高一数学必修1-函数的单调性-精品PPT课件
合集下载
必修一函数的单调性课件

f(x2)
图 象 f(x1)
·
在区间I内
y
· f(x1)
y=f(x)
·
f(x2)
·
0
x1
x2 x
图象 特征
从左至右,图象上升
数量 特征
y随x的x
从左至右,图象下降
y随x的增大而减小
在区间I内
y
y=f(x)
f(x2)
图 象 f(x1)
·
在区间I内
y
· f(x1)
y=f(x)
·
f(x2)
•
(2) <0,则有 f (x1) f (x2 ) x1 x2
f (x)在 a, b
上是
____函数。
试用定义法证明函数 f (x) 1 1 x
在区间 0, 上是单调增函数。
小结
1.函数单调性的定义中有哪些关键点? 2.判断函数单调性有哪些常用方法? 3.你学会了哪些数学思想方法?
作业
引例2:画出下列函数的图象
(2)y = x2
y
y = x2
1·
O 1· x
引例2:画出下列函数的图象
(2)y = x2
y
y = x2
1·
O 1· x
此函数在区间 大,在区间
内y随x的增大而增 内y随x的增大而减小。
引例2:画出下列函数的图象
(2)y = x2
f(x1)
y
y = x2
1·
x1 O 1· x
在区间I内
y
y=f(x)
f(x2)
图 象 f(x1)
·
在区间I内
y
· f(x1)
y=f(x)
·
f(x2)
图 象 f(x1)
·
在区间I内
y
· f(x1)
y=f(x)
·
f(x2)
·
0
x1
x2 x
图象 特征
从左至右,图象上升
数量 特征
y随x的x
从左至右,图象下降
y随x的增大而减小
在区间I内
y
y=f(x)
f(x2)
图 象 f(x1)
·
在区间I内
y
· f(x1)
y=f(x)
·
f(x2)
•
(2) <0,则有 f (x1) f (x2 ) x1 x2
f (x)在 a, b
上是
____函数。
试用定义法证明函数 f (x) 1 1 x
在区间 0, 上是单调增函数。
小结
1.函数单调性的定义中有哪些关键点? 2.判断函数单调性有哪些常用方法? 3.你学会了哪些数学思想方法?
作业
引例2:画出下列函数的图象
(2)y = x2
y
y = x2
1·
O 1· x
引例2:画出下列函数的图象
(2)y = x2
y
y = x2
1·
O 1· x
此函数在区间 大,在区间
内y随x的增大而增 内y随x的增大而减小。
引例2:画出下列函数的图象
(2)y = x2
f(x1)
y
y = x2
1·
x1 O 1· x
在区间I内
y
y=f(x)
f(x2)
图 象 f(x1)
·
在区间I内
y
· f(x1)
y=f(x)
·
f(x2)
函数的单调性课件(共17张PPT)

如果我们以x表示时间间隔(单位:h),y表示记忆保持量,则 不难看出,图3-7中,y是的函数,记这个函数为y =f(x).
这个函数反映出记忆具有什么规律?你能从中得到什么启发?
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
问题情境:我们知道,“记忆”在我们的学习过程中 扮演着非常重要的角色,因此有关记忆的规律一直都 是人们研究的课題。德国心理学家艾宾浩斯曾经对记 忆保持量进行了系统的实验研究,并给出了类似图37所示的记忆规律.
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
△x表示自变量x的增量,△y表示因变量y的增量. 这时,对于属于这个区间上的任意两个不相等的值x1,x2: 这个数是增函数的充要条件是yx >0; 这个数是增函数的充要条件是y <0.
x
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
因此,函数f(x)=3x+2在(- ,+ )上是增函数.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
数学Biblioteka 基础模块(上册)第三章 函数
3.1.3 函数的单调性
这个函数反映出记忆具有什么规律?你能从中得到什么启发?
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
问题情境:我们知道,“记忆”在我们的学习过程中 扮演着非常重要的角色,因此有关记忆的规律一直都 是人们研究的课題。德国心理学家艾宾浩斯曾经对记 忆保持量进行了系统的实验研究,并给出了类似图37所示的记忆规律.
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
△x表示自变量x的增量,△y表示因变量y的增量. 这时,对于属于这个区间上的任意两个不相等的值x1,x2: 这个数是增函数的充要条件是yx >0; 这个数是增函数的充要条件是y <0.
x
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
因此,函数f(x)=3x+2在(- ,+ )上是增函数.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
数学Biblioteka 基础模块(上册)第三章 函数
3.1.3 函数的单调性
函数的单调性课件-高一数学人教A版(2019)必修第一册

3.会利用单调性求参数取值范围.(重点)
学运算素养.
新课引入
问题1:观察下面函数图象,从中你发现了图象的哪些特征?
= 2
=
= >0
升降变化、对称性,最高点或最低点等
今天,我们重点研究图象从左到右升降变化的规律。
随的增大而增大(或减小)——
函数的单调性
= 2
1
y
0
那么就称函数 在
区间D上时减函数
y
1
1 2 x
2
0
1 2
x
特别地,只有当函数 在它的定义域上单调递增(递减)时,
我们才称它是增(减)函数。
合作探究
思考1:−1 < 2时,有 −1 < 2 ,
说函数在区间 −1,2 上单增对吗?并说出你的理由。
不对,如图,虽−1 < 2时,有 −1 < 2 ,
函数值随自变量的增大(或减小)的性质叫做函数的单调性.
图形语言:在 轴右侧,从左到右图象是上升的;
也就是说,在区间 , +∞ 上,随的增大而增大
;
你能类比说出函数在y轴右侧的符号表示及单调性吗?
符号语言:
∀ , ∈ , +∞ , = , =
当 < 时,有 < 成立.
结论 这时, f (x)=kx +b是减函数。
结论:一次函数 = + ≠ 的单调性由的正负确定。
> 在R上单调递增; < 在R上单调递减.
k
(k为正常数)告诉我们,
例3、 物理学中的玻意耳定律 p =
学运算素养.
新课引入
问题1:观察下面函数图象,从中你发现了图象的哪些特征?
= 2
=
= >0
升降变化、对称性,最高点或最低点等
今天,我们重点研究图象从左到右升降变化的规律。
随的增大而增大(或减小)——
函数的单调性
= 2
1
y
0
那么就称函数 在
区间D上时减函数
y
1
1 2 x
2
0
1 2
x
特别地,只有当函数 在它的定义域上单调递增(递减)时,
我们才称它是增(减)函数。
合作探究
思考1:−1 < 2时,有 −1 < 2 ,
说函数在区间 −1,2 上单增对吗?并说出你的理由。
不对,如图,虽−1 < 2时,有 −1 < 2 ,
函数值随自变量的增大(或减小)的性质叫做函数的单调性.
图形语言:在 轴右侧,从左到右图象是上升的;
也就是说,在区间 , +∞ 上,随的增大而增大
;
你能类比说出函数在y轴右侧的符号表示及单调性吗?
符号语言:
∀ , ∈ , +∞ , = , =
当 < 时,有 < 成立.
结论 这时, f (x)=kx +b是减函数。
结论:一次函数 = + ≠ 的单调性由的正负确定。
> 在R上单调递增; < 在R上单调递减.
k
(k为正常数)告诉我们,
例3、 物理学中的玻意耳定律 p =
函数的单调性【新教材】人教A版高中数学必修第一册精品ppt课件

第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT) 第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT)
第三章 3.2.1 第1课时函数的单调性-【新教材】 人教A 版(201 9)高 中数学 必修第 一册课 件(共69 张PPT) 第三章 3.2.1 第1课时函数的单调性-【新教材】 人教A 版(201 9)高 中数学 必修第 一册课 件(共69 张PPT)
第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT) 第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT)
第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT) 第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT)
第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT) 第 函三 数章 的单调3.性2.【1 新第教1材课】时人函教数A的版单高调中性数-学【必新修教第材一】 册人课教件A 版2( 优2秀01p 9pt)课高件中数学 必修第 一册课 件(共69 张PPT)
高中数学(人教B版)必修第一册:函数的单调性【精品课件】

x
则称 y f (x) 在 I 上是增函数(也称在 I 上单调递增),
(1) y
如图(1)所示;
f (x1)
(2)
如果对任意 x1, x2 I ,当 x1
x2 时,都有
f (x1)
f ( x ) , f (x2) 2
O
x1
x2
x
则称 y f (x) 在 I 上是减函数(也称在 I 上单调递减),
(1)当 a
0 时,
f
x
在
,
b 2a
上单调递_____,在
b 2a
,
上单调递
_____,函数没有最_____值,但有最____值________________;
(2)当 a
0 时,
f
x
在
,
b 2a
上单调递_____,在
b 2a
,
上单调递
_____,函数没有最_____值,但有最____值_________________.
f
x2
x2
f x1
x1
,
则:
(1) y f x 在 I 上是增函数的充要条件是 y 0 在 I 上恒成立;
x
(2) y f x 在 I 上是减函数的充要条件是 y 0 在 I 上恒成立.
x
定义:
一般地,当 x1 x2 时,称
f f x2 f x1
x
x2 x1
为函数 y f (x) 在区间x1, x2 x1 x2时或x2, x1 x2 x1时 上的平均变化率.
x
想一想:能否说 f x 2 在定义域内是增函数?为什么?
x
新知提炼:
(1)单调区间是定义域的子区间,对于单调性,首先要考虑函数的 定义域。因此,单调性是函数的局部性质.
必修一函数的单调性精品PPT课件

x2 x
从左至右,图象下降
y随x的增大而减小
在区间I内
y
y=f(x)
f(x2)
图 象 f(x1)
·
在区间I内
y
· f(x1)
y=f(x)
·
f(x2)
·
0
x1
x2 x
0
x1
x2 x
图象 特征
从左至右,图象上升
数量 y随x的增大而增大 特征 当x1<x2时, f(x1) < f(x2)
从左至右,图象下降
y=x
f(x1)
1·
O 1· x1 x
此函数在区间(-∞, +∞ )内y随x的增大而增
大,在区间
y随x的增大而减小;
引例2:画出下列函数的图象
(2)y = x2
引例2:画出下列函数的图象
(2)y = x2
y
y = x2
1·
O 1· x
引例2:画出下列函数的图象
(2)y = x2
y
y = x2
1·
y = x2
x
此函数在区间 大,在区间
内y随x的增大而增 内y随x的增大而减小。
引例2:画出下列函数的图象
(2)y = x2
y
y = x2
f(x1) 1·
x1 O 1· x
此函数在区间 大,在区间
内y随x的增大而增 内y随x的增大而减小。
引例2:画出下列函数的图象
(2)y = x2
y
y = x2
说明气温在哪些时间段内是逐渐升高的或下降的?
引例2:画出下列函数的图象
(1)y = x
引例2:画出下列函数的图象
y (1)y = x
人教版高中数学必修1《函数的单调性》PPT课件

k(x1 x2 ).
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
k(x1 x2 ). 由 x1 x2,得 x1 x2 0.所以
①当k 0时,k(x1 x2 ) 0.
只要 x1 x2,就有 f (x1) f (x2 ).
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
所有的 x1 x2,有 f (x1) f (x2 ).
你能由例 1、例 2 的证明过程,归纳一下用单调性定义研究或证 明一个函数在区间 D上的单调性的基本步骤吗?
证明函数在区间 D 上的单调性的基本步骤:
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数
的单调性证明.
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数 的单调性证明.
思考:“体积V 减小时,压强 p增大”的含义?
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
k(x1 x2 ). 由 x1 x2,得 x1 x2 0.所以
①当k 0时,k(x1 x2 ) 0.
只要 x1 x2,就有 f (x1) f (x2 ).
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
所有的 x1 x2,有 f (x1) f (x2 ).
你能由例 1、例 2 的证明过程,归纳一下用单调性定义研究或证 明一个函数在区间 D上的单调性的基本步骤吗?
证明函数在区间 D 上的单调性的基本步骤:
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数
的单调性证明.
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数 的单调性证明.
思考:“体积V 减小时,压强 p增大”的含义?
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
数学人教A版必修一3.2.1函数的单调性课件(共23张ppt)

有(1 ) < (2 ),就称函数 = ()在区间上是增函数.
(× )
(× )
② 函数 = ()在区间上是增函数,如果(1 ) < (2 ),则1 < 2 .
1
③ () = 在定义域内为减函数.
(× )
④ 若函数 = ()的定义域内区间D上的任意两个变量1 , 2 ,
1
在区间
1, +∞ 上的单调性.
例题演练
例 3-2
根据定义证明函数 = −
1
在区间
0, +∞ 上的单调性.
例题演练
例 4
已知函数 =
1
.
2 −1
(1)求 的定义域;
(2)判断函数 在 1, +∞ 上的单调性,并用定义加以证明.
例题演练
变 4
求证:函数 =
1
2
2
−∞, −
=−
2
概念剖析
(3)反比例函数 =
和 (0, + ∞)上都是减函数;
①k __
> 0 时,在(−∞,0) ____
和 (0, + ∞)上都是增函数.
< 0 时,在(−∞,0) ____
②k __
概念剖析
观察函数图象:
(1 )
= 2
(2 )
你觉得它们反映了函数的哪些方面的性质?
概念剖析
反比例函数 =
1. 列表:
1
=
1
−
3
1
的表示:
1
−
2
2. 函数解析式: =
(× )
(× )
② 函数 = ()在区间上是增函数,如果(1 ) < (2 ),则1 < 2 .
1
③ () = 在定义域内为减函数.
(× )
④ 若函数 = ()的定义域内区间D上的任意两个变量1 , 2 ,
1
在区间
1, +∞ 上的单调性.
例题演练
例 3-2
根据定义证明函数 = −
1
在区间
0, +∞ 上的单调性.
例题演练
例 4
已知函数 =
1
.
2 −1
(1)求 的定义域;
(2)判断函数 在 1, +∞ 上的单调性,并用定义加以证明.
例题演练
变 4
求证:函数 =
1
2
2
−∞, −
=−
2
概念剖析
(3)反比例函数 =
和 (0, + ∞)上都是减函数;
①k __
> 0 时,在(−∞,0) ____
和 (0, + ∞)上都是增函数.
< 0 时,在(−∞,0) ____
②k __
概念剖析
观察函数图象:
(1 )
= 2
(2 )
你觉得它们反映了函数的哪些方面的性质?
概念剖析
反比例函数 =
1. 列表:
1
=
1
−
3
1
的表示:
1
−
2
2. 函数解析式: =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y2
1
x -2 -1 O 1 2
练习2 证明函数f(x)=1/x在(-∞,0)上是减函数。
想一想:函数f(x)=1/x在(0,
+∞)上的单调性呢?
在整个定义域内 f(x)=1/x是不是减函数呢?
反例:取x1= - 1 , x2=1,则f(-1)=-1,f(1)=1
可见 x1 < x2 时; f(x1) > f(x2)不一定成立。
对于二次函数f(x)=x2 ,我们可以这样来描述“在区 间(0,+∞) 上随着x的增大,相应的f(x)也随着增大.”:
试一试:你能仿照这样的描述,说明函数 f(x)=x2在区间(-∞,0]上是减函数吗?
定义:
如果对于定义域I内的某个区间D上的 任意两个自变量的值x1,x2,当x1<x2时,都有 f(x1)<f(x2),那么就说函数f(x)在区间D上是 增函数.
解:函数y=f(x)的单调区间有[-5,-2),[-2,1),[1,3),[3,5]. 其中y=f(x)在区间[-5,-2) ,[1,3)上是减函数,在区间[-2,1), [3,5]上是增函数.
例2 物理学中的波意耳定律p=k/V(k为正常数)告诉我 们,对于一定量的气体,当其体积V减小时,压强p将增大.试 用函数的单调性证明之.
练习:证明函数 f (x) -2x 1 在 R上是
减函数.
小结:
• 1.函数的单调性概念; • 2.增(减)函数的定义; • 3.增(减)函数的图象特征; • 4.增(减)函数的判定; • 5.增(减)函数的证明.
练习1 画出下列函数图象,并写出单调区间:
(1) y x2 2
单调增区间为, 0 单调减区间为0,
1.3.1 函数的单调性
观察下列函数图象,你能描述下它们的变化规律吗?
y
f (x) -x 1
o
x
函数图象的“上升”“下降”反映了函数的一个基本性质——单调性 如何描述函数图象的“上升”“下降”呢? 以二次函数f(x)=x2 为例,列出x,y的对应值表:
x … -4 -3 -2 -1 0 1 2 3 4 … f(x)=x2 … 16 9 4 1 0 1 4 9 16 …
证明:
1 4
23 1.取值
2.作差
3.变形 4.定号 5.下结论
5
用定义证明函数在区间上是增或减函 数的步骤:
1.在此区间上任取两个实数 x1, x2 , 且 x1 x2 。
2.将它们的函数值作差:f (x1) f (x2 ) 3.作差后变形处理(因式分解,通分等) 4.确定差的符号。 5.作出结论。
如果对于定义域I内的某个区间D上的 任意两个自变量的值x1,x2,当x1<x2时,都有 f(x1)>f(x2),那么就说函数f(x)在区间D上是 减函数.
如果函数y=f(x)在区间D上是增函数或减函数, 那么就说函数y=f(x)在这一区间具有(严格的)单调
性,区间D叫做y=f(x)的单调区间.
例1 下图是定义在区间[-5,5]的函数y=f(x),根据图象说 出函数的单调区间,以及在每一单调区间上,它是增函数 还是减函数?
对比左图和上表,可以发现什么规律?
图象在y轴左侧“下降”,也就是,在区间(-∞,0]
上随着x的增大,相应的f(x)反而随着减小;
图象上随着x的增大,相应的f(x)也随着增大.
思考
如何利用函数解析式f(x)=x2描述“随着x的增大, 相应的f(x)反而随着减小.”“随着x的增大,相应 的 f(x)也随着增大.”?
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
Thank You
在别人的演说中思考,在自己的故事里成长