).*cos(2*pi*200*t); %%已调信号subplot(234),plot(t,y4,'r-');title('已调信号');xlabel('时间:s');ylabel('幅度');grid onxlim([-0.05,0.05]);fs1=1000; %已调信号频谱yk=fft(y4,5000); %对信号做傅里叶变换yw=2*pi/4000*abs(fftshift(yk)); %频谱搬移fw=[-2500:2499]/5000*fs1;subplot(235),plot(fw,yw,'r-');title('已调信号的频谱');xlabel('频率:hz');ylabel('幅度');grid onxlim([-450,450]);[c,lags]=xcorr(y4,200); %%DSB信号自相关函数%200表示自相关函数时间figure(2)subplot(211)plot(lags/fs,c);title('DSB信号自相关函数');xlabel('t');ylabel('Rxx(t)');grid onSDSBp=fft(c,5000); %DSB功率谱fw=[-2500:2499]/5000*fs1;yw=2*pi/4000*abs(fftshift(SDSBp)); %频谱搬移subplot(212),plot(fw,yw);title('DSB信号功率谱');xlabel('w');ylabel('Rxx(t)');grid ony7=y4.*y3; %%解调信号figure(3)subplot(211);plot(t,y7);title('解调信号');xlabel('时间:s');ylabel('幅度');grid onxlim([-0.1,0.1]);Rp=0.1; %%滤波后的f(t)信号Rs=80; %信号衰减幅度Wp=40/100; %通带截止频率Ws=45/100; %阻带截止频率,100为载波频率的一半[n,Wn]=ellipord(Wp,Ws,Rp,Rs); %阶数n[b,a]=ellip(n,Rp,Rs,Wn); %传递函数分子分母b,a X1=5*filter(b,a,y7);figure(4);subplot(211);plot(t,X1);title('滤波后的f(t)信号');xlabel('时间单位:s');ylabel('幅度');grid onxlim([-0.1,0.1]);六、实验总结通过这次实验,我更加深入地了解了抑制载波双边带调幅与解调的原理。

抑制载波双边带调幅(DSB-SC)和解调的实现精选全文完整版

抑制载波双边带调幅(DSB-SC)和解调的实现精选全文完整版

可编辑修改精选全文完整版抑制载波双边带调幅(DSB-SC)和解调的实现一、设计目的和意义本设计要求采用matlab或者其它软件工具实现对信号进行抑制载波双边带调幅(DSB-SC)和解调,并且绘制相关的图形。

在通信系统中,从消息变换过来的信号所占的有效频带往往具有频率较低的频谱分量(例如语音信号),如果将这些信号在信道中直接传输,则会严重影响信号传输的有效性和可靠性。

因此这种信号在许多信道中均是不适宜直接进行传输的。

在通信系统的发射端通常需要调制过程,将信号的频谱搬移到所希望的位置上,使之转化成适合信道传输或便于信道多路复用的以调信号。

而在接收端则需要解调过程,以恢复原来有用的信号。

调制解调过程常常决定了一个通信系统的性能。

随着数字化波形测量技术和计算机技术的发展,可以使用数字化方法实现调制与解调的过程。

同时调制还可以提高性能,特别是抗干扰能力,以及更好的利用频带。

二、设计原理(1):调制与解调的MATLAB实现:调制在通信过程中起着极其重要的作用:无线电通信是通过空间辐射方式传输信号的,调制过程可以将信号的频谱搬移到容易一电磁波形式辐射的较高频范围;此外,调制过程可以将不同的信号通过频谱搬移托付至不同频率的载波上,实现多路复用,不至于互相干扰。

振幅调制是一种实用很广的连续波调制方式。

调幅信号X(t)主要有调制信号和载波信号组成。

调幅器原理如图1所示:其中载波信号C(t)用于搭载有用信号,其频率较高。

幅度调制信号g(t)含有有用信息,频率较低。

运用MATLAB 信号g(t)处理工具箱的有关函数可以对信号进行调制。

对于信号x(t),通信系统就可以有效而可靠的传输了。

在接收端,分析已调信号的频谱,进而对它进行解调,以恢复原调制信号。

解调器原理如图2所示:对于调制解调的过程以及其中所包含的对于信号的频谱分析均可以通过MATLAB的相关函数实现。

(2):频谱分析 当调制信号f(t)为确定信号时,已调信号的频谱为()c c SDSB=1/2F -+1/2F(+)ωωωω. 双边带调幅频谱如图3所示:图3 双边带调幅频谱抑制载波的双边带调幅虽然节省了载波功率,但已调西那的频带宽度仍为调制信号的两倍,与常规双边带调幅时相同。

抑制载波的双边带调制与解调

抑制载波的双边带调制与解调

02.DSB信号的解调
DSB信号只能采用相干解调。乘法器输出为: sDSB (t) x sp(t) LPF mo (t)
sp (t) sDSB (t) cosct m(t) cos2 ct
1 2
m(t)
1 2
m(t)
cos
2ct
cosct
经低通滤波器滤除高次项,得
mo (t)
1 2
m图(t)3- 4
0
cosct
0
sDSB (t)
0
t
t
t
载波反向点
M ( ) 1
H
0 H
SDSB ( ) 1/2
2 H
c
0
c
讨论:●DSB信号不能进行包络检波,只能相干解调; ●除不含载频分量离散谱外,DSB信号频谱同于AM(由上下对称
的两个边带组成)--DSB信号是不带载波的双边带信号;
●它的带宽为基带信号带宽的两倍: BDSB BAM 2Bm 2 f H
通信技术专业教学资源库 南京信息职业技术学院
《现代通信技术》课程
抑制载波的双边 带调制与解调
主讲: 朱国巍
目录
01 DSB信号的表达式、频谱及带宽
02
DSB信号的解调
03
小结
01.DSB信号的表达式、频谱及带宽
条件(在一般模型的基础上):
滤波器为全通网络:H()=K(=1);
调制信号:无直流分量,依然 m(t) 0
m(t )
×
sm (t)
h(t)
cos c t
图 幅度调制器的一般模型
(1)模型
m(t)
×
sDSB (t)
cosct
DSB调制器模型

双边带抑制载波信号与频带复用原理

双边带抑制载波信号与频带复用原理

(2)从电路实现来看
频分复用系统中,各路信号需要产生不同的载波, 各自占据不同的频带,因而需要设计不同的带通滤 波器。
图 2 DSB波时域波形
需要注意到是,双边带条幅信号不仅其包络已不再反应调制信号波形的变化 而且在调制信号过零点处的高频相位有180°的突变,即在调制信号正半轴 ,调制信号为正值,双边带调幅信号与载波信号同相;在调制信号负半轴, 调制信号为负值,调幅信号与载波信号反向
dsb调制.swf
2、DSB解调原理 解调中的频谱搬移同样可用调制时的相乘运算来实现。
傅里叶变换在通信系统中的应用——调制 第一部分:载波抑制双边带调制与解调
一、调制 调制就是对信号源的信息进行处理,使其变为适合于 信道传输的形式的过程。调制是通过改变高频载波的幅度、 相位或者频率,使其随着基带信号幅度的变化而变化来实 现的。
二、解调
解调则是将基带信号从载波中提取出来以便预定的接收 者(也称为信宿)处理和理解的过程。
带通1
接收信号
f (t )
f1 (t )
cos(w1t )
f 2 (Leabharlann )解调1g1 (t) g 2 (t)
带通2
cos(w2t )
f N (t )
解调2
带通N
解调N
g N (t)
cos( wN t )
接收端
三、频分复用主要性能 (1)从信号在信道中的情况来看 每个信号在所有时间里都存在于信道中并混杂 在一起; 每一信号占据着有限的不同频率区间,此区间 不被其他信号占用。
1、DSB信号的调制过程
DSB调幅调制过程中将载波完全抑制,它的产生原理是调制 信号与载波信号直接相乘。原理图如下图所示。
图一 抑制载波双边带调幅调制原理框图

抑制载波的双边带信号(DSB)的实现

抑制载波的双边带信号(DSB)的实现

实验二 振幅调制实验——抑制载波的双边带信号(DSB )的实现一、实验原理1、振幅调制的一般概念调制,就是用调制信号(如声音、图像等低频或视频信号)去控制载波(其频率远高于调制信号频率,通常又称“射频” )某个参数的过程。

载波受调制后成为已调波。

振幅调制,就是用调制信号去控制载波信号的振幅, 使载波的振幅按调制信号的规律变化。

设调制信号为()c o s f f m f v t V w t =载波信号为且 c f w w则根据振幅调制的定义,可以得到普通调幅波的表达为:()(1cos )cos AM cm f c v t V m w t w t =+ (2—1)式中 c ma m c m c m V K V m V V Ω∆== (2—2)称为调幅度(调制度), a K 为调制灵敏度。

为使已调波不 失真,调制度m 应小于或等于1、当 m>1 时, 此时产生严重失真,称之为过调制失真,这是应该避免的。

将式(2—1)用三角公式展开,可得到:()cos cos()cos()22AM cm c cm c f cm c f m m v t V w t V w w t V w w t =+++- (2—3)由式(2—3)看出,单频调制的普通调幅波由三个高频正弦波叠加而成:载波分量,上 边频分量,下边频分量。

在多频调制的情况下,各边频分量就组成了上下边带。

普通调幅波 可用 AM 表示。

在调制过程中,将载波抑制就形成了抑制载波双边带信号,简称双边带信号,用 DSB 表示;如果 DSB 信号经边带滤波器滤除一个边带或在调制过程中直接将一个边带抵消,就 形成单边带信号,用 SSB 表示。

由以上讨论可以看出, 若先将调制信号和一个直流电压相加,然后再与载波一起作用到 乘法器上,则乘法器的输出将是一个普通调幅波;若调制信号直接与载波相乘,或在 AM 调 制的基础上抑制载波,即可实现 DSB 调制;将 DSB 信号滤掉一个边带,即可实现 SSB 调 制。

双边带抑制载波调幅与解调实验

双边带抑制载波调幅与解调实验

实验类型:□验证□综合□设计□创新实验日期:实验成绩:___实验名称实验二双边带抑制载波调幅与解调实验〔DSB-SC AM)指导教师实验目的1、掌握双边带抑制载波调幅与解调的原理及实现方法。

2、掌握相干解调法原理。

3、了解DSB调幅信号的频谱特性。

4、了解抑制载波双边带调幅的优缺点。

仪器设备与耗材1、信号源模块2、模拟调制模块3、模拟解调模块4、20M双踪示波器实验根本原理1、DSB调幅典型波形和频谱如图1所示:图1 DSB信号的波形和频谱实验中采用如下框图实现DSB调幅。

图2 DSB调幅实验框图由信号源模块提供不含直流分量的2K正弦基波信号和384K正弦载波信号sinwct经乘法器相乘,调制深度可由“调制深度调节〞旋转电位器调整,得到DSB调幅信号输出。

2、相干解调法实验中采用如下框图实现相干解调法解调DSB信号:调幅输入相乘输出解调输出图3 DSB解调实验框图〔相干解调法〕实验步骤与实验步骤:1、将模块小心地固定在主机箱中,确保电源接触良好。

2、插上电源线,翻开主机箱右侧的交流开关,再分别按下三个模块中的实验记录3、DSB调幅〔1〕信号源模块“2K正弦基波〞测试点,调节“2K调幅〞旋转电位器,使其输出信号峰峰值为1V左右;“384K正弦载波〞测试点,调节“384K调幅〞旋转电位器,使其输出信号峰峰值为左右。

〔2〕实验连线如下:信号源模块 ----------模拟调制模块“相乘调幅1〞2K正弦基波----------基波输入384K正弦载波--------载波输入〔3〕调节“调制深度调节1〞.旋转电位器,用示波器观测“调幅输出〞测试点信号波形。

这里也可采用“相乘调幅2〞电路完成同样过程。

4、DSB解调〔相干解调法〕〔1〕实验连线如下:模拟调制模块------------模拟解调模块“相干解调法〞载波输入----------------载波输入调幅输出----------------调幅输入〔2〕调节“解调深度调节〞旋转电位器’观测“相乘输出〞与“解调输出〞测试点波形,并比照模拟信号复原的效果。

抑制载波双边带调幅

抑制载波双边带调幅

抑制载波双边带调幅(DSB-SC)和解调的实现一、设计目的和意义本设计要求采用matlab或者其它软件工具实现对信号进行抑制载波双边带调幅(DSB-SC)和解调,并且绘制相关的图形。

在通信系统中,从消息变换过来的信号所占的有效频带往往具有频率较低的频谱分量(例如语音信号),如果将这些信号在信道中直接传输,则会严重影响信号传输的有效性和可靠性。

因此这种信号在许多信道中均是不适宜直接进行传输的。

在通信系统的发射端通常需要调制过程,将信号的频谱搬移到所希望的位置上,使之转化成适合信道传输或便于信道多路复用的以调信号。

而在接收端则需要解调过程,以恢复原来有用的信号。

调制解调过程常常决定了一个通信系统的性能。

随着数字化波形测量技术和计算机技术的发展,可以使用数字化方法实现调制与解调的过程。

同时调制还可以提高性能,特别是抗干扰能力,以及更好的利用频带。

二、设计原理(1):调制与解调的MATLAB实现:调制在通信过程中起着极其重要的作用:无线电通信是通过空间辐射方式传输信号的,调制过程可以将信号的频谱搬移到容易一电磁波形式辐射的较高频围;此外,调制过程可以将不同的信号通过频谱搬移托付至不同频率的载波上,实现多路复用,不至于互相干扰。

振幅调制是一种实用很广的连续波调制方式。

调幅信号X(t)主要有调制信号和载波信号组成。

调幅器原理如图1所示:其中载波信号C(t)用于搭载有用信号,其频率较高。

幅度调制信号g(t)含有有用信息,频率较低。

运用MATLAB信号g(t)处理工具箱的有关函数可以对信号进行调制。

对于信号x(t),通信系统就可以有效而可靠的传输了。

在接收端,分析已调信号的频谱,进而对它进行解调,以恢复原调制信号。

解调器原理如图2所示:对于调制解调的过程以及其中所包含的对于信号的频谱分析均可以通过MATLAB 的相关函数实现。

(2):频谱分析当调制信号f(t)为确定信号时,已调信号的频谱为()c c SDSB=1/2F -+1/2F(+)ωωωω. 双边带调幅频谱如图3所示:图3 双边带调幅频谱抑制载波的双边带调幅虽然节省了载波功率,但已调西那的频带宽度仍为调制信号的两倍,与常规双边带调幅时相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西南科技大学课程设计报告课程名称:数字通信课程设计设计名称:抑制载波双边带调幅和解调的实现姓名:学号:班级:指导教师:起止日期:西南科技大学信息工程学院制课 程 设 计 任 务 书学生班级: 学生姓名: 学号:设计名称: 抑制载波双边带调幅(DSB-SC )和解调的实现 起止日期: 指导教师:设计要求:对于信号0sin (200)||()0c t t t f t ≤⎧=⎨⎩其它(其中02t s =,载波为cos 2c f t π,200c f Hz =),用抑制载波的双边带调幅实现对信号进行调制和解调。

要求:采用matlab 或者其它软件工具实现对信号进行抑制载波双边带调幅(DSB-SC )和解调,并且绘制:(1) 信号()f t 及其频谱; (2) 载波cos 2c f t π;(3) DSB-SC 调制信号及其频谱; (4) DSB-SC 调制信号的功率谱密度; (5) 相干解调后的信号波形。

说明:采用matlab 实现时可以使用matlab 工具箱中的函数。

课程设计学生日志时间设计内容2011.6.21 查阅资料,确定方案2011.6.24 设计总体方案2011.6.25 看书复习抑制载波双边带调幅和解调的原理2011.6.28 查阅matlab相关书籍2011.6.30 根据题目编写m文件,生成所需的图2011.7.2 检查2011.7.3 实验报告的撰写2011.7.4 答辩课程设计考勤表周星期一星期二星期三星期四星期五课程设计评语表指导教师评语:成绩:指导教师:年月日抑制载波双边带调幅(DSB-SC )和解调的实现一、 设计目的和意义设计目的:通过做这个课程设计,掌握常用的软件的使用,能够把通信原理上面学习的一些理论知识经过软件设计出一个完整的抑制载波双边带调幅(DSB-SC )和解调。

设计意义:通过设计抑制载波双边带调幅(DSB-SC )和解调,对通信原理中的抑制载波双边带调幅(DSB-SC )和解调能进一步深入理解和学习。

把书上的理论通过自己的设计与现实的问题结合起来,在加强理论学习的同时增强了自己的动手能力。

课程设计使我对通信系统的认识不再只是停留在书本上,通过软件仿真的结果与书上的结论相对比,能够更加直观的理解书上的理论。

在做课程设计的同时,进一步深入的学习了MATLAB 的使用,认识到了MATLAB 在通信系统设计方面的优势。

虽然还不能说完全掌握了它的使用,但是却对它产生了很大的兴趣,对以后的学习打下了坚实的基础。

二、 设计原理由题知调制函数为0sin (200)||()0c t t t f t ≤⎧=⎨⎩其它(其中02t s =),载波函数为()cos(2)c c t f t π=,200c f Hz=,即()cos(400)c t t π=所以调制后的函数是2sin (200)*cos(400)0()()cos t c t t DSB c s T f t w t π≤⎧==⎨⎩其它,调制的原理图为:由于调制信号发发f(t)为确知信号,所以已调信号的频谱为11()()()22DSB c c S w F w w F w w =-++双边带调幅频谱如图b 所示:f(t) s DSB (t) =f(t)c(t)c(t)=cos(400πt)图a 抑制载波双边带调幅调制原图b 抑制双边带调幅频谱分析已调信号频谱,要恢复原始信号,由于DSB 是线性调制,所以可以采用相干解调的方式来解调出原始信号,而相干解调是已调制的信号乘以同频同相的相干载波后,再经过低通滤波器,就可以恢复原始信号。

其原理框图如下:S(t) f(t)c(t)图c DSB 解调原理框图最后关于功率谱密度的分析,通信中,调制信号通常是平稳随机过程。

其功率谱密度与自相关函数之间是一对付氏变换关系。

这样就可以先找到信号的自相关函数,然后通过付氏变换来实现信号的功率谱密度。

三、 详细设计步骤(1)利用matlab 绘制信号f(t)及其频谱由于我们知道f(t) 表达示0sin (200)||()0c t t t f t ≤⎧=⎨⎩其它,02t s =。

所以可以直接根据表达式画出信号f(t)的图形。

而要画f(t)的频谱,根据f(t)的表达示而根据已调信号的表达示,求傅立叶变换来实现信号的频谱,设定适当的采样频率,取4000个点来计算,可以用matlab 函数fft (x,N )(N 为采样点数)来求傅里叶变换,为了左后对称,可以通过频谱搬移来实现,具体代码和结果如下:LPF图1 原始信号f(t)及其频谱M文件:t=-2:0.001:2;y1=sinc(t*200);figure(1)subplot(1,2,1),plot(t,y1)title ('已调信号发f(t)')xlabel('时间:s')ylabel('幅度')grid onxlim([-0.1,0.1])fs=200;y2=sinc(t*200);yk=fft(y2,4000);yw=abs(fftshift(yk));fw=[-2000:1999]/4000*fs;subplot(1,2,2),plot(fw,yw)title('已知信号f(t)的频谱')xlabel('频率:Hz')ylabel('幅度')grid on xlim([-50,50])(2)绘制载波由给定的载波表达式cos 2c f t π,200c f Hz =,可以由matlab 直接绘制载波图形,具体代码和结果如下:图2 载波cos(400πt)的波形M 文件:t=-0.01:0.0001:0.01;y3=cos(2*pi*200*t); plot(t,y3)title('载波信号') xlabel('时间:s') ylabel('幅度') grid on(3)绘制DSB-SC 调制信号及频谱由上面设计原理得DSB-SC 调制信号表达式为2sin (200)*cos(400)0()()cos t c t t DSB c s T f t w t π≤⎧==⎨⎩其它,可以直接用matlab 直接画出图形。

而根据已调信号的表达示,求傅立叶变换来实现信号的频谱,设定适当的采样频率,取4000个点来计算,可以用matlab 函数fft (x,N )(N 为采样点数)来求傅里叶变换,为了左后对称,可以通过频谱搬移来实现,具体代码和结果如下:图3 DSB-SC调制信号及频谱M文件:t=-2:0.00001:2;y4=sinc(t*200).*cos(2*pi*200*t);subplot(1,2,1)plot(t,y4)title('已调信号')xlabel('时间:s')ylabel('幅度')grid onxlim([-0.03,0.03])fs1=200;t=-2:0.001:2;y4=sinc(t*200).*cos(2*pi*200*t);yk=fft(y4,4000);yw=abs(fftshift(yk));fw=[-2000:1999]/4000*fs1;subplot(1,2,2),plot(fw,yw);title('已调信号的频谱')xlabel('频率:Hz')ylabel('幅度')gridxlim([-100,100])(4)绘制DSB-SC调制信号的功率谱密度通信中,调制信号通常是平稳随机过程。

其功率谱密度与自相关函数之间是一对付氏变换关系。

此时先求调制信号的自相关函数,利用命令[c,lags]=xcorr(y4,20)以及plot(lags/fs,c)就可以实现调制信号的自相关函数,此时将自相关函数求付氏变换。

图4 DSB-SC调制信号的自相关函数和功率谱密度M文件:fs=200;[c,lags]=xcorr(y4,200); %DSB信号自相关函数,200表示自相关函数时间тsubplot(1,2,1)plot(lags/fs,c)title('DSB信号自相关函数')xlabel('t')ylabel('Rw(t)')grid onSDSBp=fft(c,4000); %DSB功率谱fw=[-2000:1999]/4000*fs;yw=abs(fftshift(SDSBp));subplot(1,2,2)plot(fw,yw)title('DSB信号功率谱密度')xlabel('w')ylabel('Rxx(t)')grid on(5)绘制相干解调后的信号波形由抑制载波双边带调幅的解调过程实际上实际是将已调信号乘上一个同频同相的载波。

即y5=sinc(t5*200).*cos(2*π*fc*t).*cos(2*π *fc*t)。

再用一个低通滤波器就可以恢复原始的调制信号,这种调制方法称为相干解调。

主要程序语句为[n,Wn]=ellipord(Wp,Ws,Rp,Rs);[b,a]=ellip(n,Rp,Rs,Wn);这样可以实现求取阶数n 和传递函数的分子分母b,a;经多次验证,Rp=0.2,Rs=40,Wp=0.04,Ws=0.1时,滤波后得出的图形最完美,通过这样可以使滤波后的波形失真更小。

M文件:t=-2:0.0001:2;y3=cos(2*pi*200*t);y4=sinc(t*200).*cos(2*pi*200*t);y5=y4.*y3;%解调信号subplot(1,2,1)plot(t,y5)title('乘上同频同相本地载波的信号')xlabel('时间:s')ylabel('幅度')grid onxlim([-0.03,0.03])Rp=0.2;Rs=40;Wp=0.04;Ws=0.1; %[n,Wn]=ellipord(Wp,Ws,Rp,Rs); %阶数n[b,a]=ellip(n,Rp,Rs,Wn); %传递函数分子分母b,axl=5*filter(b,a,y5);subplot(1,2,2);plot(t,xl);title('相干解调后恢复的信号');xlabel('时间单位:s');ylabel('幅度');grid on;xlim([-0.03,0.03])四、设计结果及分析(1)原始信号以及频谱的分析:由于原始信号是辛格函数,所以经过傅立叶变换后应该是一个方波。

相关文档
最新文档