六年级上册数学试题-小升初培优专练_12全国通用

合集下载

小学数学六年级小升初培优试题(附答案解析)

小学数学六年级小升初培优试题(附答案解析)

小学数学六年级小升初培优试题(附答案解析)一、选择题1.甲乙两地实际距离是320千米,地图上量得的距离是4厘米,这幅地图的比例尺是()。

A.1:80B.1:8000C.1:800000D.1:8000000 2.祝芳坐在剧院的第8列第5行,用数对(8,5)表示,李红坐在祝芳正后方的第3个座位上,李红的位置用数对表示是()A.(11,5)B.(5,5)C.(8,8)D.(8,2)3.李叔叔去年使用支付宝消费支出1.5万元,使用微信消费支出比支付宝少15,使用微信支出多少万元?正确的算式是()。

A.11.5(1)5÷-B.11.5(1)5⨯-C.11.5(1)5÷+D.11.5(1)5⨯+4.一个三角形三个内角度数的比是3∶4∶7,这个三角形是()。

A.锐角三角形B.钝角三角形C.直角三角形5.把一根木头截成两段,第一段长米,第二段占全长的,那么这两段木头长度的比较结果是()A.第一段长B.第二段长C.无法确定6.小明自己动手做了一个正方体礼盒,这个礼盒相对的面上的图案都是相同的,那么这个正方体礼盒的平面展开图是( ).A.B.C.D.7.下列说法错误的是()。

A.若A点在B点的北偏西30°方向,则B点在A点的南偏东30°方向B.某小组男生人数占总人数的75%,则女生人数与男生人数的比是1∶3C.除了2以外,所有的质数都是奇数D.如果圆柱的底面直径和高都是5dm,那么它的侧面沿高展开后是正方形8.圆锥和圆柱底面积相等,体积的比是1∶4,如果圆锥的高是2.4厘米,那么圆柱高是()。

A.9.6厘米B.3.2厘米C.0.6厘米D.4.2厘米9.下图是一个健康人一天的体温曲线图从这幅图中可知()。

A .7:30体温约是36.8℃B .一天的体温波动不超过1℃C .8时到18时体温一直上升D .6时和16时体温一样10.如图,将一张长方形纸沿一条对角线对折平放在桌面上,桌面被覆盖的面积是120平方厘米,正好是原长方形面积的60%,原长方形的面积是( )平方厘米。

数学小学六年级小升初复习培优试卷(含答案)

数学小学六年级小升初复习培优试卷(含答案)

数学小学六年级小升初复习培优试卷(含答案)一、选择题1.把一个直径4毫米的手表零件,画在图纸上的直径是8厘米,这幅图纸的比例尺是( ).A .1:2B .2:1C .1:20D .20:1 2.在同一幅图上,如果点A 用数对表示为(1,5),点B 用数对表示为(1,1),点C 用数对表示为(3,1),那么三角形ABC 一定是( )三角形。

A .锐角B .直角C .钝角3.某商品降价 是100,求原价是多少?正确的算式是( )A .100÷B .100×(1﹣)C .100÷(1﹣ ) 4.一个三角形任意一条边上的高所在的直线,都是这个三角形的对称轴。

这个三角形是( )。

A .等腰三角形B .等腰直角三角形C .等边三角形D .没有答案 5.某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是( )。

A .256(12)289x -=B .2256(1)289x -=C .289(12)256x -=D .2289(1)256x -= 6.小红搭了5个立体图形,从右面看是 的立体图形有( )个。

A .1B .2C .3D .47.下列说法错误的是( )。

A .长方体、正方体都是棱柱B .六棱柱有18条棱、6个侧面、12个顶点C .三棱柱的侧面是三角形D .圆柱由两个平面和一个曲面围成8.一个圆柱的底面直径扩大到原来的2倍,高不变,这个圆柱的侧面积就扩大到原来的( )。

A .2倍B .3倍C .4倍D .5倍9.一台彩电现降价120,再提价120,现价比原价( ). A .提高了 B .降低了 C .一样 D .无法确定10.将一张正方形纸连续对折4次后展开,其中一份占这张正方形纸的( ) . A .12 B .14 C .18 D .116二、填空题11.在括号里填上适当的数。

34时=(________)分 5千米80米=(________)千米 十12.5204=∶( )=( )∶24=()32=( )%。

小学六年级小升初数学培优试卷(含答案)

小学六年级小升初数学培优试卷(含答案)

小学六年级小升初数学培优试卷(含答案)一、选择题1.如果a—2b=0(a、b均不为0),那么a和b()。

A.成正比例B.成反比例C.不成比例D.无法确定2.钟面上5时整,时针与分针形成的角是()。

A.钝角B.直角C.平角3.计算下图阴影部分的面积.正确的算式是().A.3.14×6-3.14×4 B.3.14×(3-2)C.3.14×(32-22)4.一个三角形铁丝框架的周长是12厘米,把它的三条边展开,下面()可能是这个三角形三条边的展开图。

A.B.C.5.根据题意,所列方程正确的是()冬至到了,奶奶和小丽一起包饺子.奶奶包了106个饺子,如果奶奶再包2个,就是小丽包的饺子数的3倍了.小丽包了多少个饺子?A.106+2=3x B.3x+2=106 C.106﹣3x=2 D.106﹣2x=36.一个立体图形从上面看是,右面看是,前面看是,这个立体图形是由()个小正方体搭成的.A.6 B.7 C.8 D.97.公鸡与母鸡的只数比是3∶2,下列说法错误的是()。

A.母鸡只数是公鸡只数的23B.母鸡只数比公鸡只数少50%C.公鸡只数比母鸡只数多50% D.公鸡只数占总数的60% 8.把一个圆柱形的木块切割成一个最大的圆锥,()。

A.圆柱的体积是圆锥体积的13B.圆柱的体积比圆锥体积多23C.圆锥的体积是圆柱体积的3倍D.圆锥的体积比圆柱体积少2 39.游泳馆收取门票,一次30元.现推出三种会员年卡:A卡收费50元,办理后每次门票25元;B卡收费200元,办理后每次门票20元;C卡收费400元,办理后每次门票15元.某人一年游泳次数45~55次,他选择下列()方案最合算.A.不办理会员年卡B.办理A卡C.办理B卡D.办理C卡10.如图,1个正方形有4个顶点,2个正方形有7个顶点,3个正方形有10个顶点。

像这样摆下去,摆n个正方形,有()个顶点。

A.4n-1 B.4n+1 C.3n+1 D.3n-1二、填空题11.625升=(________)亳升 6时15分=(________)时十12.38=3÷(________)=(________):16=(________)(填小数)=(________)(填百分数)。

小学数学六年级小升初培优试题测试题(附答案解析)

小学数学六年级小升初培优试题测试题(附答案解析)

小学数学六年级小升初培优试题测试题(附答案解析)一、选择题1.圆的面积与它的半径()。

A.成正比例B.成反比例C.不成比例D.不能确定2.时钟指示2点15分,它的时针和分针所成的锐角是多少度?()。

A.45度B.30度C.25度50分D.22度30分3.a的1b是多少(b≠0),不正确的算式是()。

A.a×b B.a÷b C.a×1 b4.如果一个三角形的三个内角比是3∶1∶2,按角分,这个三角形是()。

A.等腰三角形B.直角三角形C.钝角三角形D.锐角三角形5.用5千克棉花的和1千克铁的相比较,结果是().A.5千克棉花的重B.1千克铁的重C.一样重D.无法比较6.观察立体图形,从右面看到的形状是()A.B.C.7.公鸡与母鸡的只数比是3∶2,下列说法错误的是()。

A.母鸡只数是公鸡只数的23B.母鸡只数比公鸡只数少50%C.公鸡只数比母鸡只数多50% D.公鸡只数占总数的60%8.一个长方形的长是8厘米,宽是5厘米,以它的长为轴旋转一周,能够形成一个()。

A.长方体B.正方体C.圆锥D.圆柱9.商店新进的某型号洗衣机定价1500元,因为销售太旺,第二天涨价15,到第二周发现提价后销售太慢,又降价15。

降价后的价格与原价相比()。

A.降价后便宜B.原价便宜C.价格一样10.如下图,下面哪个点的位置在直线OM上.()A.(1x2,x)B.(x,2x)C.(2x,x)D.(x,x)二、填空题11.34m=(________)cm;12dm3=(________)cm3;45分钟=(________)小时。

十12.5204=∶()=()∶24=()32=()%。

十13.(________)吨比30吨多16,40米比50米少(________)%。

十14.用三张长3分米,宽2分米的长方形纸,分别剪出一个最大的圆、一个最大的正方形和一个最大的三角形,(________)的面积最大。

六年级小升初数学培优试卷测试卷(附答案解析)

六年级小升初数学培优试卷测试卷(附答案解析)

六年级小升初数学培优试卷测试卷(附答案解析)一、选择题1.在地图上量得两地距离为5厘米,表示实际距离150千米,这幅地图的比例尺是()A.1:30 B.1:3000 C.1:30000002.一个长方体高为36cm,其底面为正方形,边长为6cm,现把它都切割成棱长为6cm的正方体,表面积将()。

A.增加360cm2B.减少360cm2C.减少216cm2D.增加216cm2 3.计算下图阴影部分的面积.正确的算式是().A.3.14×6-3.14×4 B.3.14×(3-2)C.3.14×(32-22)4.一个三角形三个内角度数的比是4∶3∶2,这个三角形是()。

A.钝角三角形B.等腰三角形C.直角三角形D.锐角三角形5.5千克棉花的和1千克铁的比较,结果是()A.5千克棉花的重B.1千克铁的重C.一样重D.无法比较6.莉莉用同样大的正方体摆成了一个长方体。

下图分别是她从正面和上面看到的图形。

从右面看到的是下面()图形。

A.B.C.7.下面说法错误的是()。

A.两种量相对应的两个数的比值-定,这两种量之间就是正比例关系。

B.同一幅地图,图上距离和实际距离之间成正比例关系。

C.如果两种相关联的量相对应的两个数的乘积一定,它们之间就是反比例关系。

D.两种相关联的量之间,不一定存在正比例或反比例关系。

8.a是奇数,b是偶数,下面结果是奇数的式子是()。

A.a+b B.2a+b C.2(a+b)9.一件商品提价10%以后又降价10%,现在这件商品的价格是原来价格的百分之几?正确的解答是()A.110%B.90%C.100%D.99%10.观察图中每一个大三角形中白色的三角形的排列规律,则第5个大三角形中白色的三角形有()A.82个B.154 C.83个D.121个二、填空题11.910千米=(________)米712时=(________)分十12.325的分数单位是(________),它有(________)个这样的分数单位,再去掉(________)个这样的分数单位就是最小的质数。

小升初专项培优测评卷(12)行程问题(教师版)

小升初专项培优测评卷(12)行程问题(教师版)

小升初专项培优测评卷(十二)参考答案与试题解析一.填一填(共12小题)1.(2019•阆中市)梅花鹿15小时跑32千米,它1小时能跑千米,跑1千米用小时.【分析】1小时跑多少千米就是求它的速度,依据速度=路程÷时间,以及时间=路程÷速度即可解答.【解答】解:3117252÷=(千米)答:它1小时能跑172千米.1217215÷=(小时)答:跑1千米用215小时.故答案为:172,215.【点评】本题主要考查学生依据速度,时间以及路程之间数量关系解决问题的能力.2.(2019•宁波)小明步行去离家10千米远的叔叔家,每小时走3千米,可他走40分钟要休息10分钟,他9:00出发,到叔叔家.【分析】步行速度是每小时3千米,一共是10千米,说明如果不休息步行要3小时20分钟;但是她每40分钟就休息10分钟,所以中间有4次休息时间一共40分钟;所以她一共花了4小时的时间.从而可求其到达的时刻.【解答】解:不休息需要的时间:110333÷=(小时)3=小时20分钟则路上要休息的4次,休息的时间是41040⨯=(分钟)所以共需要时间3小时20分钟40+分钟4=(小时)9:004+小时13:00=答:13:00到叔叔家.故答案为:13:00.【点评】解决此题的关键是能求出路上休息的时间,再加不休息的时间即可求解.3.(2019•长沙)一环形跑道周长为240米,甲与乙同向,两人都从同一地点出发,每秒钟甲跑8米,乙跑5米,出发后,两人第一次相遇时,甲跑了圈.【分析】出发后,两人第一次相遇时,也就是甲第一次追上乙时,甲正好比乙多跑一周即240米,甲每秒比乙多853-=米,根据除法的意义,甲第一次追上乙需要240380÷=秒,根据乘法的意义,此时甲跑了880640⨯=米,然后再除以每圈的米数,即640240÷.【解答】解:240(85)÷-2403=÷80=(秒)880240⨯÷640240=÷83=(圈)答:两人第一次相遇时,甲跑了83圈.【点评】明确两人第一次相遇时,也就是甲第一次追上乙时,甲比乙多跑一圈是完成本题的关键.4.(2019•乐昌市)甲乙两地相距140千米,一辆汽车从甲地到乙地用2.5小时,返回时用1.5小时,这辆汽车往返的平均速度是千米/时.【分析】先用甲乙两地之间的路程乘2,求出往返的总路程,再求出往返需要的时间和,然后用总路程除以时间和即可求解.【解答】解:(1402)(2.5 1.5)⨯÷+2804=÷70=(千米/时)答:这辆汽车往返的平均速度是70千米/时.故答案为:70.【点评】本题考查了速度、路程、时间的关系,注意平均速度=总路程÷总时间,不是速度的平均数.5.(2019•长沙)快车和慢车同时从甲乙两地相对开出,快车每小时行44千米,相遇时已行了全程的47,已知慢车行完全程需要8小时,则甲乙两地的路程为千米.【分析】把全程看成单位“1”,相遇时快车已行了全程的47,那么慢车就行驶了全程37,慢车的速度一定,慢车行驶的路程和时间成正比例关系,所有慢车行驶全程的37所用的时间也是行完全程时间的37,用8小时乘37即可求出相遇时间,再用快车的速度乘相遇时间,即可求出相遇时快车行驶的路程,也就是全程的47,再根据分数除法的意义,用除法求出全程.【解答】解:4 8(1)7⨯-387=⨯247=(小时)2444477⨯÷24744()74=⨯⨯446=⨯264=(千米)答:甲乙两地的路程为264千米.故答案为:264.【点评】解决本题关键是根据速度一定,时间和路程的正比例关系以及分数乘法的意义得出相遇时间,再根据路程=速度⨯时间,求出快车已经行驶的路程,然后根据分数除法的意义求解.6.(2019•常熟市)一辆汽车以每小时80千米的速度从甲地开往乙,司机估算了一下,如果提速20%,则可以少用0.5小时到达乙地,甲、乙两地之间相距千米.【分析】首先根据速度⨯时间=路程,用提速后的速度乘提速后少行的时间,再用它除以提高的速度,求出汽车原来的行驶时间是多少,然后根据速度⨯时间=路程,用汽车原来的行驶时间乘以原来的速度,求出A、B两地相距多少千米即可.【解答】解:8020%16⨯=(千米)(8016)0.51680+⨯÷⨯960.51680=⨯÷⨯240=(千米)答:甲、乙两地之间相距240千米.故答案为:240.【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度⨯时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握;解答此题的关键是求出原来的行驶时间是多少.7.(2019•亳州模拟)在15千米的自行车越野赛中,小强以15千米/时的速度骑完全程的13,再以10千米/时的速度骑完后段路程,则小强到达终点所用的时间为小时.(保留一位小数)【分析】首先根据:路程÷速度=时间,分别用前段路程、后段路程的大小除以小强骑行的速度,求出用的时间各是多少;然后把它们相加,求出小强到达终点所用的时间为多少即可.【解答】解:11553⨯=(千米)515(155)10÷+-÷0.31≈+1.3=(小时)答:小强到达终点所用的时间大约为1.3小时.故答案为:1.3.【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度⨯时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.8.(2019•郑州模拟)早上妈妈步行出发上班,每分钟行70米.6分钟后爸爸发现妈妈忘了带手机,爸爸以每分钟210米的速度骑车去追妈妈.经过分钟后爸爸能追上妈妈.【分析】妈妈早出发6分钟行的路程差就是爸爸要追及的路程,即:706420⨯=(米),爸爸和妈妈的速度差是:21070140÷=(分钟),据此解答.-=(米),求追及的时间列式为:4201403【解答】解:(706)(21070)⨯÷-,=÷,420140=(分钟),3答:经过3分钟后爸爸能追上妈妈.故答案为:3.【点评】本题考查了追及问题,给关键是求出追及的路程和速度差,然后根据“追及的路程÷速度差=追及的时间”解答得出结论.9.(2019•攀枝花模拟)一只小船在静水中速度为每小时25千米,在210千米的河流中顺水而行时用了6小时,则返回原处需用小时.【分析】因为返回原处是逆水行使,要求返回原处所用的时间,就要知道逆水行驶的速度,因为逆水速度=船的静水速度-水流速度,因此关键在于求水流速度.根据顺水速度-船的静水速度=水流速度,水流速度为(2106)2510÷-,计算得解.÷-=(千米/时),返回原处所需要的时间:210(2510)【解答】解:水流速度:(2106)25÷-,=-,3525=(千米/时)10返回原处所需要的时间:÷-,210(2510)=÷,21015=(小时).14答:返回原处需用14小时.故答案为:14.【点评】此题属于流水行船问题,先求出水流速度,然后根据顺流而下的速度,即船速与水速之差求出逆水速度,最后根据路程÷逆水速度=逆水时间,解决即可.10.(2019•东莞市模拟)A、B两地相距470千米,乙车以每小时40千米的速度,甲车以每小时46千米的速度先后从两地出发,相向而行,相遇时甲车行驶了230千米,则乙车比甲车早出发小时.【分析】相遇时乙车行了470230240-=千米,行了240406÷=小时,而相遇时甲车行驶230千米需要-=小时,据此解答即可.230465÷=小时,即甲乙共同行驶了5小时,那么乙车比甲车早出发651【解答】解:(470230)40-÷=÷240406=(小时)÷=(小时)230465-=(小时)651答:乙车比甲车早出发1小时.故答案为:1.【点评】本题考查了相遇问题,关键是根据甲车行驶的路程求出共同行驶的时间.11.(2019•北京模拟)某列火车通过560米的一个隧道用了24秒钟,接着通过一个照明灯用了10秒钟,这列火车的速度是米/秒,火车长是米.【分析】某列火车经过一个照明灯用了10秒钟,即火车行驶与火车长度相等的距离需要10秒.由于火车通过隧道行驶的距离=隧道的长度+火车的长度,通过560米的隧道用了24秒,则火车行驶560米需用÷=米/秒,所以火车的长度为:4010400⨯=米.-=秒,则火车的速度为5601440241014【解答】解:560(2410)÷-=÷56014=(米/秒);40⨯=(米);4010400答:这列火车的速度是40米/秒,火车长是400米.故答案为:40,400.【点评】明确火车经过照明灯所行驶的长度等于火车的长度是完成本题的关键.12.(2019春•大田县期末)如图,小红和小丽两个小朋友在一块正方形地上玩游戏.小红在A点,小丽在C 点,她们同时出发,在距离D点3.5米处的E点相遇.已知小红和小丽的速度比是7:5,这个正方形的周长是米.【分析】根据题意,已知小红和小丽的速度比是7:5,设小红行了长和宽的775+,小丽的行了长和宽的575+,在距离D点3.5米处的E点相遇,小红比小丽多行了3.527⨯=米,所对应的分率是752 757512-=++,根据分数除法的意义,即可长和宽,再进一步解答即可.【解答】解:75 3.52()7575⨯÷-++2712=÷42=(米)42284⨯=(米)答:这个正方形的周长是84米.故答案为:84.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.二.选一选(共8小题)13.(2019秋•兴国县期末)某人16小时步行67千米,求步行一千米需要多少小时?算式是()A.1667÷B.6176÷C.1667⨯D.6176⨯【分析】用某人步行67千米用的时间除以67,求出步行一千米需要多少小时即可.【解答】解:1676736÷=(小时)答:步行一千米需要736小时.故选:A.【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度⨯时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.14.(2019•利州区)一座桥长2000米,一列火车以每秒20米的速度通过这座桥,火车车身长200米、则火车从上桥到离开桥需要()秒.A.110B.100C.90D.85【分析】从车头上桥到车尾离开桥所走路程为:20002002200+=(米),于是,我们所行驶的距离除以火车的速度,就是所用时间.【解答】解:(2000200)20+÷=÷220020=(秒)110答:火车从上桥到离开桥需要110秒.故选:A.【点评】解答此题的关键是知道:火车过桥走过的路程=桥长+车身长,再根据基本的数量关系解决问题.15.(2019•湘潭)甲、乙两车从相距450千米的A、B两地同时相向而行,经过3小时相遇,已知甲的速度是乙的1.5倍,则甲的速度是()千米/时.A.60B.80C.90D.120【分析】先用总路程除以相遇时间,求出两车的速度和,已知甲的速度是乙的1.5倍,那么速度和就是乙的速度的(1.51)+倍,用速度和除以这个倍数,即可求出乙车的速度,再乘15就是甲车的速度.【解答】解:4503150÷=(千米/时)150(1.51)÷+=÷150 2.5=(千米/时)6060 1.590⨯=(千米/时)答:甲车的速度是90千米/时.故选:C.【点评】解决本题先根据速度和=总路程÷相遇时间求出速度和,再根据和倍公式:1倍数=两数和÷倍数和求解.16.(2019•长沙校级模拟)甲、乙两人步行的速度比是13:11,如果甲、乙分别由A、B两地同时出发相向而行,0.5小时后相遇,如果他们同向而行,那么甲追上乙需要()小时.A.4.5B.5C.5.5D.6【分析】设甲的速度为每小时行13千米,乙的速度为每小时行11千米,求出A、B两地之间的距离,甲要追上乙,就要比乙多行A、B之间的距离这段路程,用这个路程除以两人的速度差就是它们行走的时间.【解答】解:设甲的速度为每小时行13千米,乙的速度为每小时行11千米,由题意得:两地相距:(1311)0.5+⨯240.5=⨯=(千米)12甲追上乙需:12(1311)÷-=÷122=(小时)6故选:D.【点评】本题考查了相遇问题的数量关系以及追及问题的数量关系,速度和⨯相遇时间=总路程,路程÷速度差=追及时间.17.(2019春•昆明期末)有一艘渡轮在静水中的船速是35公里/时,在流速2公里/时的河流上顺流而下5小时,渡轮共行驶几公里?()A.155公里B.165公里C.175公里D.185公里【分析】根据路程=顺水时间⨯顺水速度,顺水速度=静水中的速度+水流速度,解答即可.【解答】解:顺水速度35237=+=(公里/时),⨯=(公里),375185答:渡轮共行驶185公里.故选:D.【点评】本题考查了流水行船问题,运用了下列关系式:路程=顺水时间⨯顺水速度,顺水速度=静水中的速度+水流速度.18.(2019•重庆模拟)甲、乙两人同时由A地到相距60千米外的B地,甲每小时比乙慢4千米.乙先走到B地后立即返回,在距B地12千米处与甲相遇,甲每小时行()千米.A.10B.8C.12D.16【分析】乙先走到B地后立即返回,在距B地12千米处与甲相遇,则相遇时,乙比甲多行了12224⨯=千米,两人的速度差为每小时4千米,所以相遇时,两人行了2446-÷=÷=小时,所以甲每小时行(6012)68千米.【解答】解:(6012)(1224)-÷⨯÷486=÷,=(千米).8答:甲每小时行8千米.故选:B.【点评】首先根据相遇时两的距离差及速度差,求出两人相遇时间是完成本题的关键.19.(2019•顺义区)甲乙二人速度比是3:5,他们从一条“健身步道”的AB两点同时出发,如果同向而行,12分钟后乙追上甲;如果相向而行,()分钟后相遇.A.1B.3C.5D.8【分析】甲、乙两人速度比3:5,可以看做甲的速度为3份,乙的速度为5份,则甲、乙两人的速度差为532-=(份),如果同向而行,12分钟后乙追上甲,那么AB 两地的距离就是21224⨯=份,如果他们相向而行,根据“路程÷速度和=时间”解答即可.【解答】解:(53)12(53)-⨯÷+2128=⨯÷248=÷3=(分钟)答:如果相向而行,3分钟后相遇.故选:B .【点评】此题采用了假设法,先求出AB 两地的距离,这是解题的关键.20.(2019•郑州校级自主招生)如图长方形ABCD 中,:5:4AB BC =,位于A 点的第一只蚂蚁按A B C D A →→→→方向爬行,位于C 点的第二只蚂蚁按C B A D C →→→→的方向同时出发,分别沿长方形的边爬行,如果两只蚂蚁第一次在B 点相遇,则两只蚂蚁第二次相遇在( )边上.A .DAB .BC C .CD D .AB【分析】:5:4AB BC =,设5AB =份,4BC =份,这个长方形的周长是:(54)218+⨯=份;如果两只蚂蚁第一次在B 点相遇,说明速度比是5:4,所以把第一只蚂蚁的速度看作5份,第二只蚂蚁的速度看作4份,速度和为:549+=份;在B 点相遇后,两只蚂蚁第二次相遇正好行了一个周长即18份,这时第二只蚂蚁行了41889⨯=份,所以两只蚂蚁第二次相遇在DA 边上,据此解答. 【解答】解:设5AB =份,4BC =份,长方形的周长是:(54)218+⨯=份;41845⨯+, 4189=⨯, 8=份,853-=份;所以两只蚂蚁第二次相遇在DA 边上.故选:A .【点评】本题的关键是根据“两只蚂蚁第一次在B 点相遇,”求出速度比是多少,注意第二次相遇正好行了一个周长即总路程是18份.三.走进生活,解决问题(共10小题)21.(2019•鄞州区)鄞州院士公园里的一条健身步道全长1500米,张明走完全程要用20分钟,李林走完全程要用30分钟.他们分别从这条健身步道的两端同时出发,相向而行,多长时间能够相遇?【分析】把全长1500米看作单位“1”,那么张明的速度就是120,那么李林就是130,然后用单位“1”除以两人的速度和就是相遇时间.【解答】解:11 1()2030÷+1112=÷12=(分钟)答:相向而行,经过12分钟能够相遇.【点评】本题用工程问题的解答方法比较简单,也可用总路程1500除以速度和(150020150030)÷+÷来解答,即1500(150020150030)÷÷+÷.22.(2019•湘潭模拟)假期里,依依和妈妈每天早晨在环湖路上跑步锻炼身体.环湖路长840米,依依每分跑108米,妈妈每分跑92米.(1)如果两人同时同地出发,相背而跑,多少分后相遇?(2)如果两人同时同地出发,同向而跑,多少分后依依超出妈妈一整圈?【分析】(1)如果两人同时同地出发,相背而跑,那么相遇的时候正好行了环湖路一圈的长度,然后除以两个人的速度和就是相遇时间.(2)如果两人同时同地出发,同向而跑,属于追及问题,依依超出妈妈一整圈正好是840米,然后除以以两个人的速度差就是追及时间.【解答】解:(1)840(10892)÷+840200=÷4.2=(分钟)答:如果两人同时同地出发,相背而跑,4.2分钟后相遇.(2)840(10892)÷-84016=÷52.5=(分钟)答:如果两人同时同地出发,同向而跑,52.5分钟后依依超出妈妈一整圈.【点评】此题主要考查了环形跑道问题中的追及问题和相遇问题的综合应用,关键是明确行驶的方向不同.23.(2019•长沙模拟)实验小学六年级学生去参观科技馆,400人排成两路纵队,相邻两排之间相距1米,队伍每分钟走60米,现在要过一座长41米的桥,从第一排上桥到最后一排离开桥,一共要多少分钟?【分析】400人排成两路纵队,每路纵队4002200÷=人,199个间隔全长=间隔长⨯间隔数1199199=⨯=米,从排头两人上桥到排尾两人离开桥,实际总长=桥长+队伍全长41199240=+=米,再据时间=路程÷速度解答即可.【解答】解:[(40021)141]60÷-⨯+÷,24060=÷,4=(分钟). 答:从排头两人上桥到排尾两人离开桥,共需要4分钟.【点评】解答此题的关键是根据植树问题,明确200人之间有199个间隔.还要注意计算通过桥长时加上队伍全长.24.(2019•北京模拟)某人乘船由甲地顺流而下到乙地,然后又逆流而上到甲地,共乘船3小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,求两地的距离.【分析】根据流水行船问题公式:顺水速度=船速+水速,逆水速度=船速-水速.7.5 2.510V =+=顺(千米/小时),7.5 2.55V =-=逆(千米/小时).根据路程一定的情况下,速度与时间成反比例,则水流所用时间为:531105⨯=+(小时),所以两地路程为:11010⨯=(千米). 【解答】解:由题可知,7.5 2.510+=(千米/小时)7.5 2.55-=(千米/小时)531105⨯=+(小时) 11010⨯=(千米)答:两地的距离是10千米.【点评】本题主要考查流水行船问题,解答此题的关键是,根据船速,水速,船逆水的速度,船顺水的速度,几者之间的关系,找出对应量,列式解答即可.25.(2019•亳州模拟)小巧以65米/分的速度,步行从家里出发去少年宫.出发16分钟后,妈妈发现小巧把垃圾分类资料忘了,于是骑车以195米/分的速度去追.已知小巧家与少年宫之间的路程是2100米.妈妈能在小巧到达少年宫之前追上她吗?【分析】根据题意,小巧行16分钟所走路程为:65161040⨯=(米),然后利用追及问题公式:追及时间=路程差÷速度差,求出妈妈追小巧所用时间为:1040(19565)8÷-=(分钟),而此时小巧所行路程为:65(168)1560⨯+=(米),与小巧家距少年宫的距离相比较,即可得出结论.【解答】解:6516(19565)⨯÷-104030=÷8=(分钟)65(168)⨯+6524=⨯1560=(米)21001560>答:妈妈能在小巧到达少年宫之前追上她.【点评】本题主要考查追及问题,关键利用公式:追及时间=路程差÷速度差.26.(2019秋•隆回县期末)甲、乙两车分别从A、B两地同时出发,相向而行,相遇时甲车行了320千米,已知甲车的速度是每小时60千米,乙车的速度是甲车速度的34,求A、B两地相距多少千米?【分析】乙车的速度是甲车速度的34,那么时间一定,乙与甲行驶的路程比是3:4,相遇时甲车行了320千米,把A、B两地的距离看作单位“1”,那么320千米就相当于A、B两地距离的434+,然后根据分数除法的意义解答即可.【解答】解:4 32034÷+43207=÷560=(千米)答:A、B两地相距560千米.【点评】解答本题关键是根据“时间一定,速度比就等于路程比”求出甲、乙两车行驶的路程比.27.(2019•郑州模拟)甲车的速度是100千米,是乙车速度的54,两车同时分别从两地相向而行,在距中点180千米处相遇,问两车开出后多少小时相遇?【分析】先用5100804÷=(千米)求出乙车速度,甲车每小时比乙车快1008020-=(千米),两车相遇在距两地中点180千米处,可知路程差是1802360⨯=(千米),所以相遇时间为3602018÷=(小时).【解答】解:5 1004÷41005=⨯80=(千米)1802(10080)⨯÷-36020=÷18=小时)答:两车开出后18小时相遇.【点评】解题的关键是利用两车所行路程差÷速度差=相遇时间,从而解决问题.28.(2019•郑州)有甲乙两车从A 、B 两地相向而行,甲乙的速度比是7:9,两车相遇后又继续前进,甲到达B 地,乙到达A 地后又返回,甲车在离B 地80千米的地方与乙车相遇,求A 、B 两地的距离.【分析】甲乙的速度比是7:9,那么相遇时甲乙行驶的路程比也是7:9;所以当第二次相遇时,两车共行了3个A 、B 两地间的距离;此时甲车行了A 、B 两地距离的7379⨯+;那么80千米就相当于A 、B 两地距离的7(31)79⨯-+,然后根据分数除法的意义即可求出A 、B 两地的距离. 【解答】解:780(31)79÷⨯-+ 58016=÷ 256=(千米)答:A 、B 两地的距离是256千米.【点评】本题考查了多次相遇问题,关键是明确当第二次相遇时,两车共行了3个A 、B 两地间的距离.29.(2019•青岛模拟)上午8时,张、王两同学分别从A 、B 两地同时骑摩托车出发,相向而行.已知张每小时比王多行2千米,到上午10时,两人仍相距36千米的路程.相遇后,两人停车闲谈了15分钟,再同时按各自的方向以原来的速度继续前进,到中午12时15分,两人又相距36千米的路程.(1)张、王二人的速度分别为多少?(2)A 、B 两地间的路程有多少千米?(3)两人第一次相遇在何时?【分析】(1)由题意可知,从上午10时到中午12时15分共用了2小时15分钟,减去两人闲谈用去的15分,即两人共行363672+=(千米),用了2小时,则两人速度和是每小时(3636)236+÷=(千米).利用和差问题公式,王的速度为:(362)217-÷=(千米/小时),张的速度为:(362)239+÷=(千米/小时).(2)由(1)知两人共行36千米需要1小时,到上午十时,两人已共行了2小时,即两人的相遇时间是213+=(小时),所以两地相距363108⨯=(千米).(3)8311+=(时)即上午11时二人第一次相遇.【解答】解:(1)12时15分10-时15-分2=小时10时8-时2=小时(3636)2+÷722=÷=(千米/小时)36-÷(362)2=÷342=(千米/小时)17+÷(362)2=÷382=(千米/小时)19答:张的速度是每小时19千米,王的速度是每小时17千米.(2)36(36362)⨯÷+=⨯363=(千米)108答:两地相距108千米.(3)36362÷+=+12=(小时)3+=(时)8311答:两人第一次相遇在上午11时.【点评】首先根据题意求出两人的速度和,进而求出两人的相遇时间是完成本题的关键.30.(2019•成都自主招生)两只小爬虫甲和乙,从A点同时出发,沿着长方形ABCD的边按照箭头方向爬行(如图所示).在距离C点32厘米的E点它们第一次相遇;在离D点16厘米的F点第二次相遇;在离A点18厘米的G点第三次相遇.长方形的边AB长多少厘米?【分析】甲和乙既然是相遇问题,则每次相遇两只小虫都共行一周,所用时间相同.以甲分析为例,甲三次相遇的所走的路程应该是相同的,也就是AB BE EC CF FD DA AG+=+=++,也就是321618AB BE CF AD +=+=++,又已知(32)AD BE EC AD BE =+=+,把1618AB BE AD +=++中的AD 换成32BE +,得到66AB =厘米.【解答】解:由题意可知,AB BE EC CF FD DA AG +=+=++,即321618AB BE CF AD +=+=++,又已知(32)AD BE EC AD BE =+=+,则16321866AB BE BE BE +=+++=+,可得:66AB =厘米.【点评】甲三次相遇的所走的路程应该是相同的列出关系式进行分析是完成本题的关键.。

小学数学六年级小升初质量培优试卷测试卷(附答案解析)

小学数学六年级小升初质量培优试卷测试卷(附答案解析)

小学数学六年级小升初质量培优试卷测试卷(附答案解析)一、选择题1.—幅地图的比例尺是1:12000000,那么在这幅地图上1厘米表示的实际距离是( )千米.A.12 B.120 C.1200 D.120002.如图,有一个无盖的正方体纸盒,下底标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()。

A.B.C.D.3.沿公园跑一圈是78千米,小李跑了5圈用了13小时。

小李平均1小时跑多少千米?正确的算式是()。

A.71583⨯÷B.71583⨯⨯C.17538⎛⎫÷⨯⎪⎝⎭D.17538÷⨯4.如图,大正三角形内有一个正六边形,正六边形与这个大正三角形的周长之比是(),面积之比是()。

A.2∶3、2∶3 B.3∶2、2∶1 C.2∶1、3∶2 D.1∶1、2∶35.甲乙两筐苹果,甲筐32千克,乙筐x千克.从甲筐拿4千克放入乙筐,两筐苹果就一样重.下列方程正确的是().A.32-X=4 B.X+4=32 C.X-8=32 D.X+4=32-4 6.正方体的六个面分别用字母A、B、C、D、E、F标注,下图是从三个不同角度看到的正方体部分面的字母,与D相对的面是()。

A.A面B.B面C.E面D.F面7.下列说法错误的是()。

A.故事书的单价一定,买故事书的本数与总钱数成正比例B.用方砖铺教室地面(面积一定),每块方砖的面积与所用方砖的块数成反比例C.六(2)班总人数一定,男生和女生的人数成反比例D.圆锥的体积一定,底面积和高成反比例8.如图,把底面半径是r,高h的圆柱沿着它的高切成若干等份,拼成一个近似长方体。

这个近似长方体的表面积比原来圆柱的表面积增加了()。

A.2πr2B.2rh C.2πrh D.2πr2h9.甲商品降价10%后,又提价10%,现在价格与原来价格相比较()A.比原来低B.比原来高C.没有变化10.拼一个三角形用3根小棒,想一想,第8个图形需要用()根小棒。

小学数学六年级小升初质量培优试卷测试卷

小学数学六年级小升初质量培优试卷测试卷

小学数学六年级小升初质量培优试卷测试卷一、选择题1.一幢教学楼长40米,在平面图上用8厘米的线段表示,这幅图的比例尺是()。

A.1∶50 B.1∶500 C.50∶1 D.500∶12.军军参加团体操表演,他的位置用数对表示是(3,7),如果这时的方队是一个正方形,参加团体操表演的至少有()人。

A.9 B.21 C.49 D.1003.某商品降价15后是100元,求原价是多少?正确的算式是()。

A.11005÷B.11005⨯C.110015⎛⎫⨯-⎪⎝⎭D.110015⎛⎫÷-⎪⎝⎭4.一个三角形三个内角度数的比是2:3:5,这个三角形中最大的内角是()。

A.锐角B.直角C.钝角5.买了3支铅笔比买1支圆珠笔多花0.5元,每支圆珠笔3.4元,如果设每支铅笔为x 元,下面方程正确的是()。

A.x-3.4=0.5 B.3x-3.4=0.5C.3x+0.5=3.4 D.x-3.4×3=0.56.如图是两个立体圆形,从不同方向会看到不同图形,从右面看到的图形是()。

A.B.C.7.铁路提速后,从甲地到乙地时间由16小时缩短到10小时,下列说法错误的是()。

A.速度比原来提高60% B.时间比原来减少37.5%C.现在速度是原来的62.5% D.现在与原来速度比是8∶58.下面关于正比例和反比例的四个说法中,正确的有()。

①正比例的图像是一条射线②一个人的年龄和体重既不成正比例关系也不成反比例关系③圆柱的底面积一定,体积和高成反比例关系④长方形的周长一定,长和宽不成比例。

A.①②③B.①②④C.②③④D.①③④9.某城市的士票价为:租单程3km以内8元,超过3km的部分每千米2.5元;如果租往返每千米2元.下面的图()表示租单程时路程与收费的关系,()表示租往返时路程与收费的关系.A .B .C .D .10.如图,将一张长方形纸沿一条对角线对折平放在桌面上,桌面被覆盖的面积是120平方厘米,正好是原长方形面积的60%,原长方形的面积是( )平方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培优专题训练
1.在1000,1001,……,2000这1001个自然数中,可以找到多少对相邻的自然数,满足它们相加时
不进位?
2.在早晨6点到7点之间有一个时刻,钟面上的数字“5”恰好在时针与分针的正中央,请问:这是
6点几分?
3.小明准时从家里出发,以3.6千米/时的速度从家步行去学校,恰好提前5分钟到校。

某天,当他
如果小明从家开始就跑步,可以比一直步行早15分钟到学校,那么他家离学校多少千米?小明跑步的速度是每小时多少千米?
4.甲、乙、丙三人各有一些棋子,其中棋子数最多的人比最少的人多出60多枚棋子,甲先拿出自己
的一半分给乙、丙,然后乙拿出自己的1/3平分给甲、丙,最后丙拿出自己的1/4平分给甲、乙。

这时三人的棋子数正好相同。

请问:三人一共有多少枚棋子?
5.图是由边长分别为10厘米、12厘米、8厘米的正方形构成的,有一条与AB边平行的直线EF将
此图分成面积相等的两部分,那么BF的长度为多少厘米?
6.(1)算式33.333×33.333计算结果的整数部分是多少?
(2)算式333.33×333.33计算结果的整数部分是多少?
7.如图,甲、乙、丙三根木棒插在水池中,它们的长度之和是360厘米。

甲木棒有3/4露在水面上,乙木棒有4/7露在水面上,丙木棒有2/5露在水面上。

请问:水深是多少厘米?
8.卡莉娅、小高、萱萱在黑板上各写一个自然数,这三个自然数的最大公约数是35,最小倍数是70。

这三个数的和可能是多少?
9.除以99的余数是多少?
10.请问:两个连续两位数乘积的末尾最多有几个连续的0?
11.甲、乙两人在一条圆形跑道上锻炼,他们分别从跑道某条直径的两端同时出发,相向而行,当乙走了100米时,他们第一次相遇,相遇后两人继续前进,在甲走完一周前60米处第二次相遇。

求:这条圆形跑道的周长。

12.比较下列分数的大小:(1)98 / 99与1994 / 1995;(2)11 110 / 22 221与44 443 / 88 887。

相关文档
最新文档