抑制载波双边带的产生
第四章 4.2 单边带、双边带、残留边带调幅

C
上下边带互补 [ H ( C ) H ( C )] C
2 C
V ( 2 C )
2 C
经 LPF 取出 V ( )
2 C
即:上下边带互补对称是指: ( C ) H ( C ) C H
我国的广播电视系统:有载波 VSB
因此滤波输出为双边带调幅信号(将单边带部分去掉) 之后的处理与双边带信号中恢复载波方法一样。
H ( )
C
C
斜切
C
C
V DSB ( )(去掉单边带部分,仅剩双边带部分)
C
C
(3)对含有大载波分量的 VSB 信号(如电视图像信号), 在允许一定失真情况下,可用峰值包络检波器解调:
更无法传送具有直流成分的信号,为此出现 VSB 技术。
残留边带调幅(VSB)
由于单边带调制复杂,解调质量较差,低频衰减很大,无法传送直流成分, 故在单边带调幅和双边带调幅间折衷为残留边带调幅。 残留边带:传送被抑制边带(下边带)的一部分 (I) , 抑制被传送边带(上边带)的一部分 (II) , 且两部分互相对称。 物理意义:上下边带之和构成完整信息。 残留边带信号带宽比单边带略宽,实际只传送上边带信息,但可传直流成份。
VVSB
II
I
C
C
VSB 滤波器
VSB 调制解调方案
(1) 无载频 调制: V (t) 同步解调: VSB BPF VDSB (t) H () VVSB (t) Vc(t) = cos c t
VP (t) LPF V ( t ) (见后面) 载波恢复 Vc(t) = cos c t
1 2
cos[(2 C ) t ]
抑制载波双边带分析

1、 引 言
由图3 可知双边带信号时域波形的特点是在接近基带信号零 点 双边带信号的包络与基带信号不成正 比。 由图4 频 在通信系统中, 常规双边带幅度调制传输信 息的优点是解调电路 时有载波反相点 , 简单, 缺点是调制效率1 氐, 载波分量不携带信息, 却占据了大部分功率。 谱 图可知双边带信号 的带 宽为基带信号带宽的两倍 。 为了解决这个问题 , 在常规双边带 的基础上抑制掉载波分量所得的调 4 、双边 带信 号 ( DS B ) 的解 调 制信号就是抑制载波双边带信g - ( D S B - S C ) t g 称双边带信号( D s B ) 。 由于双 边带 信 号 的包 络 不 与 基 带信 号成 正 比故 解 调 不 能 采 用 2 、 双 边带 信 号 的实 现 包络检波法 , 而只能用相干解调法 。 相干解调是将 已调信号乘上一 个与调 制器 同频 同相 的相干载波 , 将 已调信号的频谱搬 回原位置 , 双边带的模型如 图1 所示 , 无直 流分量 的基 带信号m ) 和载波 从 而得 到 原始 的调 制 信号 频 谱 , 再 加一 个 低 通 滤 波器 , 滤 去高 频 , 即 c osm t 直 接 相 乘就 可得 到双 边 带 信 号 。 恢 复 出原 始 基 带 信 号 出的信号幅度大约是原基带信号 幅度 的 , 呈线性 关系 , 频 谱 被 搬 回原 位 置 , 故 无 失 真地 恢 复 了原 基 带 信 号 。
6、 结 语
寸 一 I
I l 7 …
厂 C 。 ^ ^ ~
T
抑制载波双边带的优点是节省了载波发射功率 , 提高了调制效 率, 调制 电路简单, 缺点是带宽是基带信号的2 倍, 还是 比较宽 的, 需 进一 步改进。
抑制载波双边带调幅(DSB-SC)和解调的实现精选全文完整版

可编辑修改精选全文完整版抑制载波双边带调幅(DSB-SC)和解调的实现一、设计目的和意义本设计要求采用matlab或者其它软件工具实现对信号进行抑制载波双边带调幅(DSB-SC)和解调,并且绘制相关的图形。
在通信系统中,从消息变换过来的信号所占的有效频带往往具有频率较低的频谱分量(例如语音信号),如果将这些信号在信道中直接传输,则会严重影响信号传输的有效性和可靠性。
因此这种信号在许多信道中均是不适宜直接进行传输的。
在通信系统的发射端通常需要调制过程,将信号的频谱搬移到所希望的位置上,使之转化成适合信道传输或便于信道多路复用的以调信号。
而在接收端则需要解调过程,以恢复原来有用的信号。
调制解调过程常常决定了一个通信系统的性能。
随着数字化波形测量技术和计算机技术的发展,可以使用数字化方法实现调制与解调的过程。
同时调制还可以提高性能,特别是抗干扰能力,以及更好的利用频带。
二、设计原理(1):调制与解调的MATLAB实现:调制在通信过程中起着极其重要的作用:无线电通信是通过空间辐射方式传输信号的,调制过程可以将信号的频谱搬移到容易一电磁波形式辐射的较高频范围;此外,调制过程可以将不同的信号通过频谱搬移托付至不同频率的载波上,实现多路复用,不至于互相干扰。
振幅调制是一种实用很广的连续波调制方式。
调幅信号X(t)主要有调制信号和载波信号组成。
调幅器原理如图1所示:其中载波信号C(t)用于搭载有用信号,其频率较高。
幅度调制信号g(t)含有有用信息,频率较低。
运用MATLAB 信号g(t)处理工具箱的有关函数可以对信号进行调制。
对于信号x(t),通信系统就可以有效而可靠的传输了。
在接收端,分析已调信号的频谱,进而对它进行解调,以恢复原调制信号。
解调器原理如图2所示:对于调制解调的过程以及其中所包含的对于信号的频谱分析均可以通过MATLAB的相关函数实现。
(2):频谱分析 当调制信号f(t)为确定信号时,已调信号的频谱为()c c SDSB=1/2F -+1/2F(+)ωωωω. 双边带调幅频谱如图3所示:图3 双边带调幅频谱抑制载波的双边带调幅虽然节省了载波功率,但已调西那的频带宽度仍为调制信号的两倍,与常规双边带调幅时相同。
抑制载波的双边带调制与解调

02.DSB信号的解调
DSB信号只能采用相干解调。乘法器输出为: sDSB (t) x sp(t) LPF mo (t)
sp (t) sDSB (t) cosct m(t) cos2 ct
1 2
m(t)
1 2
m(t)
cos
2ct
cosct
经低通滤波器滤除高次项,得
mo (t)
1 2
m图(t)3- 4
0
cosct
0
sDSB (t)
0
t
t
t
载波反向点
M ( ) 1
H
0 H
SDSB ( ) 1/2
2 H
c
0
c
讨论:●DSB信号不能进行包络检波,只能相干解调; ●除不含载频分量离散谱外,DSB信号频谱同于AM(由上下对称
的两个边带组成)--DSB信号是不带载波的双边带信号;
●它的带宽为基带信号带宽的两倍: BDSB BAM 2Bm 2 f H
通信技术专业教学资源库 南京信息职业技术学院
《现代通信技术》课程
抑制载波的双边 带调制与解调
主讲: 朱国巍
目录
01 DSB信号的表达式、频谱及带宽
02
DSB信号的解调
03
小结
01.DSB信号的表达式、频谱及带宽
条件(在一般模型的基础上):
滤波器为全通网络:H()=K(=1);
调制信号:无直流分量,依然 m(t) 0
m(t )
×
sm (t)
h(t)
cos c t
图 幅度调制器的一般模型
(1)模型
m(t)
×
sDSB (t)
cosct
DSB调制器模型
一、双边带抑制载波调幅

计算机与信息工程学院综合性、设计性实验报告一、实验内容设基带信号为m(t)=sin(2000*pi*t)+2cos(1000*pi*t),载波频率为20kHz。
用MATLAB编程仿真出DSB-SC AM信号,绘出原始信号和已调信号及频谱的波形。
二、实验仪器或设备装有MATLAB软件的电脑一台。
三、实验原理1、双边带抑制载波调幅(DSB—SC AM)信号的产生。
双边带抑制载波调幅信号s(t)是利用均值为0的模拟基带信号m(t)和正弦载波c(t)相乘得到,如图所示:m(t)和正弦载波s(t)的信号波形如图所示:若调制信号m(t)是确定的,其相应的傅立叶频谱为M(f),载波信号c(t)的傅立叶频谱是C(f),调制信号s(t)的傅立叶频谱S(f)由M(f)和C(f)相卷积得到,因此经过调制之后,基带信号的频谱被搬移到了载频fc处,若模拟基带信号带宽为W,则调制信号带宽为2W,并且频谱中不含有离散的载频分量,这是由于模拟基带信号的频谱成分中不含离散的直流分量。
四、实验步骤实验代码见附录。
1、基带信号的时域及频域波形如下:2、调制后的信号的时域波形,频谱,自相关函数及功率谱如下:3、解调后的波形如下:五、实验结果分析:本次实验较为简单,双边带抑制载波调制过程就是基带信号的频谱搬移,由实验知滤波后的信号与原始信号相比有了一定的相移,这是由于不同步引起的,因此在相干解调中要提取同步载波才行。
附录:实验代码:%2014年4月15日%求基带信号为m(t)=sinc(200t),载波频率为fc=200Hz的DSB-SC信号并解调。
clear%参数设置fs=1000; %采样频率。
T=4; %截短时间dt=1/fS; %时域采样间隔t=-T/2:dt:T/2-dt; %时域采样点L=T*fs; %信号长度(即采样点数)fc=200; %载波频率%1、基带信号:y1=sinc(200*t);figure(1),subplot(211),plot(t,y1)title('基带信号时域波形y1');xlabel('t/s');grid onxlim([-0.05,0.05])%求基带信号频谱N=2^nextpow2(L);fw1=[-N/2:N/2-1]/N*fs;yk1=fft(y1,N);yw1=2*pi/N*abs(fftshift(yk1));subplot(212),plot(fw1,yw1);grid ontitle('基带信号频谱yw1');xlabel('f/Hz');xlim([-250 250]);%2、信号的调制:y2=y1.*cos(2*pi*fc*t); %注意要用点乘figure(2),subplot(411),plot(t,y2);title('DSB_SC时域波形y2');xlim([-0.05,0.05]);grid onfw2=[-N/2:N/2-1]/N*fs;yk2=fft(y2,N);yw2=2*pi/N*abs(fftshift(yk2));subplot(412),plot(fw2,yw2);grid ontitle('DSB_SC频谱yw2'); %DSB_SC信号的频谱xlabel('f/Hz');[c,lags]=xcorr(y2,200); %DSB_SC信号自相关函数subplot(413),plot(lags/fs,c);title('DSB_SC信号自相关函数');xlabel('t');ylabel('Rxx(t)');grid onxlim([-0.05,0.05]);fw3=[-N/2:N/2-1]/N*fs;yk3=fft(c,N);yw3=2*pi/N*abs(fftshift(yk3));subplot(414),plot(fw3,yw3);title('DSB_SC信号功率谱'); %DSB_SC信号的功率谱xlabel('w');ylabel('Pxx(w)');grid on%3、信号的解调:y3=y2.*cos(2*pi*fc*t); %相干解调figure(3),subplot(211),plot(t,y3);title('解调信号时域波形y3');xlim([-0.05,0.05]);grid on%滤波后的f(t)信号Rp=0.1;Rs=80;Wp=40/100;Ws=45/100;[n,Wn]=ellipord(Wp,Ws,Rp,Rs); %阶数n[b,a]=ellip(n,Rp,Rs,Wn); %传递函数分子分母X1=5*filter(b,a,y3);subplot(212),plot(t,X1);title('滤波后的信号');xlabel('t');xlim([-0.05,0.05]);grid on。
双边带抑制载波信号与频带复用原理

(2)从电路实现来看
频分复用系统中,各路信号需要产生不同的载波, 各自占据不同的频带,因而需要设计不同的带通滤 波器。
图 2 DSB波时域波形
需要注意到是,双边带条幅信号不仅其包络已不再反应调制信号波形的变化 而且在调制信号过零点处的高频相位有180°的突变,即在调制信号正半轴 ,调制信号为正值,双边带调幅信号与载波信号同相;在调制信号负半轴, 调制信号为负值,调幅信号与载波信号反向
dsb调制.swf
2、DSB解调原理 解调中的频谱搬移同样可用调制时的相乘运算来实现。
傅里叶变换在通信系统中的应用——调制 第一部分:载波抑制双边带调制与解调
一、调制 调制就是对信号源的信息进行处理,使其变为适合于 信道传输的形式的过程。调制是通过改变高频载波的幅度、 相位或者频率,使其随着基带信号幅度的变化而变化来实 现的。
二、解调
解调则是将基带信号从载波中提取出来以便预定的接收 者(也称为信宿)处理和理解的过程。
带通1
接收信号
f (t )
f1 (t )
cos(w1t )
f 2 (Leabharlann )解调1g1 (t) g 2 (t)
带通2
cos(w2t )
f N (t )
解调2
带通N
解调N
g N (t)
cos( wN t )
接收端
三、频分复用主要性能 (1)从信号在信道中的情况来看 每个信号在所有时间里都存在于信道中并混杂 在一起; 每一信号占据着有限的不同频率区间,此区间 不被其他信号占用。
1、DSB信号的调制过程
DSB调幅调制过程中将载波完全抑制,它的产生原理是调制 信号与载波信号直接相乘。原理图如下图所示。
图一 抑制载波双边带调幅调制原理框图
抑制载波的双边带信号(DSB)的实现

实验二 振幅调制实验——抑制载波的双边带信号(DSB )的实现一、实验原理1、振幅调制的一般概念调制,就是用调制信号(如声音、图像等低频或视频信号)去控制载波(其频率远高于调制信号频率,通常又称“射频” )某个参数的过程。
载波受调制后成为已调波。
振幅调制,就是用调制信号去控制载波信号的振幅, 使载波的振幅按调制信号的规律变化。
设调制信号为()c o s f f m f v t V w t =载波信号为且 c f w w则根据振幅调制的定义,可以得到普通调幅波的表达为:()(1cos )cos AM cm f c v t V m w t w t =+ (2—1)式中 c ma m c m c m V K V m V V Ω∆== (2—2)称为调幅度(调制度), a K 为调制灵敏度。
为使已调波不 失真,调制度m 应小于或等于1、当 m>1 时, 此时产生严重失真,称之为过调制失真,这是应该避免的。
将式(2—1)用三角公式展开,可得到:()cos cos()cos()22AM cm c cm c f cm c f m m v t V w t V w w t V w w t =+++- (2—3)由式(2—3)看出,单频调制的普通调幅波由三个高频正弦波叠加而成:载波分量,上 边频分量,下边频分量。
在多频调制的情况下,各边频分量就组成了上下边带。
普通调幅波 可用 AM 表示。
在调制过程中,将载波抑制就形成了抑制载波双边带信号,简称双边带信号,用 DSB 表示;如果 DSB 信号经边带滤波器滤除一个边带或在调制过程中直接将一个边带抵消,就 形成单边带信号,用 SSB 表示。
由以上讨论可以看出, 若先将调制信号和一个直流电压相加,然后再与载波一起作用到 乘法器上,则乘法器的输出将是一个普通调幅波;若调制信号直接与载波相乘,或在 AM 调 制的基础上抑制载波,即可实现 DSB 调制;将 DSB 信号滤掉一个边带,即可实现 SSB 调 制。
双边带抑制载波信号与频带复用原理

(2)从电路实现来看
频分复用系统中,各路信号需要产生不同的载波, 各自占据不同的频带,因而需要设计不同的带通滤 波器。
图3 抑制载波双边带调制的相干解调
设图四的输入为DSB信号
Sm(t ) SDSB(t ) m(t ) cos(ct 0)
(t ) SDSB (t ) m(t ) cos( ct 0) cos( ct )
乘法器输出为
1 m(t )[cos( 0) cos(2 ct 0 )] 2 1 m 0 ( t ) m(t ) cos( 0 ) 通过低通滤波器后 2
二、频分复用通信系统框图
g1 (t)
cos(w1t ) g 2 (t)
调制1
f1 (t ) f 2 (t )
f (t )
cos(w2t )
g N (t)
cos( wN t )
调制2
至信道传输
调制N
f N (t )
发送端
频分复用原理图
原始波形
频分后波形
带宽复用后波形
通信系统中,信道所能提供的带宽通常比传送一路信号所需的 带宽宽得多。如果一个信道只传送一路信号是非常浪费的,为了 能够充分利用信道的带宽,就可以采用频分复用的方法。
1、DSB信号的调制过程
DSB调幅调制过程中将载波完全抑制,它的产生原理是调制 信号与载波信号直接相乘。原理图如下图所示。
Hale Waihona Puke 图一 抑制载波双边带调幅调制原理框图
sDSB m(t ) cos(ct )
抑制载波的双边带调幅波的时域如图所示。DSB波的包络不 再与调制信号成正比关系,当改变正负符号时,DSB相应的跳转 180度,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《通信原理软件》实验报告
实验一抑制载波双边带的产生
摘要
该实验目的在于掌握抑制载波双边带(SC-DSB)调制的基本原理以及测试SC-DSB调制器的特性。
将正弦波发生器、触发时钟、乘法器、示波器模块、和频谱示波器模块连接并设置适宜参数,查看信号波形及频谱图,适当改变参数,观察波形及频谱变化。
关键词:双边带,载波
目录
实验一抑制载波双边带的产生 (1)
实验目的 (1)
实验原理 (1)
实验方案 (2)
试验过程 (2)
参数设置 (3)
实验过程中遇到的问题及解决方案 (5)
设计中实现功能的程序以及说明 (5)
实验使用的模块及其使用说明 (5)
设计结果 (5)
思考题 (9)
设计总结 (10)
参考文献 (10)
附件一、各模块的使用说明 (11)
实验一抑制载波双边带的产生实验目的
1. 了解抑制载波双边带(SC-DSB)调制的基本原理
2. 了解双边带调制的特点
3. 学习使用SCICOS模块
实验原理
双边带抑制载波调幅信号的产生
Ac为载波的幅值
调制信号s(t),是利用均值为零的模拟基带信号m(t)与正弦载波c(t)相乘得到。
其原理框图如下:
为了简化,设m(t)为单一频率,c(t)的初始相位为零:即 c ϕ =0,
其中µ 是源信号频率, c w 是载波频率。
则:
以下为信号波形以及频谱图
图1 基带信号波形
图2 调制信号波形
图3 基带信号频谱图
图4 调制信号频谱图
实验方案
试验过程
1. 将正弦波发生器(sinusoid generator)、触发时钟(CLOCK_c)、乘法器、示波器模
块(CSCOPE)、和频谱示波器模块(FFT*,来自modnum_Sinks元件库)按下图连接。
2.源信号与高频载波通过乘法器
3乘法器输出的信号最后显示在时域和频域示波器上,示波器与始终相连
图5 双边带抑制载波试验模块连接图
参数设置
设置正弦波发生器(Source Signal),产生幅度值为1、频率µ 为10HZ的信号m(t),
参数设置参见图6,(需要注意的是,若要设置频率为10Hz,参数Frenquency 要设置为10*2*%pi)。
设置另一正弦波发生器(Carrier Wave)产生幅度值为1、频率c w 为100HZ 的载波信号c(t)。
图6 source signal参数设置
3. 设置触发时钟的period参数为0.001。
图7 时钟参数设置
4.将示波器如图所示连接。
观察①为时域信号,②为频域信号。
图8 和图9为示波器和频谱示波器的参数设置。
FFT 频率示波器的抽样间隔(Sampling period)设置,此值应与时钟抽样间隔相同。
5. 修改m(t)的频率,观察并记录输出波形。
图8 示波器参数设置
图9 频谱示波器参数设置
实验过程中遇到的问题及解决方案
遇到问题:显示出的波形与正确波形不同
解决方法:检查试验模块图,逐渐更改参数,观察波形变化
设计中实现功能的程序以及说明
课题设计中所有用到的程序说明,注明每个程序的作用以及关键语句的注释。
此实验中,只有安装软件时用到了简单程序语句;例如:exec 文件绝对路径,即执行绝对路径文件程序。
实验使用的模块及其使用说明
表格1 各模块块的作用以及使用说明
设计结果
图10 双边带抑制载波试验模块连接图
图11 source signal参数设置
图12 时钟参数设置
图13 示波器参数设置
图14 频谱示波器参数设置下面图片为运行波形及频谱图:
图15 s(t)信号波形
图16 s(t)频谱图
图17 调频后s(t)波形
图18 调频后s(t)频谱图
思考题
1.DSB 信号的特点是什么?
2.
DSB信号主要有以下的特点:
1、幅度调制。
DSB信号是过调幅AM波,故它仍是幅度调制,但此时包络已不再与m(t) 成
线性关系变化,这说明它的包络不完全载有调制信号的信息,因此它不是完全的调幅波。
2、幅度调制,频率未变。
DSB信号的频率仍与载波相同,没有受到调制。
3、有反相点。
DSB信号在调制信号的过零点处出现了反相点,调制指数大于1的AM信号
在调制信号过零点处出现反相点。
所以有反相点出现,是因为调制信号在过零点前后取值符号是相反的。
2. 示波器模块的各个参数的含义是什么
波形显示出来的位置,大小,样式等等
是指示波器在模拟通道的带宽频率范围内,示波器所测量的信号幅值是可以保证在示波器所规定的误差范围内。
当测量信号超出模拟通道的带宽频率时,仍然可以测量,但不保证所测量的数值的误差。
设计总结
通过连接试验模块设置各自参数以及通过调整参数来观察波形图以及频谱图我们可以大致了解到抑制载波双边带的一些基本原理以及波形和频谱的变化。
通过在实验中发现和解决问题的思考过程,我们更加可以了解到频率对信号的影响。
参考文献
[1]宏福通原试验讲义
[2]通信原理
附件一、各模块的使用说明。