第十四章轴对称--14.1.1 轴对称1.ppt

合集下载

轴对称专业知识讲座

轴对称专业知识讲座

第十四章 轴对称
嗨!对称 轴在这 儿呢!
假如一种图形沿一条直线折叠,直线两
旁旳部分能够相互重叠,这个图形就叫做轴 对称图形,这条直线即折痕所在直线就是它 旳对称轴。
八年级 数学
12.1 轴对称(1)
第十二章 轴对称
下面四幅图中是轴对称旳有几种?
八年级 数学
12.1 轴对称(1)
第十二章 轴对称
下面这些图形是不是轴对称图形?
右边
实际图形和镜中旳像有何关系?
实际图形和镜中旳像能够构成轴对称 关系
ቤተ መጻሕፍቲ ባይዱ
1、 轴对称变换后旳像
原来旳图形
2.
轴对称变换后旳像
原来旳图形
请欣赏
m
n
请你用所学旳知识来欣赏下列漂亮旳图案
大自然中旳轴对称
生活中旳轴对称
A A′
B C
B′ C′
把一种图形沿着某一条直线 折叠 ,假如 它能够 与另一种图形重叠 ,那么就说这两个 图形有关这条直线对称,这条直线叫做对称轴, 折叠后重叠旳点是相应点,叫做 对称点。
MN⊥AF于P AP = AF
1、图中旳对称点有哪些? 2、点A和F旳连线与直线



不是
12.1 轴对称(1)
下面是几家银行旳标志,其中是轴对称 图形旳是?
12.1 轴对称(1)
下面这些图形各有几条对称轴?
12.1 轴对称(1)
画出下面每个轴对称图形旳对称轴
车标设计
12.1 轴对称(1)
想一想:能否用剪刀,利用轴
对称旳知识,剪出某些你喜欢旳 图案来?
八年级 数学
12.1 轴对称(1)
把一圆形纸片两次对折后,得到

轴对称 (PPT课件)

轴对称 (PPT课件)

轴对称图形
一分为二 合二为一
轴对称
(三) 分”对称 提升认识
轴对称图形与两个图形成轴对称这两个概念 之间的联系和区别:
区别 联系
轴对称图形
一个图形
两个图形成轴对称
两个图形
1、沿着某条直线对折后,直线两旁的部分都能互相 重合; 2、都有对称轴(至少一条)
3、如果把一个轴对称图形沿对称轴分成两个图形, 那么这两个图形关于这条直线对称;如果把两个成轴 对称的图形看成一个图形,那么这个图形就是轴对称 图形。
13.1.1 轴对称
斯里兰卡
法国艾菲尔铁塔
脸谱艺术 车标设计
加拿大国旗
澳门特区区徽
面对生活中这些美丽的图片, 你是否强烈地感受到美就在我们身边!
这是一种怎样的美呢无处不在,从自然景观到艺术作 品,从建筑物到交通标志,甚至日常生活用品,都可 以找到对称的例子,对称给我们带来美的感受!
轴对称、对称轴、对称点
平面内如果把一个图形沿 着某一条直线折叠后,能够与 另一个图形重合,那么这两个 图形关于这条直线成轴对称,
A
B
这条直线叫做对称轴。 C
D
折叠重合的两点叫对应点
也叫对称点。
轴对称
你能找出图中的对称轴和一些对称点吗?
M
N
A
B
CD
P
Q
讨论:轴对称图形与两个图形成轴对称有
什么区别与联系?
直线(成轴)对称.
追问 你能举出一些轴对称图形的例子吗?
要 仔 细 观 察 哦!
练习:下面的图形是轴对称图形吗?如果是,你能指
出它的对称轴吗?

不是

探索新知
问题2 观察下面每对图形(如图),你能类比前 面的内容概括出它们的共同特征吗?

《轴对称》PPT课件

《轴对称》PPT课件
轴对称
问题一: 你能从几何学的角度刻划画面中的 两个图形的特点吗
从大小 形状 位置去考虑
轴对称概念的准确描述
把一个图形沿着某一条直线折叠;如 果它能与另一个图形重合;那么就说 这两个图形关于这条直线对称 两个图形中的对应点叫做关于这条 直线的对称点
这条直线叫做对称轴 两个图形关于直线 对称也叫做轴对称
思维的延伸
1 已知:如图;CD是△ABC的外角平分 线;BD⊥CD;BD的延长线交AE于点F; 求证:点B与点F关于CD对称
FE
C D
B A
能力训练
如图:某同学打台球时想通过击主球A;使主 球A撞击桌边MN后反弹回来击中彩球B;请 画出主球A的运动路线
A B


ቤተ መጻሕፍቲ ባይዱ

B1
综合创新
设AD是△ABC的∠BAC的平分线;过A引直 线MN⊥AD;过B作BE⊥MN于E;求证: △EBC的周长大于△ABC的周长
概念理解与归纳
轴对称涉及两个图形;它们能完 全重合;因此;轴对称是指两个图 形之间的形状与位置关系
概念对两图形的重合有限制; 它们的位置关系必须满足沿 某一条直线对折后能重合
观察图形归纳特性
从两图形大小 形状来看:
定理1 关于某条直线对称的两 个图形是全等形
从两图形 位置来看:
定理2 如果两个图形关于某条直 线对称;那么对称轴是对应点连 线的垂直平分线
M EA
B D
C1 N
C
课后思考:
1 沿着等腰三角形底边上 的高对折;高两边的图形 完全重合吗 2 沿着直角三形斜边上的 高对折;高两边的图形完 全重合吗
小结
概念 定理 应用
轴 对 称 知 识 结

轴对称课件(60张PPT)

轴对称课件(60张PPT)

轴对称在解直角三角形中应用
在解直角三角形时,可以利用轴对称的 性质来构造全等或相似的直角三角形,
从而简化计算过程。
例如,如果一个直角三角形关于某条直 线对称,那么它的两个锐角相等,同时 它的两条直角边也相等。这样我们就可 以通过已知的一边和一角来求解其他未
知量。
另外,如果两个直角三角形关于某条直 线对称,那么它们一定是相似的。这样 我们就可以通过已知的相似比来求解未
知量。
05
绘制和分析轴对称图形方 法技巧
使用直尺和圆规绘制轴对称图形
确定对称轴
在平面上选择一条直线作为对 称轴。
找到对称点
使用直尺和圆规,按照轴对称 的定义,找到该点关于对称轴 的对称点。
选择一个点
在对称轴的一侧选择一个点。
绘制图形
连接原点和对称点,即可得到轴对 称图形的一部分。重复以上步骤,
可以得到完整的轴对称图形。
动物
一些动物的身体结构也具 有轴对称性,如蝴蝶的翅 膀、蜻蜓的复眼等。
晶体
晶体结构中的原子排列往 往呈现出轴对称性,如雪 花、钻石等。
科技产品中的轴对称设计
电子产品
手机、平板电脑等电子产品的外观设 计中,常采用轴对称元素,实现简洁、 时尚的视觉效果。
汽车设计
航空航天
飞机、火箭等航空航天器的设计中也 广泛应用轴对称性,以确保飞行稳定 性和安全性。
典型例题解析
解析
根据轴对称性质,我们知道 △ABC≌△A'B'C',所以 ∠BAC=∠B'A'C'。
例题2
已知点P(2,3)关于x轴对称的点为P', 求点P'的坐标。
解析
由于点P关于x轴对称,所以点P'的 横坐标不变,纵坐标取反。因此, 点P'的坐标为(2,-3)。

《轴对称完整》课件

《轴对称完整》课件

对轴对称的未来展望
轴对称作为数学中的一个基础概念,仍有很大的研究和发展空间。随着数学和其 他学科的发展,轴对称的应用范围也将不断扩大。我们鼓励学生们在未来的学习 和研究中继续关注轴对称,探索它的更多应用和价值。
在《轴对称完整》ppt课件的最后,我们总结了轴对称的基本原理、方法和应用 ,并提出了进一步探索的问题和方向。我们希望学生们能够带着这些问题和思考 ,继续深入探索轴对称的奥秘,为未来的研究和应用打下坚实的基础。
轴对称是数学中的一个重要概念,它描述了一个图形通过某个直线折叠后与自身重合的性质。在《轴对称完整 》ppt课件中,我们深入探讨了轴对称的定义、性质和分类,帮助学生们更好地理解这一概念。
轴对称在几何学中有着广泛的应用,它不仅在平面几何中出现,还涉及到立体几何、解析几何等多个领域。通 过对轴对称的深入理解,学生们可以更好地掌握几何学的基本原理和方法。
05
轴对称的实践应用
在设计中的应用
对称美学的运用
设计作品中,轴对称的运用可以创造出平衡、和谐的感觉。例如,在服装设计中,设计师可以通过轴对称的裁 剪方式,使服装看起来更加优雅、庄重。
产品设计的指导
在产品设计中,轴对称的原理可以帮助设计师更好地布局产品的各个部分,使其更加符合人机工程学,提高使 用体验。
04
轴对称的意义
美学的意义
美学欣赏
轴对称的形状、图案和结 构常常被视为具有美感, 可以给人带来视觉上的享 受和满足感。
艺术创作
艺术家们经常利用轴对称 的原理来创作美丽的艺术 品,如建筑设计、绘画和 雕塑等。
平衡与和谐
轴对称能够给人带来平衡 和和谐的感觉,使整体效 果更加协调和完整。
科学的意义
自然界中的轴对称

轴对称--完整版课件

轴对称--完整版课件

BC=10cm,那么△BCD的周长是
_______cm.
26cm
A
E D
B
C
一,本章知识结构图
等腰三角形
等边三角形
生 活
轴对称
作图形的对称轴
中 的
用坐标表示轴对称

作轴对称图形

轴对称变换
轴对称的性质
•对应点所连的线段的中垂线就是 对称轴 •对应线段相等,对应角相等
轴对称变换
准确做图形对称轴的方法
因为对称轴垂直平分每对对应点所连接 的线段,所以只要找一对对应点,用圆规 作出对应点所连线段的垂直平分线即可。
8、已知,如图: AB=AC AD=DC=BC
则∠A=
Байду номын сангаас
360
A
D
B
C
9.在△ABC中,AB=AC,DE 为AB的垂直 A 平分线,D为垂足,交AC与E,若AB=8cm, △ABC的周长为21cm,求△BCE的周长.
D E
10.如图∠ ABC=70°, ∠ A=50°
B
C
AB的垂直平分线交AC于D,则∠DBC=___.
A
E
B
D
C
11 如图, ∠ABC、∠ACB的平分线相 交于F,过F作DE//BC交AB于D,交AC于E, 若AB=9cm, AC=8cm,则△ADE的周长是 多少? A
AB=AD+DB=AD+DF D F E AC=AE+EC=AE+EF
B
C
13、如图,在△ABC中,AB=AC=16cm,
AB的垂直平分线交AC于D,如果
利用轴对称变换作图1
作出三角形关于直线L对称的图形

轴对称ppt课件

轴对称ppt课件

对于轴对称的函数图像,其面积在沿 对称轴翻转后保持不变。
轴对称的拓扑性质
连通性
轴对称的图形在拓扑上具有连通 性,即可以通过连续变换从一个
部分到达另一个部分。
闭包
轴对称的图形在拓扑上的闭包也 是轴对称的。
分离性
轴对称的图形在拓扑上具有分离 性,即可以将图形分成互不相交
的两个部分。
轴对称的代数几何性质
轴对称ppt课件
目录
• 轴对称概述 • 轴对称的几何性质 • 轴对称的代数性质 • 轴对称的物理性质 • 轴对称的数学性质 • 轴对称的应用实例
01
轴对称概述
定义与性质
定义
轴对称是指一个平面图形沿着一条直 线折叠后,直线两旁的部分能够互相 重合,那么这个图形叫做轴对称图形 ,这条直线叫做对称轴。
性质
轴对称图形具有对称轴,并且沿着对 称轴折叠后两旁的部分能够完全重合 。
轴对称的应用
01
02
03
美学
轴对称在建筑、雕塑、绘 画等领域有着广泛的应用 ,能够给人以美的感受。
工程
在工程设计中,轴对称图 形可以简化计算和设计过 程,提高效率。
数学
在数学中,轴对称是研究 几何图形的重要性质之一 ,对于图形的分类和性质 研究具有重要意义。
天坛
天坛的圜丘坛和祈年殿也采用了轴对称设计 ,体现了古代建筑的美学和哲学思想。
自然界中的轴对称现象
要点一
蝴蝶
蝴蝶的翅膀具有明显的轴对称特征,这种对称性不仅美观 ,还有助于飞行。
要点二
雪花
雪花的形状也具有轴对称性,这种对称性在自然界中广泛 存在。
工程中的轴对称应用
桥梁
桥梁的梁体设计往往采用轴对称结构,以提高桥梁的稳定性和承载能力。

轴对称与轴对称图形课件

轴对称与轴对称图形课件
否 和原图形相同。
对称轴标记法
在图形中标记可能的对称轴, 观察两侧是否完全一致。
如何绘制轴对称图形?
绘制轴对称图形可以通过以下步骤: 1. 确定图形的对称中心线。 2. 在一侧绘制图形的一部分。 3. 沿着对称中心线将图形的部分复制到另一侧。 4. 保持对称性,绘制图形的其他部分。
轴对称在日常生活中的应用
1
建筑设计
许多建筑物和室内设计都使用轴对称来创造美观和谐的效果。
2
艺术创作
许多绘画、雕塑和手工艺品都运用了轴对称的元素和设计。
3
品牌标志
许多知名品牌的标志设计都利用了轴对称图形来传达稳定和专业的形象。
总结
轴对称是指一个图形中存在一条直线,使图形在这条直线两侧完全相同。轴对称在美学、设计和日常生活中都 扮演着重要的角色,让我们以更欣赏和创造轴对称的美!
轴对称的特点
1 完全对称
轴对称的图形左右两侧完全相同,无论是形状还是大小。
2 中心线
轴对称图形中存在一条中心线,可将图形分为左右两侧。
3 可折叠
轴对称图形常常可以通过沿着中心线折叠实现左右两侧的重合。
常见的轴对称图形
蝴蝶
雪花
向日葵
如何判断一个图形是否轴对称?
折纸法
将图形沿着可能的中心线折 叠,观察两侧是否完全重合。
轴对称与轴对称图形
轴对称是指一个图形中存在一条直线,使图形在这条直线两侧完全相同。在 本课件中,我们将学习轴对称的定义、特点、判断方法以及日常生活中的应 用。
什么是轴对称?
轴对称是指一个图形中存在一条直线,使图形在这条直线两侧完全相同。轴 对称的图形往往具有对称美和简洁的形态,给人一种和谐与平衡的感觉。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国旗是国家的一个象征,观察下面的国旗, 哪些是轴对称图形?试找出它们的对称轴。
加拿大
摩洛哥
古巴
瑞典
以色列
英国
观察:下面的每对
图形有什么共同特 点?
A A′ B′ C C′
B
A
A′ B′
B C C′
把一个图形沿着某一条直线折叠, 如果它能够与另一个图形重合,那么就 说这两个图形关于这条直线对称,这条 直线叫做对称轴,折叠后重合的点是对 应点,叫做 轴对称吗?如果是,试着找出它们的对称 轴,并找出一对对称点。
喜喜 FF
(A) (B) (C) (D)
想一想:0-9十个数字
中,哪些是轴对称图形? (抢答)
0 1 2 3 4 5 6 7 8 9
想一想:下列英文字母中,
哪些是轴对称图形?
A J S C L T D M U E N V F O W G P X H Q Y I R Z
14.1轴 对 称1
把一张长方形纸片对 折,剪出一个图案(折痕 处不要完全剪断),再打 开这张对折的纸片,就剪 出了美丽的窗花。试一试, 你能剪吗? 观察剪出的窗花和图 中的图形,你能发现它们 有什么共同的特点吗?
如果一个图形沿一条直线折叠,直 线两旁的部分能够互相重合,这个图形 就叫做轴对称图形,这条直线就是它的 对称轴,这时,我们也说这个图形关于 这条直线对称(或成轴对称) 。
小结:
1.本节课你学到了什么? 2.你掌握了什么数学方法?
吉祥物
车标设计
交通标志
剪纸艺术
脸谱艺术
作业:p 125 1, 2 p126 6
相关文档
最新文档