三角函数及诱导公式的应用
三角函数诱导公式在高中数学解题中的三种常见应用

三角函数诱导公式在高中数学解题中的三种常见应用毛慧婷(福建省浦城第一中学ꎬ福建浦城353400)摘㊀要:三角函数诱导公式是高中数学中的重要工具之一ꎬ具有广泛的应用性.本文从化简㊁求值和证明三个角度探讨了三角函数诱导公式在解题中的应用.在化简问题中ꎬ通过运用诱导公式ꎬ可以将复杂的三角表达式简化为易于处理的形式ꎻ在求值问题中ꎬ利用诱导公式可快速准确地求解三角函数的具体数值ꎻ在证明问题中ꎬ诱导公式是重要的推理工具ꎬ可帮助学生建立相关的数学定理和结论.文章通过具体例题进行说明ꎬ并强调实践和思考的重要性.关键词:三角函数ꎻ诱导公式ꎻ高中数学ꎻ应用技巧中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)36-0068-03收稿日期:2023-09-25作者简介:毛慧婷(1996.9-)ꎬ女ꎬ福建省浦城人ꎬ本科ꎬ中学二级教师ꎬ从事高中数学教学研究.㊀㊀三角函数是高中数学中的重要内容之一ꎬ而三角函数的诱导公式则是解题过程中常用的工具[1].在实际应用中ꎬ三角函数的诱导公式具有广泛的适用性ꎬ可以在化简㊁求值和证明等问题中发挥重要作用.在化简问题中ꎬ三角函数诱导公式可以帮助我们将复杂的三角表达式转化为简单的形式.通过巧妙地运用三角函数诱导公式ꎬ我们可以将复杂的三角函数关系简化为更易于处理的形式ꎬ从而更方便进行后续计算和推导ꎻ在求值问题中ꎬ三角函数诱导公式可以帮助我们快速准确地求解三角函数的具体数值[2].通过将待求函数转化为已知函数的组合形式ꎬ我们可以运用三角函数诱导公式将问题转化为已知数值的计算ꎬ从而得到准确的解答ꎻ在证明问题中ꎬ三角函数诱导公式可以作为重要的推理工具.通过将待证明的三角函数关系转化为等价的形式ꎬ我们可以使用诱导公式进行推导和证明ꎬ从而建立起相关的数学定理和结论.1利用诱导公式化简利用诱导公式化简可以帮助我们将复杂的三角函数表达式转化为简单的形式ꎬ在高中数学解题中具有重要的应用价值.在过程上ꎬ利用诱导公式进行化简的基本步骤如下:首先ꎬ根据待化简的三角函数表达式ꎬ选择合适的诱导公式ꎬ常用的诱导公式有正弦与余弦的诱导公式㊁正切与余切的诱导公式等ꎻ其次ꎬ将原始的三角函数表达式中的某一项根据选择的诱导公式进行替换ꎬ转化为新的三角函数表达式ꎻ然后ꎬ运用三角函数的基本关系和性质ꎬ通过代数运算将新的三角函数表达式进一步简化ꎻ最后反复迭代执行第2步和第3步ꎬ直至将原始的三角函数表达式化简到86最简形式.在实际应用意义上ꎬ通过化简ꎬ我们可以将复杂的计算转化为简单的形式ꎬ提高计算速度和准确性.化简过程中ꎬ我们需要运用三角函数的基本关系和性质进行代数运算.通过观察和分析化简的中间步骤ꎬ我们可以发现一些规律和特点ꎬ从而深入理解三角函数的性质[3].在解决实际问题时ꎬ常常会遇到复杂的三角函数表达式.利用诱导公式进行化简ꎬ可以将问题转化为更简单的形式ꎬ使问题的求解过程更加高效和便捷.因此ꎬ利用诱导公式进行化简是一种重要的数学技巧ꎬ在高中数学解题和实际应用中具有广泛的应用.通过掌握化简的方法和技巧ꎬ我们可以更好地理解和运用三角函数ꎬ提高解题的效率和准确性.例1㊀已知函数f(x)=2sin(ωx)ꎬ其中常数ω>0.令ω=1ꎬ判断函数F(x)=f(x)+fx+π2æèçöø÷的奇偶性ꎬ并说明理由.令ω=2ꎬ将函数y=f(x)的图象向左平移π6个单位ꎬ再向上平移1个单位ꎬ得到函数y=g(x)的图象.对任意aɪRꎬ求y=g(x)在区间a[ꎬa+10π]上的零点个数的所有可能.解析㊀(1)ω=1时ꎬf(x)=2sinxꎬ此时Fx()=fx()+fx+π2æèçöø÷=2sinx+2sinx+π2æèçöø÷=2sinx+cosx().此时有:Fπ4æèçöø÷=22ꎻ且F-π4æèçöø÷=0ꎻ所以F-π4æèçöø÷ʂFπ4æèçöø÷ꎬF-π4æèçöø÷ʂ-Fπ4æèçöø÷.因此F(x)既不是奇函数ꎬ也不是偶函数.(2)ω=2时ꎬ有f(x)=2sin2xꎬ将y=f(x)的图象向左平移π6个单位ꎬ再向上平移1个单位后得到y=2sin2x+π6æèçöø÷+1的图象ꎬ所以g(x)=2sin2x+π6æèçöø÷+1.令g(x)=0ꎬ得x=kπ+512π或x=kπ+34π(kɪZ).因为[aꎬa+10π]恰含10个周期ꎬ所以ꎬ当a是零点时ꎬ在[aꎬa+10π]上零点个数21ꎻ当a不是零点时ꎬa+kπ(kɪZ)也都不是零点ꎬ区间[a+kπꎬa+(k+1)π]上恰有两个零点ꎬ故在[aꎬa+10π]上有20个零点ꎬ综上ꎬy=g(x)在[aꎬa+10π]上零点个数的所有可能值为21或20.2利用诱导公式求值利用诱导公式进行求值是数学计算和解题中常用的一种方法ꎬ具有简便明了的过程和重要的意义ꎬ它能够帮助我们简化复杂的计算过程ꎬ提高计算的效率.同时ꎬ它也扩展了我们的数学思维和应用能力ꎬ在实际问题中起到了重要的作用.首先ꎬ利用诱导公式进行求值的过程相对简便明了.前已述及ꎬ诱导公式是一类可以将某些复杂函数转化为简单形式的公式[4].通过巧妙运用这些公式ꎬ我们可以将原始的复杂表达式转化为更简单㊁易于计算的形式ꎬ从而大大简化求值的过程.这些诱导公式包括特殊角的三角函数值㊁和差角的三角函数关系等ꎬ其处理过程可以减少繁琐的计算过程ꎬ提高计算的效率.其次ꎬ通过诱导公式ꎬ我们可以在计算和解题中更加灵活和高效地应用数学知识.它帮助我们将问题转化为更简单的形式ꎬ从而更好地理解和处理数学概念.而且ꎬ诱导公式也能够帮助我们发现数学中的规律和性质ꎬ提高我们的抽象思维能力.此外ꎬ利用诱导公式进行求值还具有更广泛的应用ꎬ许多问题都涉及三角函数的计算.通过运用诱导公式ꎬ我们可以更加方便地处理和求解这些问题ꎬ提高实际应用中的问题解决能力.例2㊀已知函数f(x)=sin(ωx+φ)ω>0ꎬ0<φ<π2æèçöø÷在π8ꎬ5π8æèçöø÷上单调ꎬ且f-π8æèçöø÷=f3π8æèçöø÷=0ꎬ则fπ2æèçöø÷的值为(㊀㊀).解析㊀由题意得ꎬ函数f(x)的最小正周期为96T=2πωꎬ因为f(x)在π8ꎬ5π8æèçöø÷上单调ꎬ所以T2=πω?π2ꎬ得0<ω?2.且f-π8æèçöø÷=f3π8æèçöø÷=0ꎬ所以T2=3π8--π8æèçöø÷=π2ꎬ解得ω=2.由于f-π8æèçöø÷=0ꎬ所以sin2ˑ-π8æèçöø÷+φ[]=0ꎬ整理得φ=π4.所以f(x)=sin2x+π4æèçöø÷ꎬ则fπ2æèçöø÷=sinπ+π4æèçöø÷=-22.3利用诱导公式证明利用诱导公式进行证明可以为证明过程提供一种清晰㊁简洁的推理路径.通过诱导公式ꎬ我们可以将复杂的等式或方程转化为简单的形式ꎬ从而更方便地进行推导和计算.这样的过程通常会减少繁琐的代数运算步骤ꎬ简化问题求解的过程ꎬ提高计算的效率[5].此外ꎬ诱导公式往往能够将问题与其他相关概念㊁定理联系起来ꎬ使证明过程更加连贯且易于理解.例3㊀已知AꎬBꎬC为әABC的内角.(1)求证:cos2A+B2+cos2C2=1ꎻ(2)若cosπ2+Aæèçöø÷sin3π2+Bæèçöø÷tan(C-π)<0ꎬ求证:әABC为钝角三角形.解析㊀(1)因为A+B=π-Cꎬ所以A+B2=π2-C2ꎬ所以cosA+B2=cosπ2-C2æèçöø÷=sinC2ꎬ所以cos2A+B2+cos2C2=1.(2)因为cosπ2+Aæèçöø÷sin3π2+Bæèçöø÷tan(C-π)<0ꎬ所以(-sinA)(-cosB)tanC<0.因此sinAcosBtanC<0.又因为0<A<πꎬ0<B<πꎬ0<C<π且sinA>0ꎬ所以cosB<0ꎬtanC>0{或cosB>0tanC<0{ꎬ所以B为钝角或C为钝角ꎬ所以әABC为钝角三角形.通过本文的论述ꎬ我们不仅了解了三角函数诱导公式的基本概念和推导方法ꎬ同时也掌握了在高中数学解题中常见三种应用技巧.化简㊁求值和证明是数学解题的重要环节ꎬ我们可以通过灵活运用三角函数诱导公式ꎬ将复杂问题转化为简单形式ꎬ从而提高解题效率和准确度.然而ꎬ要想真正掌握这些应用技巧ꎬ还需要在实践中不断练习和尝试.通过多做例题ꎬ多思考不同情况下的解题方法ꎬ同学们可以逐渐熟练掌握三角函数诱导公式ꎬ提高自己的数学能力和解题水平.相信在以后的学习和生活中ꎬ这些技巧也会为我们带来更多的启示和帮助.参考文献:[1]张辉ꎬ李钰.以问题为驱动的数学探究式教学例谈:以 三角函数的诱导公式 为例[J].新智慧ꎬ2023(24):10-12.[2]周忠武.合理设计教学过程积累数学活动经验:浅谈 三角函数的诱导公式 的教学设计[J].中学数学ꎬ2021(13):27-28.[3]韦爱群.中职数学三角函数诱导公式的教学探析[J].理科爱好者(教育教学)ꎬ2019(01):20-21.[4]吴蕾.高中数学课堂开展微型探究学习的教学实例与反思:以 诱导公式 为例[J].数学教学通讯ꎬ2017(21):9-10.[5]崔娅兰.数学原理教学探究:以高中三角函数诱导公式为例[C]ʊ新教育时代(2015年11月总第6辑)ꎬ2015:184.[责任编辑:李㊀璟]07。
(完整版)三角函数诱导公式总结

三角函数诱导公式与同角的三角函数【知识点1】诱导公式及其应用公式一: sin()-sin αα-=; cos()cos αα-= ; tan()tan αα-=- 公式二: ααπ-sin sin(=+); ααπ-cos cos(=+); ααπtan tan(=+). 公式三: ααπsin sin(=-); ααπ-cos cos(=-); ααπtan tan(-=-) 公式四: sin(2sin παα-=-); cos(2cos παα-=); tan(2tan παα-=-)公式五: sin(2π-α) = cos α; cos(2π-α) = sin α. 公式六: sin(2π+α) = cos α; cos(2π+α) =- sin α.公式七: sin(32π-α)=- cos α; cos(32π-α) = -sin α.公式八: sin(32π+α) = -cos α; cos(32π+α) = sin α.公式九:απαsin )2sin(=+k ; απαcos )2cos(=+k ; απαtan )2tan(=+k .(其中Z ∈k ). 方法点拨: 把α看作锐角一、前四组诱导公式可以概括为:函数名不变,符号看象限公式(五)到公式(八)总结为一句话:函数名改变,符号看象限(原函数所在象限) 二、奇变偶不变,符号看象限 将三角函数的角度全部化成απ+⋅2k 或是απ-⋅2k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函数名,偶数就不变例1、求值(1)29cos()6π= __________. (2)0tan(855)-= _______ ___. (3)16sin()3π-= __________.的值。
求:已知、例)sin(2)4cos()3sin()2cos( ,3)tan( 2απααπαπαπ-+-+--=+ 例3、 )2cos()2sin(21++-ππ【 】 A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos2例4、下列各式不正确的是【 】A . sin (α+180°)=-sin αB .cos (-α+β)=-cos (α-β)C . sin (-α-360°)=-sin αD .cos (-α-β)=cos (α+β) 例5、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于【 】 A .-23 m B .-32 m C .23 m D .32m例6、已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为【 】A .5B .-5C .6D .-6例7、试判断sin(2)cos()(9tan (5)2αππααπαπα-+⎛⎫+- ⎪⎝⎭··cos 为第三象限角)符号 例8、化简3sin(3)cos()cos(4)25tan(3)cos()sin()22πααππαπαπααπ-⋅-⋅+-⋅+⋅-例9、已知方程sin(α - 3π) = 2cos(α - 4π),求)sin()23sin(2)2cos(5)sin(α--α-πα-π+α-π例10、若1sin()3πθ-=,求[]cos()cos(2)33cos()1cos sin()cos()sin()22πθθππθθθπθπθπ+-+--⋅-⋅--+的值.提示:先化简,再将1sin 3θ=代入化简式即可.例11、若α例12、设)(x f 满足(sin )3(sin )4sin cos ,(||)2f x f x x x x π-+=⋅≤,求)(x f 的表达式.例13、设222sin()cos()cos()()31sin cos()sin ()22f παπαπααπαπαα+--+=+++-+,1sin 2α≠-,求23()6f π-的值.【知识点2】同角的三角函数的基本关系式 同角三角函数的基本关系式有两个: ①平方关系: sin 2α + cos 2α= ②商数关系:=ααcos sin 例14、化简cos α1-sin α1+sin α+sin α1-cos α1+cos α(π<α<3π2)得【 】A .sin α+cos α-2B .2-sin α-cos αC .sin α-cos αD .cos α-sin α 例15、若cos(π6-α)=m (|m |≤1),则sin(23π-α)的值为【 】A .-mB .-m 2 C.m2 D .m例16、1+2sin (π-3)cos (π+3)化简的结果是【 】A .sin3-cos3B .cos3-sin3C .±(sin3-cos3)D .以上都不对 例17、tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+a )的值为【 】A .m +1m -1 B.m -1m +1C .-1D .1 例18、已知)1(,sin <=m m α,παπ<<2,那么=αtan 【 】A 21m m- B 21m m-- C 21mm-± D m m 21-±例19、若角α的终边落在直线0=+y x 上,则ααααcos cos 1sin 1sin 22-+-的值等于【 】 A 2 B 2- C 2-或2 D 0例20、已知3tan =α,23παπ<<,那么ααsin cos -的值是【 】 A 231+-B 231+-C 231-D 231+ 例21、已知A 为锐角,lg(1+cos A )=m ,lg 11-cos A=n ,则1g sin A 的值为【 】A .m +1nB .12(m -n )C.12(m +1n ) D.12(m -1n)例22、已知角α的终边经过点)60cos 6,8(0--m P ,且54cos -=α,则m 的值为【 】 A .21 B .21-C .23-D .23 例23、(2011年高考江西卷)已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P(4,y)是角θ终边上一点,且sin θ=-552,则y= . 例24、已知)0(32cos sin πθαα<<=+,求θtan 精选试题1、以下四个命题中,正确的是【 】A .在定义域内,只有终边相同的角的三角函数值才相等B .{α|α=k π+6π,k ∈Z }≠{β|β=-k π+6π,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+23π<α<2k π,k ∈Z } 2、sin34π·cos 625π·tan 45π的值是【 】A .-43B .43C .-43D .433、已知()21sin -=+πα,则()πα7cos 1+的值为【 】A .332 B . -2 C . 332- D . 332± 4、如果A 为锐角,21)sin(-=+A π,那么=-)cos(A π【 】 A 、21-B 、21C 、23-D 、235、若(),2,53cos παππα<≤=+则()πα2sin --的值是【 】 A . 53 B . 53- C . 54 D . 54-6、已知cos78°约等于0.20,那么sin66°约等于【 】A .0.92 B.0.85 C.0.88 D.0.957、已知343tan ,,2,cos 2322πππααπα+=∈+⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭且则的值是【 】A .35-B .35C .45D .45-8、22222sin 1sin 2sin 3sin 89sin 90︒+︒+︒++︒+︒=9、已知3cos()5πα+=-,322παπ<<,则tan()2πα-=10、若1sin()22πα-=-,则tan(2)πα-=________. 11、已知()()()()29cos sin 4cos sin 3=+---++απαααπ,则αtan =.12、 已知cos()63πα-=25cos()sin ()66ππαα+--的值.提示:把56πα+化成()6ππα--,进而利用诱导公式求解.。
三角函数推导,公式应用大全,实例

一、两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotA cotB 1cotAcotB -+推导:1、应用三角函数线推导差角公式的方法设角α的终边与单位圆的交点为P 1,∠POP 1=β,则∠POx =α-β.过点P 作PM ⊥x 轴,垂足为M ,那么OM 即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM .过点P 作PA ⊥OP 1,垂足为A ,过点A 作AB ⊥x 轴,垂足为B ,再过点P 作PC ⊥AB ,垂足为C ,那么cos β=OA ,sin β=AP ,并且∠PAC =∠P 1Ox =α,于是OM =OB +BM =OB +CP =OA cos α+AP sin α=cos βcos α+sin βsin α.综上所述,.说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题.2、设α、β是两个任意角,把α、β两个角的一条边拼在一起,顶点为O,过B点作OB的垂线,交α另一边于A,交β另一边于C,则有S△OAC=S△OAB+S△OBC..根据三角形面积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.或者:sin(a+b)=cos[(π/2)-(a+b)]=cos[(π/2-a)-b]=cos(π/2-a)cosb-sin(π/2-a)sinb=sinacosb-cosasinb(就是利用π/2的诱导公式)3、tan(a+b)=sin(a+b)/cos(a+b)=(sinacosb+cosasinb)/(cosacosb-sinasinb) 分子分母同除以cosacosb 得(tana+tanb)/【1-tanatanb 】 二、倍角公式tan2A =Atan 12tanA2Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A1、公式sin2α=2sinα·cosα推导过程sin2α=sin(α+α)=sinα·cosα+cosα·sinα=2sinα·cosα2、公式余弦二倍角公式有三组表示形式,三组形式等价: cos2α=2cos²α-1 cos2α=1-2sin²α cos2α=cos²α-sin²α推导过程cos2α=cos(α+α)=cosα·cosα-sinα·sinα=cos²α-sin²α=2(cos²α)-1 =1-2(sin²α)3、正切二倍角公式tan2α=2tanα/[1-tan²α] 推导过程:tan2α=sin2α/cos2α=2sinα·cosα/cos²α-sin²α=[2sinα·cosα/cos²α]/[cos²α-sin²α/cos²α]=2tanα/[1-tan²α]三、半角公式(正负由所在的象限决定)(正负由所在的象限决定)(正负由所在的象限决定)推导过程:……①sin由等式①,整理得: 将 代入α,整理得:开方,得cos在等式①两边加上1,整理得:将代入 ,整理得:开方,得tansina=cos (π/2-a )注:四、三倍角公式(常用)四、五、六、七、八、九、十、N 倍角公式(不常用)sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)推导: sin3a =sin(2a+a)=sin2acosa+cos2asina =2sina(1-sin ²a)+(1-2sin ²a)sina =3sina-4sin ³a cos3a =cos(2a+a)=cos2acosa-sin2asina=(2cos ²a-1)cosa-2(1-cos ²a)cosa =4cos ³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)四倍角公式sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6) 八倍角公式sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8) 九倍角公式sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tan A^6+9*tanA^8)十倍角公式sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4)) cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^ 4+210*tanA^6-45*tanA^8+tanA^10)N倍角公式根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ) 为方便描述,令sinθ=s,cosθ=c 考虑n为正整数的情形:cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 +C(n,4)*c^(n-4)*(i s)^4 + ... +C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... =>比较两边的实部与虚部实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 +C(n,4)*c^(n-4)*(i s)^4 + ... i*(虚部):i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... 对所有的自然数n,1. cos(nθ):公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。
三角函数诱导公式二三四讲解

三角函数诱导公式二三四讲解
三角函数的诱导公式二、三、四主要用于简化三角函数的计算,通过代数运算将不同函数之间的关系转换为同一函数的关系。
以下是这些公式的详细解释:
1. 诱导公式二:适用于π+a的情况,其终边与角a的终边关于原点对称。
例如,sin(π+a)和cos(π+a)的值可以通过诱导公式二进行计算。
同样地,对于π-a的情况,其终边与角a的终边关于y轴对称。
2. 诱导公式三:适用于-a的情况,其终边与角a的终边关于x轴对称。
例如,sin(-a)和cos(-a)的值可以通过诱导公式三进行计算。
3. 诱导公式四:适用于2π+a的情况,其终边与角a的终边相同。
例如,sin(2π+a)和cos(2π+a)的值可以通过诱导公式四进行计算。
在应用这些公式时,需要特别注意函数的名称和符号的变化。
例如,在诱导公式二中,sin(π+a)和cos(π+a)的值应取负号,因为π+a的终边在第三象限,而正弦和余弦在第三象限取负值。
同样地,在诱导公式三中,sin(-a)和cos(-a)的值应取负号,因为-a的终边与x轴的负半轴重合,而正弦和余弦在x轴负半轴上取负值。
这些诱导公式不仅适用于正弦、余弦和正切函数,还可以推广到其他三角函数,如余切函数等。
通过对这些公式的理解和应用,可以有效地简化三角函数的计算过程。
完整版)三角函数诱导公式总结

完整版)三角函数诱导公式总结三角函数诱导公式与同角的三角函数知识点1】诱导公式及其应用诱导公式是指通过一些特定的公式,将三角函数中的某些角度转化为其他角度,从而简化计算。
以下是常用的诱导公式:公式一:sin(-α) = -sinα;cos(-α) = cosα;tan(-α) = -tanα公式二:sin(π+α) = -sinα;cos(π+α) = -cosα;tan(π+α) =tanα公式三:sin(π-α) = sinα;cos(π-α) = -cosα;tan(π-α) = -tanα公式四:sin(2π-α) = -sinα;cos(2π-α) = cosα;tan(2π-α) = -tanα公式五:sin(π/2-α) = cosα;cos(π/2-α) = sinα公式六:sin(π/2+α) = cosα;cos(π/2+α) = -sinα公式七:sin(-π/2-α) = -cosα;cos(-π/2-α) = -sinα公式八:sin(-π/2+α) = -cosα;cos(-π/2+α) = sinα公式九:sin(α+2kπ) = sinα;cos(α+2kπ) = cosα;tan(α+2kπ) = tanα(其中k∈Z)。
以上公式可以总结为两条规律:1.前四组诱导公式可以概括为:函数名不变,符号看象限。
2.公式五到公式八总结为一句话:函数名改变,符号看象限(原函数所在象限)。
另外,还有一个规律是:奇变偶不变,符号看象限。
也就是说,将三角函数的角度全部化成kπ/2+α或是kπ/2-α的形式,如果k是奇数,那么符号要改变;如果k是偶数,符号不变。
例1、求值:(1)cos(2916π)= ________;(2)tan(-855)= ________;(3)sin(-π)= ________。
例2、已知tan(π+α)=3,求:(2cos(-α)-3sin(π+α))/(4cos(-α)+sin(2π-α))的值。
三角函数诱导公式总结

三角函数诱导公式总结三角函数诱导公式是指用其中一三角函数来表示另一三角函数的公式。
在数学中三角函数诱导公式的推导和应用是非常重要的,它们在解三角方程、证明恒等式以及求解复数等领域中起到关键的作用。
本文将总结常见的三角函数诱导公式,并给出对应的推导过程和实际应用。
1.正弦函数的诱导公式:- $\sin (-x) = -\sin x$:通过几何意义可知,正弦函数在坐标系中关于原点对称,所以负角的正弦值等于对应正角的负值。
- $\sin (180° - x) = \sin x$:结合几何意义可知,正弦函数在坐标系中关于y轴对称,所以对于给定角度x,180°减去x所得的角度的正弦值等于x的正弦值。
- $\sin (180° + x) = -\sin x$:同理,正弦函数在坐标系中关于y轴对称,所以对于给定角度x,180°加上x所得的角度的正弦值等于x的负值。
- $\sin (360° - x) = -\sin x$:结合以上公式可得,对于给定角度x,360°减去x所得的角度的正弦值等于x的负值。
- $\sin (2x) = 2\sin x \cos x$:利用正弦函数的倍角公式,可得到角度为2x的正弦值可以分解为角度为x的正弦值的两倍乘以角度为x的余弦值。
这个公式在波动和震动的物理问题中常常使用。
2.余弦函数的诱导公式:- $\cos (-x) = \cos x$:由于余弦函数是偶函数,在坐标系中关于y轴对称,所以负角的余弦值等于对应正角的余弦值。
- $\cos (180° - x) = -\cos x$:余弦函数在坐标系中关于原点对称,所以对于给定角度x,180°减去x所得的角度的余弦值等于x的负值。
- $\cos (180° + x) = -\cos x$:同理,余弦函数在坐标系中关于原点对称,所以对于给定角度x,180°加上x所得的角度的余弦值等于x 的负值。
高中数学三角函数的诱导公式运用技巧详解

高中数学三角函数的诱导公式运用技巧详解高中数学中,三角函数是一个重要的概念,而诱导公式则是在解决三角函数问题中经常使用的工具。
本文将详细介绍高中数学中三角函数的诱导公式的运用技巧,并通过具体题目的举例,说明此题的考点以及解题思路。
一、正弦函数的诱导公式运用技巧正弦函数的诱导公式是指sin(A ± B)的展开式。
根据三角函数的性质,我们知道sin(A ± B)可以展开为sinAcosB ± cosAsinB,这就是正弦函数的诱导公式。
在解题过程中,我们经常会遇到需要将一个角度的正弦函数转化为两个角度的正弦函数之和或差的情况,这时就可以运用正弦函数的诱导公式。
例如,考虑以下题目:已知sinα = 3/5,且α为第二象限角,求sin(π - α)的值。
解析:根据题目中已知条件,我们可以得到cosα = -4/5,然后利用正弦函数的诱导公式sin(π - α) = sinπcosα - cosπsinα,代入已知的cosα和sinα的值,得到sin(π - α) = 0。
这个例子展示了如何利用正弦函数的诱导公式将一个角度的正弦函数转化为其他角度的正弦函数,从而解决问题。
二、余弦函数的诱导公式运用技巧余弦函数的诱导公式是指cos(A ± B)的展开式。
根据三角函数的性质,我们知道cos(A ± B)可以展开为cosAcosB ∓ sinAsinB,这就是余弦函数的诱导公式。
在解题过程中,我们经常会遇到需要将一个角度的余弦函数转化为两个角度的余弦函数之和或差的情况,这时就可以运用余弦函数的诱导公式。
例如,考虑以下题目:已知cosβ = 4/5,且β为第一象限角,求cos(π/2 + β)的值。
解析:根据题目中已知条件,我们可以得到sinβ = 3/5,然后利用余弦函数的诱导公式cos(π/2 + β) = cosπ/2cosβ - sinπ/2sinβ,代入已知的cosβ和sinβ的值,得到cos(π/2 + β) = -3/5。
三角函数推导及公式应用大全

三角函数公式1、两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)2、倍角公式tan2A = 2tanA/(1-tan^2 A)Sin2A=2SinA•CosACos2A = Cos^2 A--Sin^2 A=2Cos^2 A—1=1—2sin^2 A三倍角公式sin3A = 3sinA-4(sinA)^3;cos3A = 4(cosA)^3 -3cosAtan3a = tan a •tan(π/3+a)•tan(π/3-a) 半角公式sin(A/2) = √{(1--cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1--cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)}tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)3、和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB4、积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]5、诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA6、万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}7、其它公式a•sin(a)+b•cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a]a•sin(a)-b•cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b]1+sin(a) = [sin(a/2)+cos(a/2)]^2;1-sin(a) = [sin(a/2)-cos(a/2)]^2;;8、其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)9、双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)三角函数公式大全锐角三角函数公式sin α=∠α的对边/ 斜边cos α=∠α的邻边/ 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A))三倍角公式sin3α=4sinα•sin(π/3+α)sin(π/3-α)cos3α=4cosα•cos(π/3+α)cos(π/3-α)tan3a = tan a •tan(π/3+a)•tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα•cosβ•cosγ+cosα•sinβ•cosγ+cosα•cosβ•sinγ-sinα•sinβ•sinγcos(α+β+γ)=cosα•cosβ•cosγ-cosα•sinβ•sinγ-sinα•cosβ•sinγ-sinα•sinβ•cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα•tanβ•tanγ)/(1-tanα•tanβ-tanβ•tanγ-tanγ•tanα)两角和差cos(α+β)=cosα•cosβ-sinα•sinβcos(α-β)=cosα•cosβ+sinα•sinβsin(α±β)=sinα•cosβ±cosα•sinβtan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)和差化积sinθ+sinφ= 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ= 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ= 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ= -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ= [cos(α-β)-cos(α+β)] /2cosαcosβ= [cos(α+β)+cos(α-β)]/2sinαcosβ= [sin(α+β)+sin(α-β)]/2cosαsinβ= [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/〔1+tan^(α/2)〕cosα=〔1-tan^(α/2)〕/1+tan^(α/2)〕tanα=2tan(α/2)/〔1-tan^(α/2)〕其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0一,诱导公式口诀:(分子)奇变偶不变,符号看象限.1. sin (α+k•360)=sin αcos (α+k•360)=cos atan (α+k•360)=tan α2. sin(180°+β)=-sinαcos(180°+β)=-cosa3. sin(-α)=-sinacos(-a)=cosα4*. tan(180°+α)=tanαtan(-α)=tanα5. sin(180°-α)=sinαcos(180°-α)=-cosα6. sin(360°-α)=-sinαcos(360°-α)=cosα7. sin(π/2-α)=cosαcos(π/2-α)=sinα8*. Sin(3π/2-α)=-cosαcos(3π/2-α)=-sinα9*. Sin(π/2+α)=cosαcos(π/2+a)=-sinα10*.sin(3π/2+α)=-cosαcos(3π/2+α)=sinα二,两角和与差的三角函数1. 两点距离公式2. S(α+β): sin(α+β)=sinαcosβ+cosαsinβC(α+β): cos(α+β)=cosαcosβ-sinαsinβ3. S(α-β): sin(α-β)=sinαcosβ-cosαsinβC(α-β): cos(α-β)=cosαcosβ+sinαsinβ4. T(α+β):T(α-β):5*.三,二倍角公式1. S2α: sin2α=2sinαcosα2. C2a: cos2α=cos2α-sin2a3. T2α: tan2α=(2tanα)/(1-tan2α)4. C2a': cos2α=1-2sin2αcos2α=2cos2α-1四*,其它杂项(全部不可直接用)1.辅助角公式asinα+bcosα=sin(a+φ),其中tanφ=b/a,其终边过点(a, b) asinα+bcosα=cos(a-φ),其中tanφ=a/b,其终边过点(b,a) 2.降次,配方公式降次:sin2θ=(1-cos2θ)/2cos2θ=(1+cos2θ)/2配方1±sinθ=[sin(θ/2)±cos(θ/2)]21+cosθ=2cos2(θ/2)1-cosθ=2sin2(θ/2)3. 三倍角公式sin3θ=3sinθ-4sin3θcos3θ=4cos3-3cosθ4. 万能公式5. 和差化积公式sinα+sinβ=sinα-sinβ=cosα+cosβ=cosα-cosβ=6. 积化和差公式sinαsinβ=1/2[sin(α+β)+sin(α-β)]cosαsinβ=1/2[sin(α+β)-sin(α-β)]sinαsinβ-1/2[cos(α+β)-cos(α-β)]cosαcosβ=1/2[cos(α+β)+cos(α-β)]7. 半角公式另:三角函数口诀三角知识,自成体系,记忆口诀,一二三四.一个定义,三角函数,两种制度,角度弧度.三套公式,牢固记忆,同角诱导,加法定理.同角公式,八个三组,平方关系,导数商数.诱导公式,两类九组,象限定号,偶同奇余.两角和差,欲求正弦,正余余正,符号同前.两角和差,欲求余弦,余余正正,符号相反.两角相等,倍角公式,逆向反推,半角极限.加加减减,变量替换,积化和差,和奇互变.锐角三角函数公式sin α=∠α的对边/ 斜边cos α=∠α的邻边/ 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A))三倍角公式sin3α=4sinα•sin(π/3+α)sin(π/3-α)cos3α=4cosα•cos(π/3+α)cos(π/3-α)tan3a = tan a •tan(π/3+a)•tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα•cosβ•cosγ+cosα•sinβ•cosγ+cosα•cosβ•sinγ-sinα•sinβ•sin γcos(α+β+γ)=cosα•cosβ•cosγ-cosα•sinβ•sinγ-sinα•cosβ•sinγ-sinα•sinβ•cos γtan(α+β+γ)=(tanα+tanβ+tanγ-tanα•tanβ•tanγ)/(1-tanα•tanβ-tanβ•tanγ-tan γ•tanα)两角和差cos(α+β)=cosα•cosβ-sinα•sinβcos(α-β)=cosα•cosβ+sinα•sinβsin(α±β)=sinα•cosβ±cosα•sinβtan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)和差化积sinθ+sinφ= 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ= 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ= 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ= -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ= [cos(α-β)-cos(α+β)] /2cosαcosβ= [cos(α+β)+cos(α-β)]/2sinαcosβ= [sin(α+β)+sin(α-β)]/2cosαsinβ= [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角练习
1.在△ABC 中,A B B A 22sin tan sin tan ⋅=⋅,那么△ABC 一定是
( ) A .锐角三角形 B .直角三角形
C .等腰三角形
D .等腰三角形或直角三角形
2.在△ABC 中,︒=∠︒=︒=70,50sin 2,10sin 4C b a ,则S △ABC =
( ) A .8
1 B .41 C .2
1 D .A 3.已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为 ( )
A .41-
B .41
C .3
2- D .32 4.已知α为锐角,且2tan (π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan (π+α)+6sin (π+β)=1,则sin α=( ) A .355 B .377 C .31010 D .13
6.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a cos C ,b cos B ,c cos A 成等差数列,若b =3,则a +c 的最大值为( )
A.32 B .3 C .2 3 D .9
7、在△ABC 中,a +c =2b ,A -C=60°,则sinB= .
8、在△ABC 中,123ABC S = ,48ac =,2a c -=,求b .
9、已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,3sin C cos C -cos 2C =12,且c =3.
(1)求角C ; (2)若向量m =(1,sin A )与n =(2,sin B )共线,求a 、b 的值.
10.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos A cos B =-a b +2c
. (1)求角A 的大小.
(2)求sin B sin C 的最大值.
11、已知)3,cos 2(2x a =→-,)2sin ,1(x b =→-,函数1)(-⋅=→-→-b a x f ,1)(2
-=→-b x g . (Ⅰ)求函数)(x g 的零点的集合; (Ⅱ)求函数)(x f 的最小正周期及其单调增区间.
12、在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,向量 (1,sin )m A λ= ,(sin ,1cos )n A A =+ .
已知 //m n .
(1)若2λ=,求角A 的大小;(2)若3b c a +=,求λ的取值范围.
13、ABC ∆中,三个内角A 、B 、C 所对的边分别为a 、b 、c ,若 60=B , c a )13(-=.
(1)求角A 的大小;
(2)已知当]2
,6[ππ∈x 时,函数x a x x f sin 2cos )(+=的最大值为3,求ABC ∆的面积.。