谈压力容器无损检测技术-压力容器论文-工业论文

谈压力容器无损检测技术-压力容器论文-工业论文
谈压力容器无损检测技术-压力容器论文-工业论文

谈压力容器无损检测技术-压力容器论文-工业论文

——文章均为WORD文档,下载后可直接编辑使用亦可打印——

摘要:压力容器在我国工业生产领域得到了广泛应用。作为工业生产过程中的核心设备之一,压力容器运行期间承担着低温、腐蚀、易燃、高温、剧毒以及易爆等压力。若容器结构质量出现问题,会增大火灾、污染以及中毒等事故的产生几率,威胁人们的人身财产安全。本文针对无损检测的应用特点展开分析,内容包括非破坏性、全面性、全程性、直观性等,结合无损检测的应用目的,通过研究一些常见无损检测技术在压力容器质量检测中的具体应用,其目的在于提高问题发现的及时性,提升无损检测技术的应用效果。

关键词:压力容器;无损检测技术;全面性;直观性

现阶段,压力容器已经成为我国各个工业行业主要使用的一种承

压类特种设备。在工业生产中,使用压力容器需要承担一定的风险,因为一旦出现泄露等重大事故,将会直接影响人民群众的生命安全,而且还会造成很严重的环境污染,甚至会出现毒气体散布现象,后果很严重。因此为了保障人们的生命财产安全,需要对压力容器的无损检测技术进行进一步的探究。通过将无损检测技术应用到压力容器质量监测当中,对于提升压力容器运行安全有着积极地意义。

1无损检测技术的应用特点

1.1非破坏性

在传统检测方法当中,有许多的检测方法都是需要对压力容器碎片进行提取,虽然提取的碎片非常细小,但是压力容器本身应用期间受到的荷载较高,这些细小破损也会成为压力容器破损的隐患内容。在无损检测技术应用过程中,其最大的应用特点便是具备较强的非破坏性,在检测技术应用过程中,并不会对内部结构造成影响,这样也

确保了压力容器的完整性,这对于延长压力容器使用寿命也有着积极地意义。

1.2全面性

在传统检测方法当中,所选用的检测方法主要都是以抽样检测的方法进行,即只是从压力容器上选择几个采样点,对于采样点数据信息进行梳理,根据整理信息来评估压力容器目前的使用状态,但是这样采集到的数据具备一定的片面性,无法对压力容器整体应用情况进行了解。而无损检测技术在使用的过程中,如果没有什么特殊的应用情况,会对压力容器整体进行完整检测,采集到更加完整的数据信息,这样也提高了数据分析结果的使用价值。

1.3全程性

在材料学应用过程中,经常使用到的处理方法便是对材料进行压缩、拉伸、弯曲等处理,这些方法在应用期间都具备一定的破坏性,这样在新产品或者新设备当中,并不具备较强的实用性。而且在压力容器体积增大的情况下,对于其状态的检测需要保持全程性。无损检测技术的应用,对于压力容器的检测过程没有任何的破坏性,这也意味着在压力容器使用期间可以保持全程监测,从而提高了采集结果的实用价值。

1.4直观性

从目前的发展情况来看,使用较多的检测技术包括超声波检测技术、磁粉检测技术、涡流检测技术等,检测技术在应用中所得到的数据信息也会通过影像、色谱图、数字建模等形式呈现,这样也在很大程度上提高了信息内容的直观性,这样在对其进行评估时,可以更快的判断出信息中异常数据的具体原因,加快了问题的识别速度。

2无损检测的应用目的

2.1进行质量管理

在压力容器应用过程中,应用无损检测技术的基础目的便是对结构进行质量管理,从而确保设备运行期间的安全性。在无损检测技术应用期间,第一,对于结构应用的原材料、生产中的衍生物、生产成品、结构零件的质量进行监督,在扫描期间发现一些缺陷部分,也会及时挑出并对其进行更换,确保材料应用初期的质量。第二,对于检测到的数据信息进行整理,根据数据整理结果对于加工工艺和产品进行优化处理,借此来提升材料的生产效率,降低结构的生产成本。第三,基于采集的数据信息,还可以做好监测体系的完善,使其可以为状态监测体系的完善奠定基础条件。

2.2做好质量鉴定

利用无损检测技术对压力容器使用情况进行检测时,做好质量鉴定也是应用目标之一。压力容器在完成生产收入使用前和使用期间都需要对其进行质量检定,查看产品设计内容是否满足设计性能的基础要求,如果满足应用要求,可以对其进行使用,反之则需要按要求对其进行返工,待满足要求后再进行使用。这也是非常关键的应用步骤之一,尤其是处于恶劣工作环境下的压力容器,使用前完善检测内容也是非常重要的内容。另外,在压力容器使用的过程中,也需要对质量做好验收,采用全程验收的方式对其进行监督,这样也可以确保材料工作环境的安全性,减少潜在故障内容的出现。

2.3完成在役监测

无损检测技术在应用中,具备了全程性应用特征,而且对于所得到的数据信息也会通过影像、色谱图、数字建模等形式呈现,能够在很大程度上提高材料检测结果的直观性。在对其进行在役监测时,可

以对服役期间的应用构件进行安全性检测,同时还可以满足实时性监测要求。进行在役检测时,还能够对于设备运行期间的一些隐患,而且针对发现的潜在隐患,也可以及时对其展开处理,加快了问题的排查速度[1]。尤其是压力容器这类大型设备,提升数据发现结果的及时性,也能够具备更高的应用价值。

3无损检测技术在压力容器中的具体应用

3.1外观检测技术

相比于其他利用先进设备的无损检测技术,外观检测技术的出现时间较长,而且在长时间的应用中,已经形成了非常完善的应用体系。在具体的应用中,其工作原理在于借助目视、光、电、机等技术对于压力容器表面基础情况进行检查,如表面的凹陷、细微裂纹、油污、颜色变化等内容,从而评估压力容器目前应用状态的实用性,拟定措施对其进行处理,借此来确保压力容器应用过程的安全性。该检测技

术在应用中,最大的优势便是利用目视来弯沉检查,所需要的应用成本非常低,而且整个应用过程的工作效率较高,不需要借助额外的设备,可以在日常养护工作开展的同时来完成。但是该检测技术在应用时,只能准确识别表面具备明显缺陷的情况,对于结构内部缺陷或隐蔽缺陷很难识别,而且长时间利用眼睛进行查看时,很容易造成人眼疲劳的情况,从而影响到最终分析结果的准确性[2]。

3.2超声波检测技术

在应用无损检测技术时,超声波检测技术也是经常使用到的技术类型,而且该技术在应用中的主要原理在于,利用摆放在区域内的超声波释放仪器沿着某方向进行超声波释放,如果该方向上的介质性质保持一致,那么超声波的传递方向和速度不会发生变化,若传递过程中遇到了其他的介质,那么此时超声波遇到另一种介质时便会出现速度、方向的改变,对于压力容器而言,此时容器中出现了缺陷问题,对于这些反馈信号进行采集,绘制图谱图形,从而明确缺陷的具体位置,并且根据方位信息、波动幅度等参数信息来完成缺陷参数的计算,借此来提升分析结果的适用性。总结以往的应用经验,超声波检测技

术的适用范围很广,可以对焊接缝隙、管道、奥氏体锻件、高压螺旋杆结构进行质量验收,从而提高材料应用结果的使用价值[3]。

3.3射线检测技术

对于压力容器的质量检测,射线检测技术也是经常使用到的技术类型,该技术在应用中的主要原理在于,利用摆放在区域内的射线释放仪器沿着某方向释放出射线,如果该方向上的介质性质保持一致,那么射线强度会沿着一定规律进行衰减[4]。若传递过程中遇到了其他的介质,那么此时射线遇到另一种介质时便会衰减规律的变化,这样也表明压力容器此时出现了缺陷问题,对于这些反馈信号进行采集整理,结合状态分析结果来确定检测结果。并且根据数据计算结果也可以顺利定位缺陷位置,基于此来拟定合理的处理措施,借此来提高潜在问题的处理效率。目前射线检测技术在应用时的常用射线包括γ射线源、X射线等,同时技术在应用中具备检出率高、定位准确度高等特征,也是目前常用的应用技术类型。

3.4磁粉检测技术

在压力容器运行质量检测,有时也会使用到磁粉检测技术,以此来顺利完成相应的检测工作。该技术在应用中的主要原理在于,利用相关仪器在压力容器表面施撒一层磁粉,磁粉在磁场作用下,会开始进行排列,若磁粉在重新排列时遇到了其他的问题,如表面裂缝、凹陷等,那么此时磁粉的分布规律也会被打乱,形成不同状态下的磁痕,对于磁痕的基础信息进行采集整理,结合状态分析结果来确定检测结果。并且根据磁痕分布情况也可以顺利定位缺陷位置,基于此来拟定合理的处理措施,提升潜在问题的排查速度。该方法在应用过程中,能够对结构表面的一些应用问题进行准确识别,如管道表面裂缝、焊缝结构等,具备了检出率高、定位准确度高等特征。但是该检测技术只是针对压力容器表面问题进行识别,对于内部问题无法识别,还需要借助其他技术来完成工作[5]。

3.5渗透检测技术

在压力容器监测过程中,渗透检测技术也是对表面问题进行准确识别的技术类型。该技术在应用中的主要原理在于,利用相关仪器在压力容器表面施撒一层渗透剂,渗透剂会在压力容器表面进行扩散,如果渗透剂在分布时遇到了表面裂缝、凹陷等问题,那么此时渗透剂会沿着裂缝或凹陷进行渗透,随后将其他渗透剂进行清除,残留下的渗透剂所在位置,便是压力容器目前存在故障的部位[6]。和磁粉检测技术类似,该方法在应用过程中,能够对结构表面的一些应用问题进行准确识别,如管道表面裂缝、焊缝裂隙等,可以在较短时间内完成检测任务,得到可靠的检测数据。同样该检测技术在应用中,只能对压力容器表面问题进行识别,对于内部问题无法识别,如果想要对压力容器内部情况进行检查,还需要利用其他手段来完成。

3.6涡流检测技术

在应用无损检测技术时,涡流检测技术也是经常使用到的技术类型,而且该技术在应用中的主要原理在于,利用摆放在区域内的仪器

设备,沿着某方向建立交变磁场,压力容器多以不锈钢材料制作,钢材料在建立的交变磁场中,也会出现涡流的情况,在遇到不同形态的钢结构时,其产生的涡流大小、涡流形状也存在着较大的不同,对于这些反馈信号进行采集,绘制图形,从而明确缺陷的具体位置。总结以往的应用经验,涡流检测技术的适用范围很广,可以对许多导电体结构表面裂缝进行准确识别,具备较强的是识别精准度[7]。但是该检测技术仅适用于具备导电能力的结构,对于无法导电的设备无法利用该技术进行识别,而且识别仅限于结构表面,而且其应用成本相对较高,一般适用于小范围设备。

3.7声发射检测技术

对于压力容器的质量检测,声发射检测技术也是经常使用到的技术类型,该技术的应用原理在于,利用摆放在区域内的弹性波释放仪器沿着某方向进行弹性波释放,在方向上出现不同介质时,此时弹性波渗透的速度和方向也会发生改变。对于这些反馈信号进行采集,绘制图谱图形,从而明确缺陷的具体位置,搭配数据信息的分析结果来提升分析内容的实用价值。总结以往的应用经验,声发射检测技术的

适用范围很广,可以对压力容器目前的工作状态进行动态监测,但是也需要考虑应用检测过程中干扰因素,做好排除工作,提高检测结果的使用价值[8]。

4结语

综上所述,作为工业生产必要设备之一,压力容器的运行稳定性关乎工业生产效率和人员安全,需应用无损检测技术保障压力容器在制造、安装以及运行阶段保障其功能与性能的最大化发挥,为工业生产的高质量、高效开展提供支持。

参考文献

[1]顾晨阳.新无损检测技术在压力容器检验中的应用[J].清洗世

界,2020,36(07):50-51.

[2]赵浩生,牟旭.压力容器无损检测——漏磁检测技术[J].中国设备工程,2020(14):140-141.

[3]王成睿.压力容器检验中常用无损检测技术的应用[J].黑龙江科学,2020,11(12):176-177.

[4]贺志强.基于无损检测技术的A公司压力容器质量改进研究[D].内蒙古科技大学,2020.

[5]刘建华.无损检测技术应用于锅炉压力容器检验的技术研究[J].农家参谋,2020(10):202-203.

[6]吴文杰.压力容器无损检测技术的选择及应用[J].装备维修技术,2020(02):290-291.

[7]黄川.压力容器的无损检测技术与作用分析[J].现代制造技术与装备,2020(04):133+135.

[8]沈强,袁红.金属压力容器压力管道裂纹无损检测技术研究[J].中国金属通报,2020(04):211-212.

压力容器的焊接(毕业设计)

压力容器的焊接 摘要 众所周知,压力容器是在石油化学工业、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。而由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故,因此世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。同样的,对于它的生产要求也不能放松。焊接作为压力容器生产的主要环节,可谓是重中之重。 本文从压力容器焊接接头设计、压力容器焊接材料的选择及常用的焊接方法等方面简单地介绍了压力容器焊接方面的基础知识。基于手工电弧焊设备简单、工艺灵活及对各种刚适应性强等特点,手工电弧焊成为压力容器最主要的焊接方法,本文详细的介绍了手工电弧焊在压力容器焊接中的应用及常见的焊接缺陷和预防方法。 关键词:压力容器,手工电弧焊,石油化工,焊接方法

PRESSURE VESSEL OF WELDING ABSTRACT With the high-speed development of national economy, oil chemical industry and products by the extensive use of air, large capacity pressure container storage tank of low temperature low pressure liquid is regarded as the priority development of production important products. The use of pressure vessel is very extensive. It is in the oil industry, the energy industry, scientific research and military industry and so on the economy in each department plays an important role in the equipment. According to the pressure of pressure vessels are rated: low pressure containers, medium voltage containers, high pressure vessel and ultrahigh pressure container. I do this topic discussion is medium voltage containers (code M 1.6 MPa than p < 10.0 MPa) welding process design. Based on manual arc welding equipment simple, flexible and to all sorts of technology just strong adaptability and other characteristics, this paper I used manual electric arc welding and Choose model ZGX-300 rotary dc machines. The welding structure, from bottles of welding joint structure design, welding materials selection principle of all-round expounded on medium voltage vessel welding process design and introduces mainly the manual arc welding range of knowledge KEY WORDS: Medium pressure vessure,Manual arc welding,Pressure vessel,Bongding technolgy

压力容器的焊接技术(20210201134024)

压力容器的焊接技术 随着工程焊接技术的迅速发展,现代压力容器也已发展成典型的全焊结构。压力容器的焊接成为压力容器制造过程中最重要最关键的一个环节,焊接质量直接影响压力容器的质量。 第一节碳钢、低合金高强钢压力容器的焊接 一、压力容器用碳钢的焊接 碳钢以铁为基础,以碳为合金元素,含量一般不超过 1.0%。此外,含锰量不超过 1.2%,含 硅量不超过0.5%,Si、Mn 皆不作为合金元素。而其他元素,如Ni 、Cr、Cu 等,控制在残余量限度内,更不是合金元素。S、P、O、N 等作为杂质元素,根据钢材品种和等级,也都有严格限制。 碳钢根据含碳量的不同,分为低碳钢(C W0.30%)、中碳钢(C=0.30% ~ 0.60%)、高碳钢(C> 0.60%)。压力容器主要受压元件用碳钢,主要限于低碳钢。在《容规》中规定:“用于焊接结构压力容器主要受压元件的碳素钢和低合金钢,其含碳量不应大于0.25%。在特殊条件下,如选用含碳量超过0.25%的钢材,应限定碳当量不大于0.45%,由制造单位征得用户同意,并经制造单位压力容器技术总负责人批准,并按相关规定办理批准手续” 。 常用的压力容器用碳钢牌号有Q235-B、Q235-C、10、20、20R 等。 (一)低碳钢焊接特点低碳钢含碳量低,锰、硅含量少,在通常情况下不会因焊接而引起严重组织硬化或出现淬火组织。这种钢的塑性和冲击韧性优良,其焊接接头的塑性、韧性也极其良好。焊接时一般不需预热和后热,不需采取特殊的工艺措施,即可获得质量满意的焊接接头,故低碳钢钢具有优良的焊接性能,是所有钢材中焊接性能最好的钢种。 (二)低碳钢焊接要点 (1)埋弧焊时若焊接线能量过大,会使热影响区粗晶区的晶粒过于粗大,甚至会产生魏氏组 织,从而使该区的冲击韧性和弯曲性能降低,导致冲击韧性和弯曲性能不合格。故在使用埋弧焊焊接,尤其是焊接厚板时,应严格按经焊接工艺评定合格的焊接线能量施焊。 (2)在现场低温条件下焊接、焊接厚度或刚性较大的焊缝时,由于焊接接头冷却速度较快,冷裂纹的倾向增大。为避免焊接裂纹,应采取焊前预热等措施。 二、压力容器用低合金高强钢及其焊接特点在钢中除碳外少量加入一种或多种合金元素(合金元素总量在5%以下),以提高钢的力学性能,使其屈服强度在275 MPa以上,并具有良好的综合性能,这类钢称之为低合金高强钢,其主要特点是强度高、塑性和韧性也较好。按钢的屈服强度级别及热处理状态,压力容器用低合金高强钢可分为二类。 ①热轧、正火钢屈服强度在294Mpa ~ 490MPa之间,其使用状态为热轧、正火或控轧状态,属于非热处理强化钢,这类钢应用最为广泛。 ②低碳调质钢屈服强度在490Mpa ~980Mpa之间,在调质状态下使用,属于热处理强化钢。其特点是既有高的强度,且塑性和韧性也较好,可以直接在调质状态下焊接。近年来,这类低碳调质钢应用日益广泛。 目前应用于压力容器的低合金高强钢。钢板牌号有:16MnR、15MnVR、13MnNiMoNbR 、 18MnMoNbR 等。锻件牌号有16Mn、15MnV、20MnMo 、20MnMoNb 等。 低合金高强钢的含碳量一般不超过0.20%,合金元素总量一般不超过5%。正是由于低合金高强钢含有一定量的合金元素,使其焊接性能与碳钢有一定差别,其焊接特点表现在:(一)焊接接头的焊接裂纹 (1)冷裂纹低合金高强钢由于含使钢材强化的C、Mn、V、Nb 等元素,在焊接时易淬硬,这些硬化组织很敏感,因此,在刚性较大或拘束应力高的情况下,若焊接工艺不当,很容易产生冷裂纹。而且这类裂纹有一定的延迟性,其危害极大。 (2)再热(SR)裂纹再热裂纹是焊接接头在焊后消除应力热处理过程或长期处于高温运行中发生在

压力容器焊接技术要求.

压力容器焊接技术要求

概述 ?1、焊接是压力容器制造的重要工序,焊接质量在很大程度上决定了压力容器的制造质量; ?2、影响焊接质量包含诸多方面内容:焊接接头尺寸偏差、焊缝外观、焊接缺陷、焊接应力与变形、以及焊接接头的使用性能等; ?3、容器产品的设计是获得性能优良的焊接接头的基础:焊接母材的、焊接坡口形式、焊接位置、焊材、无损检测、焊后热处理等的选择,直接关系到焊接质量。

一、压力容器焊接的基本概念 ?1、焊缝形式与接头形式: 从焊接角度看,容器是由母材和焊接接头组成的;焊缝是焊接接头的组成部分。 焊缝有5种:对接焊缝、角焊缝、端接焊缝、塞焊缝和槽焊缝。 焊接接头有12种:对接接头、T型接头、十字接头、搭接接头、角接接头等。 ?2、焊缝区、熔合区和热影响区

?3、焊接性能、焊接工艺评定和焊接工艺规程--压力容器焊接的三个重要环节 焊接性能是焊接工艺评定的基础,焊接工艺评定是焊接工艺规程的依据,焊接工艺规程是确保压力容器焊接质量的行动准则。 ? 3.1、焊接性能:材料对焊接加工的适应性和使用可靠性。 ? 3.2、焊接工艺因素:重要因素;补加因素;次要因素。 ? 3.3、焊接工艺评定: JB4708《钢制压力容器焊接工艺评定》 JB/T4734《铝制焊接容器》 JB/T4745《钛制焊接容器》 ? 3.4、焊接工艺规程:

二、常用焊接方法及特点 ?1、手工电弧焊(SMAW) ?2、埋弧焊(SAW) ?3、钨极气体保护焊(GTAW)?4、熔化极气体保护焊(GMAW)?5、药芯焊丝电弧焊(FCAW)?6、等离子弧焊(PAW) ?7、电渣焊(ESW)

压力容器无损检测

第六节无损检测 第七十八条 无损检测人员应当按照相关技术规范进行考核,取得资格证书,方能承担与资格证书的种类和技术等级相对应的无损检测工作。 第七十九条 压力容器的无损检测方法包括射线、超声、磁粉、渗透和涡流检测等。压力容器制造单位应当根据 JB/T4730—2005《承压设备无损检测》标准和设计图样的规定制定无损检测工艺。 第八十条 压力容器的焊接接头,应当先进行形状尺寸和外观质量的检查,合格后,才能进行无损检测。有延迟裂纹倾向的材料应当至少在焊接完成 24 小时后进行无损检测;有再热裂纹倾向的材料应当在热处理后增加一次无损检测。 第八十一条 压力容器对接焊接接头的无损检测比例,一般分为全部(100%)和局部(大于等于 20%)两种。对碳钢和低合金钢制低温容器,局部无损检测的比例应当大于等于 50%。 第八十二条 符合下列情况之一时,压力容器的对接接头,应当进行全部射线或超声检测: (一)图样和相关标准规定应当进行全部射线或超声检测的压力容器。 (二)第Ⅲ类压力容器。

(三)按分析设计标准制造的压力容器。 (四)采用气压试验的压力容器。 第八十三条 压力容器焊接接头检测方法的选择要求如下: (一)压力容器壁厚小于等于38mm时,其对接接头应当采用射线检测或可记录的超声检测。 (二)压力容器壁厚大于 38mm(或小于等于 38mm,但大于20mm并且使用材料抗拉强度规定值下限大于等于 540MPa)时,其对接接头如采用射线检测,则每条焊缝还应当附加局部超声检测;如采用超声检测,每条焊缝还应当附加局部射线检测。附加局部检测应当包括所有的丁字口焊缝,附加局部检测的比例为本规程第八十一条规定的原无损检测比例的 20%。 (三)可以采用衍射时差法超声检测(TOFD)代替射线检测。 (四)对有无损检测要求的角接接头、T形接头,确实不能进行射线或超声检测时,应当做 100%表面检测。 (五)有色金属制压力容器对接接头应当尽量采用 X射线检测。 第八十四条 不进行全部无损检测的压力容器,其对接接头应当做局部无损检测,并且应当满足第八十一、八十三条的规定。局部无损检测的部位由制造单位检验部门根据实际情况指定。但对所有的丁字口焊接接头以及将要被其他元件所覆盖的焊接接头应当进行射线检测。经过局部射线检测或超声检测的焊接接头,若在检测部位发现超标缺陷时,

d锅炉压力容器筒体上管座角焊缝焊接技术的研究

d锅炉压力容器筒体上管座角焊缝焊接技术的研究

黑龙江农业经济职业学院 毕业论文(设计) 论文设计题目暖气管内角焊缝焊接技 术的分析 指导老师闫瑞涛 学生姓名董维思 学生学号 070309114 专业年级焊接技术及自动化焊接091班 系别、班别焊接系1班

摘要:暖气、筒体上管座角焊缝焊接技术的分析:本文针对暖气管管座 角焊缝要求全焊透特点,通过改进焊接坡口设计,优化工艺以及对操作工人技能的培训,使筒座角焊缝的超声波探伤一次合格率明显提高。创新地研制开发了适合暖气管座角焊缝焊接的机械焊设备,进行了大量的试验和产品试生产,其焊接生产率高,质量稳定可靠,大大改善了焊工的操作环境,并在行业中率先使用焊接新工艺,达到国内先进水平 关键词管座角焊缝;超声波探伤;机械焊

目录

前言 管座是暖气产品中一个非常重要的部件,暖气的焊接质量历来是各暖气厂家最为关心的,但以往大家一般主要将注意力集中在暖气的纵缝、环缝及集中下降管、给水管上,对于Φ133mm及Φ159mm引出管管座的焊接一直没有引起足够重视,但随着用户对管座焊接要求的不断提高,暖气管座的焊接已成为暖气行业关注的焦点。 以往在220t/h、420t/h筒的Φ133×12引出管管座焊接时,选用全焊透的结构型式,焊接采用内孔氩弧焊封底、手工电弧焊盖面,焊后仅进行表面磁粉探伤,然而在采用超声波探伤检查后,连续两台产品的暖气管座角焊缝一次合格率低得实在确实令人难以接受,也立即引起了大家的高度重视,经过实物解剖的分析,发现暖气管座焊接缺陷主要分布在内孔氩弧封底焊根部和手工焊焊缝底部,大部分呈整圈分布,缺陷的性质为未焊透、夹渣和气孔。 从目前生产情况来看,现有的设备,管座加工精度,焊接坡口的具体尺寸,焊工的操作技能等均不能满足要求,因而焊接质量难以达到超声波探伤合格标准。根据暖气管座焊接的实际情况分析,我们发现由于管座的壁厚、椭圆度公差及管座的加工精度使得管座的钝边尺寸过大或不均匀,管座装配时,由于没

《固定式压力容器安全技术监察规程》无损检测部分

《固定式压力容器安全技术监察规程》无损检测部分 2.5 钢板超声波探伤 2.5.1 检测要求 厚度大于或者等于12mm的碳素钢或低合金钢钢板(不包括多层压力容器的层板)用于制造压力容器壳体时,凡符合下列条件之一的,应逐张进行超声检测: (1)盛装介质毒性程度为极度、高度危害的; (2)在湿H2S腐蚀环境中使用的; (3)设计压力大于或者等于10MPa的; (4)本规程引用标准中要求逐张进行超声检测的。 2.5.2检测合格标准 钢板超声检测应当按照JB/T4730《承压设备无损检测》的规定执行。符合本规程2.5.1第(1)项至第(3)项的钢板;合格等级不低于Ⅱ级;符合本规程2.5.1第(4)项的钢板;合格等级应当符合本规程引用标准的规定。 4.5 无损检测 4.5.1 无损检测人员 无损检测人员应当按照照相关技术规范进行考核,取得资格证书,方能承担与资格证书的种类和技术等级相对应的无损检测工作。 4.5.2 无损检测方法 (1)压力容器的无损检测方法包括射线、超声、磁粉、渗透和涡流检测等; (2)压力容器制造单位或者无损检测机构应当根据设计图样要求和 JB/T4730的规定制定无损检测工艺。 (3)采用未列入JB/T4730或者超出其适用范围的无损检测方法时,按照照本规程1.9的规定。 4.5.3压力容器焊接接头无损检测 4.5.3.1 无损检测方法的选择 (1)压力容器的焊接接头,应当采用射线检测或者超声波检测,超声波检测包括衍射时差法超声波检测(TOFD)、可记录的脉冲反射法超声波检测和不可记录的脉冲反射法超声波检测;当采用不可记录的脉冲反射法超声波检测时,应当采用射线检测或者衍射时差法超声波检测作为附加局部检测; (2)有色金属制压力容器对接接头应当优先采用X射线检测; (3)管座角焊缝、管子管板焊接接头、异种钢焊接接头、具有再热裂纹倾向或者延迟裂纹倾向的焊接接头应当进行表面检测; (4)铁磁性材料制压力容器焊接接头的表面检测应当优先采用磁粉检

压力容器无损检测管理制度

压力容器无损检测管理制度 1、总则 无损检测是压力容器关键检测项目之一。根据TSG R0004-2009《固定式压力容器安全技术监察规程》有关规定,为提高检测工作质量,确保压力容器产品质量,特制订本制度。 2、检测人员的资格、职责 压力容器的各项无损检测工作按《锅炉压力容器无损检测人员技术等级划分和资格鉴定规则》的要求,由持有Ⅱ级以上资格证的人员担任;取得Ⅰ级资格的检测人员,一般仅做无损检测的辅助工作及射线检测评片以外的工作,若有Ⅱ级以上人员指导,也可进行设备操作,但检测结果须经指导人签字,并经Ⅱ、Ⅲ级检测人员审核签字,方可生效。各级人员的职责范围均按《锅炉压力容无损检测人员技术等级划分和资格鉴定规则》的要求执行。 3、容器的无损检测 容器的无损检测包括钢板、焊接接头、锻件及要求无损检测的工件及零部件等的无损检测,具体规定如下: 3.1容器无损检测的检测范围; 3.1.1 X射线检测 适用于厚度4-40mm的碳素钢、低合金钢、不锈钢、铝及铝合金、钛及钛合金、镍及镍合金材料制成的焊缝及钢管对接环焊缝的射线透照检测; 3.1.2 超声波检测(A型脉冲反射式超声波探伤) 适用于板材厚度6-250mm的压力容器原材料、零部件和焊缝的超声波检测; 3.1.3 磁粉检测 适用于铁磁性材料的机加工件、焊接接头、板材坡口表面和近表面缺陷的检测;3.1.4 渗透检测 适用于金属材料制成的压力容器及零部件表面开口缺陷的检测; 3.1.5 容器壁厚及钢板厚度测定 测量厚度1-200mm的碳钢、不锈钢。 3.2 各种检测方法对受检工作的要求

3.2.1 对接接头的要求 容器的表面质量应符合《规程》第65条和GB150第7.3.的要求,若用射线无损检测时,焊接接头表面不允许有焊疤、飞溅、气孔、弧坑等;若用超声检测时,应清除探头移动区的飞溅、锈蚀、油污等,探头移动区的深坑应补焊,然后打磨平滑,露出金属光泽,保持良好的声学接触;若用磁粉无损检测或渗透无损检测,被检工件表面应清洁、干燥,没有油脂、沙、氧化皮、棉纤、涂层、焊剂和焊接飞溅物。 3.2.2 对钢板的要求 应清除被无损检测钢板表面影响无损检测的氧化皮、锈蚀及油污等。 3.3 容器无损检测方法检验程序的确定 3.3.1 钢板的无损检测 一般选用超声波无损检测法 3.3.2 焊缝的检测 视图纸要求及技术要求,按《规程》选用正确的无损检测方法。 3.3.3 检验程序:分别按不同检测方法的安全操作规程进行。 3.4 容器检测申请制度 3.4.1 检测的申请 钢板、铆焊件一般由铆焊检验员及焊接试验室提出检测申请,无损检测人员即按申请的内容进行无损检测。 3.4.2 申请内容的规定 要按图纸工艺要求逐项填写好“无损检测申请单”。 3.4.3 无损检测结果的通知 一般以书面形式通知无损检测申请的单位和个人,并要有签收手续,以备查考。 3.5 焊缝无损检测部位标记,以编号形式标记或在出厂文件中用文字、简图表示。 3.5.1 X射线检测部位的标记 3.5.1.1底片编号:年月日号、定位标记、工件号、检测部位编号及返修次数。 3.5.1.2工件上检测部位标记以底片检测部位编号为准进行标记,在离焊缝15-20mm旁打上 钢印。 3.5.1.3对于不能打钢印的容器画出检测部位示意图。 3.5.2 超声波检测部位的标记 3.5.2.1焊缝的标记一般以工件接管方位为基准画检测部位示意图。

压力容器焊接技术研究

压力容器焊接技术研究 发表时间:2016-06-06T14:42:37.653Z 来源:《电力设备》2016年第4期作者:张璐刘鹏 [导读] 但随着工业的发展,对压力容器的要求也在逐渐的增加,这就要求在不断的实践过程中来对压力容器的焊接技术进行完善。 (上海宝冶集团有限公司上海市 200941) 摘要:随着社会的进步与可以的发展,焊接技术已经逐渐趋于成熟,焊接技术已经从传统的热加工技术发展到现在的结构、冶金、力学、基材料以及电子等多门科学进行结合的学问,其在压力容器的制作中得到了广泛的应用。但随着工业的发展,对压力容器的要求也在逐渐的增加,这就要求在不断的实践过程中来对压力容器的焊接技术进行完善。本文分析了压力容器焊接技术的相关内容。 关键词:压力容器;焊接技术; 压力容器是典型的焊接结构,由于其工作条件苛刻,同时受到压力、温度(高温或低温)和各种腐蚀性或易燃、易爆介质的作用,从而对其制造质量提出了严格要求。焊接质量是压力容器制造质量的重要组成部分,直接影响着压力容器的使用安全及企业的经济效益。 一、压力容器的焊接特点 从常规的低压储罐到高压、超高压的化工设备加氢反应器、合成塔,大型核电站反应堆、蒸发器、稳压器,火电站锅炉集箱和汽包等,压力容器的服役条件从低温到高温、从负压到超高压、从强腐蚀强辐射到无腐蚀无辐射,其对使用材料及板材厚度的要求不尽相同。从而压力容器焊接具有不同的焊接特点,具体表现如下: 1.低合金高强钢由于含有一定量的使钢材强化的C、Mn、V、Nb等元素在焊接时易淬硬,在刚性较大或拘束应力高的情况下,很容易产生冷裂纹,这种裂纹还具有一定的延迟性,危害极大。再者,由于焊接高温使HAZ 附近的C、Nb、Cr、Mo 等碳化物固溶于奥氏体中,焊后冷却时来不及析出,而在PWHT 时呈弥散析出,从而强化了晶内,使应力松弛时的蠕变变形集中于晶界,从而使焊接接头在靠近熔合线粗晶区产生沿晶开裂。另外,焊接时线能量过小,HAZ会出现马氏体引起裂纹;线能量过大,WM 和HAZ 的晶粒粗大会造成接头脆化。同时,焊接接头HAZ 由于焊接热作用而导致的软化如果处理不当也会严重影响压力容器的使用安全性及寿命。 2.压力容器的高压大型化使得其壁厚大幅增加,焊接厚壁容器所带来的焊件预热、金相组织控制、焊缝跟踪控制等,使现代压力容器焊接技术对焊接机械化、自动化、智能化的要求愈加的迫切。 二、压力容器焊接技术 1.厚壁压力容器焊接技术。目前,压力容器的生产制作逐步向大型化发展,大型压力容器直径可达几米、甚至十几米,壁厚超过200mm,对其焊接接头质量要求很高,常规的焊接方法很难满足质量要求。因过热会使组织成分不均匀,晶粒组织粗大、热影响区韧性低和堆焊层强度降低;开U型或V型坡口的焊接方法,不仅浪费了材料、能源、人力物力和时间,更重的是难于得到合格的接头;焊接过程中高空作业,如大型塔器的空中合拢焊缝组焊、大直径容器接管与壳体的焊接;密闭空间焊接,如高压小直径厚壁容器内部焊接、极度危害介质容器的内部返修,常给焊接作业者带来安全隐患,因此急需安全、自动化程度高且高效率的焊接技术。厚壁压力容器传统的焊接技术为单丝埋弧焊和电渣焊,采用窄间隙焊接技术,减小坡口横截面积,从而实现降低焊接热输入。为提高厚壁压力容器的生产效率,在双丝埋弧焊的基础上,近年发展起来的窄间隙多丝埋弧焊采用新型计算机控制的埋弧焊电源可实现3丝、4丝、5丝或6丝串列电弧高速埋弧焊。多丝埋弧焊分为多电源串列多丝埋弧焊和单电源多丝埋弧焊。前者是每一根焊丝均有一个独立电源供电,可避免电弧相互干扰和产生磁吹偏;后者是用多根较细的焊丝代替一根较粗的焊丝,以相同的速度通过同一导电嘴向外输出,在焊剂覆盖下熔化,熔敷效率高增加焊接速度。提高大壁厚容器的生产效率,由预热电源将填充焊丝加热到接近熔化状态后,送入埋弧自动焊形成的熔池为热丝埋弧焊,该方法能量消耗小,焊材损失少等优点也具有广泛的应用前景。 2.不锈钢复合板压力容器焊接技术。不锈钢复合板是由碳钢或低合金钢为基层,不锈钢为复层,一般采用爆炸法、冷轧法或爆炸冷轧法制成的双金属复合板,它既有不锈钢的耐蚀性能,有具有碳钢和低合金钢低成本的优点,广泛应用于炼 油、化工等领域的塔和罐设备材料。复合板的焊接不同于单一金属的焊接,它是将两种物理性能、化学成分和组织存在较大差异的材料进行焊接。由于两种金属的膨胀系数不同,因此在焊缝附近引起焊接热应力;另外,焊接基层与复层之间的过渡层,会发生碳的迁移,碳由低铬的基层向富铬的不锈钢熔敷金属迁移,不锈钢金属被稀释,形成高硬度的增碳区和低硬度的脱碳区。我国不锈钢复合板的基层焊接工艺较简单,可选用手工电弧焊、埋弧焊、CO2气保护焊;焊接难点是过渡层和复层的焊接,通常选用手工电弧焊、氩弧焊、药芯焊丝气保护焊和带极埋弧焊。复层多为耐蚀性较好的奥氏体不锈钢,但因其导热系数小,线膨胀系数大,易发生HAZ敏化区的晶间腐蚀和焊接变形。晶间腐蚀是由“晶界贫铬”理论造成的,而铬的碳化物形成是扩散过程,需要一定的时间,因此应减少HAZ敏化区高温停留时间,过渡层采用小电流、快速焊、窄焊道、反极性、多层多道焊接,层间温度控制60℃以下。过渡层和复层焊接以往均采用手工电弧焊,生产效率低,工人劳动强度大,焊接质量受操作者影响大。不锈钢药芯焊丝CO2焊是一种高效率的焊接方法,热量集中,熔池小,电弧稳定,焊接飞溅小,工艺性好,质量高,易操作,能实现全位置焊接,综合成本小等优点,且药芯焊丝的熔渣有良好的冶金处理作用,可净化焊缝,提高耐腐蚀性能。通过研究表明,CO2气体对药芯焊丝形成的焊缝没有明显增碳性。我国从美国引进了球罐药芯焊丝全位置自动焊接技术,焊接熔敷效率高,速度快,改善了焊接条件。TIG焊接技术多作为打底焊道,主要用于焊缝密封性能和力学性能要求高的压力容器。脉冲TIG焊电流调节范围较宽,可调节脉冲参数,精确控制电弧能量的分布,能精确控制熔深体积和形状。 3.承装腐蚀介质的压力容器焊接技术。压力容器服役条件有高温和低温,承受内压和外压,内盛入介质有强腐蚀、强辐射,因此对焊接技术有不同的要求。容器全部采用耐腐蚀材料,会加成本,达不到节约材料的环保新要求,因此只需在接触腐蚀介质的一面堆焊一层耐蚀材料。目前新的堆焊方法为带极电渣堆焊,与早期使用的带极埋弧堆焊相比具有如下优点熔敷效率高,比埋弧堆焊大约高50%;熔深浅而均匀,稀释率比埋弧堆焊小,单层堆焊即可满足性能要求,同时减少了工作量;堆焊层成形良好,不易有夹渣等缺陷,表面质量优良,平整度好;焊剂只需在焊接方向前面覆盖,而埋弧堆在整个焊接区必须覆盖焊剂,单侧加入节省焊剂,且敞开式熔池利于杂质和气体排出,不产生焊接电弧和紫外线。用带极埋弧堆焊与带电渣堆焊两种方法在Q235母材上堆焊不锈钢耐蚀层,研究结果表明:在9.8%H2SO4溶液中,堆焊层金属的自腐蚀电位为-433mV,母材金属的自腐蚀电位为-480mV,带极电渣堆焊层金属的自腐蚀电流接近0.17m

谈压力容器无损检测技术-压力容器论文-工业论文

谈压力容器无损检测技术-压力容器论文-工业论文 ——文章均为WORD文档,下载后可直接编辑使用亦可打印—— 摘要:压力容器在我国工业生产领域得到了广泛应用。作为工业生产过程中的核心设备之一,压力容器运行期间承担着低温、腐蚀、易燃、高温、剧毒以及易爆等压力。若容器结构质量出现问题,会增大火灾、污染以及中毒等事故的产生几率,威胁人们的人身财产安全。本文针对无损检测的应用特点展开分析,内容包括非破坏性、全面性、全程性、直观性等,结合无损检测的应用目的,通过研究一些常见无损检测技术在压力容器质量检测中的具体应用,其目的在于提高问题发现的及时性,提升无损检测技术的应用效果。 关键词:压力容器;无损检测技术;全面性;直观性 现阶段,压力容器已经成为我国各个工业行业主要使用的一种承

压类特种设备。在工业生产中,使用压力容器需要承担一定的风险,因为一旦出现泄露等重大事故,将会直接影响人民群众的生命安全,而且还会造成很严重的环境污染,甚至会出现毒气体散布现象,后果很严重。因此为了保障人们的生命财产安全,需要对压力容器的无损检测技术进行进一步的探究。通过将无损检测技术应用到压力容器质量监测当中,对于提升压力容器运行安全有着积极地意义。 1无损检测技术的应用特点 1.1非破坏性 在传统检测方法当中,有许多的检测方法都是需要对压力容器碎片进行提取,虽然提取的碎片非常细小,但是压力容器本身应用期间受到的荷载较高,这些细小破损也会成为压力容器破损的隐患内容。在无损检测技术应用过程中,其最大的应用特点便是具备较强的非破坏性,在检测技术应用过程中,并不会对内部结构造成影响,这样也

确保了压力容器的完整性,这对于延长压力容器使用寿命也有着积极地意义。 1.2全面性 在传统检测方法当中,所选用的检测方法主要都是以抽样检测的方法进行,即只是从压力容器上选择几个采样点,对于采样点数据信息进行梳理,根据整理信息来评估压力容器目前的使用状态,但是这样采集到的数据具备一定的片面性,无法对压力容器整体应用情况进行了解。而无损检测技术在使用的过程中,如果没有什么特殊的应用情况,会对压力容器整体进行完整检测,采集到更加完整的数据信息,这样也提高了数据分析结果的使用价值。 1.3全程性

压力容器无损检测指导书

1.目的 该作业指导书是为指导检验员进行在对承压类特种设备进行无损探伤而制订,其目的是规范检验检测工作过程,提高检验工作质量,及时消除隐患,防止事故发生。 2. 适用范围 本作业指导书适用于压力容器、锅炉、压力管道等承压设备的无损检测。 3.职责 3.1检验员 a.从事压力容器定期检验工作的检验人员,必须严格按照核准的检验范围从事检验工作。 b.负责按本程序要求准备和实施现场检验,填写检验检测原始记录,出具检验报告; c.对检验检测原始记录的真实性和检验结论的准确性负主要责任。 3.2检验责任师 负责核对检验检测原始记录和审核检验报告,对检验结论的准确性负次要责任。 4.工作依据 《特种设备安全监察条例》国务院令第373号 《压力容器定期检验规则》TSGR7001-2004 《压力容器安全技术监察规程》质技监局锅发[1999]154号 GB150-2011《钢制压力容器》 GB151-1999《钢制管壳式换热器》 GB20801-2006《压力管道规范工业管道》 GB50273《工业锅炉安装工程施工及验收规范》 GB 4792《放射卫生防护基本标准》 JB4710-2005《钢制塔式容器》 JB4731-2005《钢制卧式容器》 JB4730-2005《压力容器无损检测》 5. 检测项目及质量要求 (1)锅炉无损检测: 锅炉受热面管子及其本体管道焊缝的射线探伤,应在外观检查合格后进行,并符合下列规定: 1 抽检焊接接头数量应符合下列规定: 1)蒸汽锅炉额定工作压力小于3.8MPa 的管道,其外径小于或等于159mm

时,安装工地为10%;外径大于159mm,壁厚大于或等于20mm 时,每条焊缝应进行100%探伤; 2)热水锅炉额定出水温度小于120℃,管子外径大于159mm,探伤比例应不小于焊接接头数25%。管子外径小于159mm,可不探伤;锅炉额定出水温度大于或等于焊接接头数120℃,管子外径小于或等于159mm,探伤比例不应小于焊接接头数2%;管子外径大于159mm,应为100%探伤; 3)有机热载体炉辐射段探伤接头数比例不应低于10%,对流段不应低于5%。 3 对于额定压力大于0.1MPa 的蒸汽锅炉和额定出水温度等于或大于120℃的热水锅炉,Ⅱ级焊缝为合格;对于额定蒸汽压力小于或等于0.1MPa 的蒸汽锅炉和额定出水温度低于120℃的热水锅炉,Ⅲ级焊缝为合格。 4 当射线探伤的结果不合格时,除应对不合格焊缝进行返修外,尚应对该焊工所焊的同类焊接接头,按不合格数的两倍进行复检;当复检仍有不合格时,应对该焊工焊接的同类焊接接头全部进行探伤检查。 5 焊接接头经射线探伤发现存在不应有的缺陷时,应找出原因,制订可行的返修方案,方可进行返修;同一位置上的返修不应超过三次;补焊后,补焊区仍应做外观和射线探伤检查。 (2)压力管道无损检测: 应对压力管道的焊接接头进行无损检测,检差比例不小于下表:

压力容器焊接的质量控制研究通用版

安全管理编号:YTO-FS-PD261 压力容器焊接的质量控制研究通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

压力容器焊接的质量控制研究通用 版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 压力容器这种工业产品,优良的工序和加工质量是保证产品质量的重要条件。焊接是保证压力容器致密性和强度的关键,是压力容器制造中最重要的一个环节,是保证压力容器质量的关键,是保证压力容器寿命和安全运行的重要条件。焊接质量的控制从某种程度上说,锅炉、压力容器的质量就是其焊接质量。通过焊接对压力容器质量控制的因素分析,从操作人员控制,焊接工艺控制,焊接材料选择控制,焊接检验控制与焊接环境控制等五个方面来论述压力容器焊接的质量控制。 1. 焊接工作人员控制 焊条电弧焊和气体保护焊等手工操作占支配地位的焊接,操作者的个人技能和谨慎态度对焊接质量至关重要。即使自动化程度高的埋弧自动化,其工艺参数的调节和施焊也离不开人的操作;各种半自动焊中电弧沿焊接方向的移动也是靠人掌握。操作者质量意识差、操作时粗心大意、不遵守焊接工艺规程、操作技能低或操作技术不熟练

压力容器无损检测技术的选择与应用

压力容器无损检测技术的选择与应用 摘要随着新的工业发展进度及要求,会不断有新的无损检测技术出现,这都需要我们去大力地开发探究,注重压力容器无损检测技术的发展,尽力提高压力容器的安全可靠性,保证国家经济及社会稳定 1 无损检测的特点. 1.1 无损检测主要是指在不对检测构件造成任何损伤的前提下,运用声、光、电、磁等特性,且借助先进的技术和设备器材,对检测构件的内部以及表面的结构性质状态等进行检查和测试,从而查明构建表面和内部的实际状况。 1.2 现阶段常用的无损检测方法包括射线检测法、超声波检测法、磁粉检测法、渗透检测法、涡流检测法以及声发射法等,其中射线检测法和超声波检测法是应用最为广泛的无损检测法。射线检测法主要工作原理是利用X射线或者Y 射线穿透被检测构件使胶片感光[1],如果检测构件内存在缺陷,该部位的射线衰减情况与正常区域会有明显的差异,作用于感光胶片各处的射线能量也会相应地表现出明显的强弱差异,所以通过底片就可以直接判断被检测构件存在缺陷的具体部位。 1.3 超声波检测法主要是通过声波的反射透射以及散射作用,对被检测构件进行几何特性测量缺陷检测以及力学性能变化检测等。射线检测法可以获得缺陷的直观图像,定性准确,并且对长度宽度尺寸的定量也比较准确,射线检测结果能够进行现场记录,便于长期保存。此外,射线检测法还具有较强的重复性,对一些体积状缺陷或者一些与照射方向平行的缺陷有非常明显的检测效果[2]。 1.4 超声波检测法适用于金属非金属和复合材料等多种制件的无损检测,穿透能力强,对缺陷的定位准确,并且还可以对厚度较大的试件内部的缺陷进行检测[3]。此外,超声波检测法操作简单成本低检测速度快,对人体以及环境不会造成危害。射线检测与超声波检测的性能比较如表1所示: 2 无损检测技术检验压力容器前的准备工作[4] ①审核图纸或者检验要求来确定合适的无损检测方法;②按无损检测要求配置适合的仪器设备,并检查仪器的完好性,做好设备仪器校准工作,如x射线机必须训机;③检查检验环境是否安全,如登高作业须检查脚手架是否牢靠,安全带是否结实,射线检测须计算辐射安全距离并设置安全警戒线确保无关人员检测时不得进入;④进入受限空间检测前必须检测压力容器内部有害气体和空气含氧量是否安全,并做好通风工作;⑤确定合适的检验参数,具体参照NB/T47013-2015《承压类设备无损检测》标准设置和选择试块。 3 压力容器无损检测方法的选择.

压力容器焊接技术要求

压力容器焊接技术要求 1.安装高压油开关、自动空气开关等有返回弹簧的开关设备时,应将开关置于断开位置; 2.搬运配电柜时,应有专人指挥,步调一致,配电箱必须牢固、完整、严密,使用中的配电箱内禁止放杂物; 3.剔凿、打洞时,必须戴防护眼镜,锤子柄不得松动,錾子不得卷边、裂纹,打过墙、楼板透眼时,墙体后面不得有人靠近; 4.脚手架上作业,脚手板必须满铺,不得有空隙和探头板; 5.管子穿带线时,不得对管口呼唤、吹气,防止带线弹出,二人穿线,应配合协调,一呼一应,高处穿线,不得用力过猛; 6.使用套管机、电砂轮、台钻、手电钻时,应保证绝缘良好,并有可靠的接零接地,漏电保护装置灵敏有效; 7.进行耐压试验装置的金属外壳,必须接地,被调试设备或电缆两端如不在同一地点,另一端应有人看守或加锁,并悬挂警示牌,待仪表、接地检查无误,人员撤离后方可升压; 8.电力传动装置系统及高低压各型开关调试时,应将有关的开关手柄取下或锁上,悬挂标志牌,严禁合闸; 9.用摇表测定绝缘电阻,严禁有人触及正在测定中的线路或设备,测定容性或感性设备材料后,必须放电,遇到雷天气,停止摇测线路绝缘; 10.电流互感器禁止开路,电压互感器禁止

短路和以升压方式进行,电气材料或设备需放电时,应穿戴绝缘防护用品,用绝缘棒安全放电; 11.现场变配电高压设备,无论带电与否,单人值班严禁从事修理工作,高压带电区内部分停电工作时,人体与带电部分必须保持安全距离,并应有人监护; 12.在变配电室内,外高压部分及线路工作时,应按顺序进行,停电、验电悬挂地线,操作手柄应上锁或挂标示牌; 13.验电时必须戴绝缘手套,按电压等级使用验电器,在设备两侧各相或线路各相分别验电,验明设备或线路确实无电后,即将检修设备或线路做短路接地; 14.装设接地线,应由两人进行,先接接地端,后接导体端,拆除时顺序相反,拆接时均应穿戴绝缘防护用品,设备或线路检修完毕,必须全面检查无误后,方可拆除接地线; 15.接地线使用截面不小于25mm2的多股软裸铜线和专用线夹,严禁使用缠绕的方法进行接地和短路; 16.电气设备的金属外壳必须接地或接零。同一设备可做接地或接零,同一供电系统不允许一部分设备采用接零,另一部分采用接地保护; 17.电气设备使用的保险丝(片)的额定电流应与其负荷量相适应,严禁用其他金属线代替保险丝(片)。

压力容器焊接新技术及其应用分析

163中国 设备 工程Engineer ing hina C P l ant 中国设备工程 2019.10 (上)压力容器在工业生产中的应用表现出了较高的质量和安全 性能要求,如果其质量得不到有效保障,必然会导致压力容器 的应用可靠性降低,容易出现安全隐患。基于此,在压力容器 制造的焊接过程中,同样也需要严格把关,力求选择更为适用 的焊接工艺、焊接方法和焊接手段,保证和提高焊接质量,从 而降低或避免压力容器在焊接区域安全隐患的存在。 1?压力容器焊接概述 当前工业生产中压力容器的应用比较普遍,尤其是在炼 油厂以及冶金、化工等行业生产中,压力容器的应用更是表 现出了极强的作用价值。从压力容器的具体应用来看,其作 为一种应用广泛的特种设备,主要应用于储存、反应、运输 液体或者气体,需要承载一定的压力,通常密闭性要求较高。 一般而言,压力容器的工作压力在0.1MPa 以上,在长期使 用运行条件中往往面临着较高的温度和不同的腐蚀介质,以 及环境条件的差异,所以对压力容器的运行性能必然也就有 较高的要求。结合以往压力容器在长期运行中出现的质量缺 陷和问题进行分析,焊接区域出现泄漏或者是破损的概率相 对于其他部位更高,威胁性也更为突出,这也就必然需要重 点围绕着压力容器的焊接工艺和焊接技术予以高度关注,确 保焊接技术成熟,焊接工艺更为规范可靠,就能有效提升焊 接质量,避免在高温高压下出现异常问题。 由于压力容器的后续应用环节相对恶劣,不仅仅涉及超 高温或者是超低温环境,还承受着较高的压力,相关介质也 存在着明显的腐蚀性或者易燃易爆特点,容易导致容器在长 期应用下受损,如此也就增加了压力容器出现安全事故的几 率。因此,压力容器的焊接必然需要确保相应材料的结合度 更为理想,可以表现出较强的整体密实度,进而也就能够较 好提升压力容器的后续稳定运行效果,满足当前越来越苛刻 的压力容器性能要求。基于此,在压力容器的生产制造中重 点关注于焊接环节成为关键任务,相关技术人员需要选择适 宜的焊接技术手段,确保压力容器的相关部位的强度、密封 性等指标能够满足国家相关规范要求。 随着当前我国压力容器焊接工艺的不断创新发展,相关 技术手段越来越先进,众多新型处理工艺的应用确实表现出 了理想的优势,不仅仅解决了以往压力容器焊接中容易出现 的各类技术问题,还有助于提升压力容器焊接的效率和可靠 性,操作便捷性同样也越来越突出,值得进行深入探讨,加压力容器焊接新技术及其应用分析 王丹阳? (新疆同益炼化工程有限责任公司,新疆?克拉玛依?834003) 摘要:压力容器是我国工业生产中比较常见的一类设备,为了更好地保证压力容器安全有效运用,在压力容器制造过程中重点抓好压力容器的焊接控制工作至关重要。容器制造中应尽量避免在焊接区域出现严重的泄露威胁,所以,相关焊接技术手段的选用尤为关键。文章重点围绕当前压力容器焊接中所采用的一些焊接新技术进行了分析论述。 关键词:压力容器;焊接新技术;应用 中图分类号:TG457.5 文献标识码:A 文章编号:1671-0711(2019)10(上)-0163-02 大对各类压力容器焊接新技术的研究力度,确保其能够在压力容器焊接中表现出更强的积极作用。2?压力容器焊接新技术的应用2.1?窄间隙埋弧焊接技术在压力容器的制造中,为了更好地提升其压力承受能力,往往需要设计较厚的筒体壁,而当壁厚度达到了100mm 以上时,如果焊接操作依然采取传统的焊接模式,焊接工作量大,还容易产生未焊透、夹渣、气孔等焊接缺陷问题,且返修处理工作难度大,在后续长期应用中伴随着较高的安全风险。基于此,窄间隙埋弧焊接技术的应用可以较好作用于该类压力容器的焊接,应用优势较为明显。窄间隙埋弧焊接技术的适用于壁厚度较大的压力容器,在焊接过程中表现出了较高的熔敷效率,进而也就能够有效保障压力容器焊接后的质量性能,避免出现焊接缺陷;另外,在窄间隙埋弧焊接技术的应用中还可以针对热粗晶区进行改善,促使其性能更为优越,在焊接过程中形成更为理想的焊缝,相邻焊道的处理能够形成有序过度,预热作用更为突出;随着当前自动化技术的不断推广,这种窄间隙埋弧焊接技术的应用同样也可以较好形成自动化处理效果,借助更新技术手段提升焊接效率。当然,在窄间隙埋弧焊接技术的应用中同样也存在着一些缺陷和不足,比如,该技术焊接后的压力容器一旦在后续长期运行中出现了故障问题,很难进行有效修补,具体技术操作中对于技术人员也提出了高要求,任何细微偏差都可能影响焊接质量。基于此,在未来压力容器焊接中,应用窄间隙埋弧焊接技术需要重点把握好各个技术操作要点,提升技术人员的施工能力,最终确保压力容器的焊接更为可靠适宜。比如,对于焊接中的自动跟踪功能需要加 大关注度,确保其可以针对焊接过程形成有效监控和优化。2.2?接管自动焊接技术在当前压力容器焊接处理中,引入和应用自动化技术手段成为重要发展趋势,该类技术的应用同样也应该加大研究力度,其中接管自动焊接技术的应用就表现出明显优势,自动化效果更强,可以更好地提升压力容器焊接的便捷性和高效性。比如,接管马鞍形埋弧焊接设备的应用就表现出了明显优势,其实现自动化定心控制,促使压力容器的焊接更为连续高效,降低技术人员在焊接过程中的高压力和高要求。基于这种接管自动焊接技术的具体应用来看,首先应该重点

相关文档
最新文档