有理数单元测试与答案
有理数单元测试(含答案)

第一部分有理数单元测试1.下列说法错误的是( )A.零是非负数B.零是整数C.零的相反数是零D.零的倒数是零2.下列说法正确的是( )A.绝对值等于3的数是-3B.绝对值小于113的整数是1和-1C.绝对值最小的有理数是1D.3的绝对值是33.下列判断正确的是( )A.12004的相反数是2004; B.12004的相反数是-2004;C.12004的相反数是-12004; D.12004的相反数是12004-4.下列四组有理数大小的比较正确的是( )A.1123->-;B. 11-->-+;C.1123<;D.1123->-5.有理数a,b,c在数轴上的位置如图所示,下列结论正确的是( )A.b>a>cB.b>-a>cC.a>c>bD.│b│>-a>-c6.数-216不是( )A.有理数B.整数C.负有理数D.自然数7.下列说法正确的是( )A.正整数和负整数统称为整数B.零表示不存在,所以零不是有理数C.非负有理数就是正有理数D.整数和分数统称为有理数8.下列说法错误的个数是( )①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数③正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等A.3个B.2个C.1个D.0个9.下列说法正确的是( ).①在+5与-6之间没有正数②在-1与0之间没有负数③在+5与+6之间有无数个正分数④在-1与0之间没有正分数A.仅④正确B.仅③正确C.仅③④正确D.①②④正确10.数a的相反数是-a,那么a表示( )A.负有理数B.正有理数C.正分数D.任意一个数二、填空1.在有理数集合中,最小的正整数是______,最大的负整数是______.2.绝对值最小的有理数是_______.3.相反数最小的负整数是______,相反数最大的正整数是______.4.2.5的相反数是_______,倒数是_____,绝对值是______.5.如果a表示一个有理数,那么-a表示a的______,│a│表示a的_______.6.自行车车轮向顺时针方向旋转200圈记做+200圈, 那么向逆时针方向旋转150圈应记做_________.7. π-的相反数是_____,-a的相反数是________.8.若│y+5│=14,那么y=________.9.在数轴上,离开原点的距离是5的数是__________.10.在数轴上,离开表示数2的点距离是3的点表示的数是_______.三、解答1.写出所有绝对值不大于4的负整数,并在数轴上表示出来.2.若│x-3│+│y+4│+│z-5│=0,求代数式z2-y2+x的值.3.某检修小组乘汽车检修供电线路。
有理数的单元测试题及答案

有理数的单元测试题及答案一、选择题(每题2分,共10分)1. 下列各数中,是正数的有()A. -3B. 0C. 3D. -3.52. 绝对值是5的数是()A. 5B. -5C. 5或-5D. 都不是3. 两个负数相加,和的符号是()A. 正B. 负C. 0D. 不确定4. 有理数的乘方运算中,-3的平方是()A. 9B. -9C. 3D. -35. 若a < 0,b > 0,且|a| > |b|,则a+b的值是()A. 正B. 负C. 0D. 不确定二、填空题(每题2分,共10分)1. 有理数包括整数和______。
2. 绝对值是数轴上表示该数的点到原点的距离,例如|-4|=______。
3. 两个有理数相除,如果被除数和除数同号,则商是______数。
4. 有理数的乘法运算中,-2乘以-3等于______。
5. 一个数的相反数是与它相加等于______的数。
三、计算题(每题5分,共20分)1. 计算下列各数的绝对值:|-7|,|0|,|5.5|。
2. 计算下列各数的和:-3 + 2 + (-1)。
3. 计算下列各数的乘积:(-4) × (-5)。
4. 计算下列各数的差:7 - (-2)。
四、解答题(每题10分,共20分)1. 某班有学生40人,其中20人喜欢数学,15人喜欢英语,5人既喜欢数学又喜欢英语。
请问喜欢数学或英语的学生有多少人?2. 某商店出售两种商品,商品A的进价是20元,售价是30元;商品B的进价是15元,售价是25元。
如果商店同时购进这两种商品各10件,商店的总利润是多少?五、应用题(每题15分,共30分)1. 某工厂有工人100名,其中60名工人每天能完成10个产品,剩余的工人每天能完成5个产品。
如果工厂每天需要生产800个产品,问工厂是否需要增加工人?2. 某公司计划在两个城市之间铺设一条铁路,已知城市A到城市B的距离是300公里。
如果铁路的铺设成本是每公里5万元,公司需要准备多少资金?答案:一、选择题1. C2. C3. B4. A5. B二、填空题1. 分数2. 43. 正4. 65. 0三、计算题1. 绝对值:7,0,5.52. 和:-23. 乘积:204. 差:9四、解答题1. 喜欢数学或英语的学生有35人。
第一章 有理数单元测试(含答案)

a 10第一章 有理数单元测试一、选择题(每小题4分,共32分)1.下列说法正确的是( ) A.所有的整数都是正数 B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数 2.12的相反数的绝对值是( ) A.-12 B.2 C.-2 D.12 3.有理数a 、b 在数轴上的位置如图所示,那么下列式子中成立的是( )A.a>bB.a<bC.ab>0D.0a b> 4.在数轴上,原点及原点右边的点表示的数是( )A.正数B.负数C.非正数D.非负数5.下列各组数中,不是互为相反意义的量的是( )A.收入200元与支出20元B.上升10米和下降7米C.超过0.05mm 与不足0.03mD.增大2岁与减少2升6.如果一个数的平方等于它的倒数,那么这个数一定是( )A.0B.1C.-1D.±17.4604608取近似值,保留三个有效数字,结果是( )A.4.60×106B.4600000C.4.61×106D.4.605×1068.下列运算正确的是( ) A.-22÷(-2)2=1 B. 31128327⎛⎫-=- ⎪⎝⎭C.1352535-÷⨯=- D. 133( 3.25)6 3.2532.544⨯--⨯=- 二、填空题(每小题3分,共24分) 9.在数+8.3, 4-,8.0-, 51-, 0, 90, 334-,|24|--中,________________是正数,__________________是负数, 整数.10.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降11℃, 这时气温是__.11.一个数的相反数的倒数是113-,这个数是________.12.数轴上到原点的距离是3个单位长度的点表示的数是______.13.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个.14. 平方等于641 的数是 ,立方等于641 的数是 ,平方等于它本身的数是 .15.绝对值小于5的所有的整数的和_______.16.若│x-1│+(y+2)2=0,则x-y=___________.三、解答题:(共44分)17.计算题(每题5分,共20分)(1)(-12)÷4×(-6)÷2 (2) 235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭(3) 111311123124244⎛⎫⎛⎫⎛⎫⎛⎫--+----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (4) 232121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭18.(8分)若│a │=2,b=-3,c 是最大的负整数,求a+b-c 的值.19.(8分)检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地出发, 到收工时,行走记录为(单位:千米):+8,-9,+4,+7,-2,-10,+18,-3,+7,+5回答下列问题:(每题5分,共10分)(1)收工时在A 地的哪边?距A 地多少千米?(2)若每千米耗油0.3升,问从A 地出发到收工时,共耗油多少升?20.(8分)某工厂向银行申请了甲种贷款5105.1⨯元,乙种贷款5100.2⨯元,甲种贷款每年的年利率为7%,乙种贷款每年的年利率为6%,问该厂每年付出的利息是多少元?(用科学记数法表示)参考答案一、选择题(每小题4分,共32分)CDADD BAD二、填空题(每小题3分,共24分) 9. +8.3 90, -4 -0.8 -15 -343 -24-, -4 0 90 -24-;10. -1℃; 11. 34; 12. ±3; 13. 512(即29 = 512); 14. ±18,14,10; 15. 0;16. 3.三、解答题(每小题10分,共30分)17.(1)(-12)÷4×(-6)÷2=(-12)×14×(-6)×12=9. (2)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭ =25160.25(4)(5)(4)1080908-⨯-⨯-⨯-⨯-=--=-. (3)111311123124244⎛⎫⎛⎫⎛⎫⎛⎫--+----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ =111311123124244---++ =1111331111230434422444⎛⎫⎛⎫-++--+=-+=- ⎪ ⎪⎝⎭⎝⎭. (4)232121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭ =4412744993⎛⎫-⨯⨯+-⨯- ⎪⎝⎭=.1644033-++=.18.∵│a │=2,∴a=±2.c 是最大的负整数,∴c=-1.当a=2时,a+b-c=2-3-(-1)= 0.当a=-2时a+b-c=-2-3-(-1)=-4.19.(1)∵8-9+4+7-2-10+18-3+7+5=8+4+7+18+7+5-9-10-2-3=25,∴在A 处的东边25米处.(2)∵│8│+│-9│+│4│+│7│+│-2│+│-10│+│18│+│-3│+│7│+│5│=73千米,73×0.3=21.9升,∴从出发到收工共耗油21.9升.20. 1.5×510×7%+2.0×510×6%=2.25×410(元).。
有理数单元测试卷(含答案)

数学试卷(第一章有理数 时间90分 满分100分)班级 姓名 成绩一、填空题(每小题2分,共20分)1.│-2│ 。
2.-2. 5的倒数是 。
3.如果80m 表示向东走80m ,那么-60m 表示_____________________。
4.在数轴上,离开原点的距离是2的数是__________。
5.比较有理数的大小:(1) (2)6.一个数和它的倒数相等,则这个数是 。
7.将数375 800精确到万位的近似数是__________;将近似数5.197精确到0.01时,有效数字分别是____________。
8.式子的计算结果是 。
9.绝对值大于1而小于4的整数有____________ ,它们的和是_________。
10.的值是__________________。
二、选择题(每小题3分,共24分)11.在数轴上,原点及原点右边的点表示的数是( )A.正数B.负数C. 非负数D.非正数12.用-a 表示的数一定是( )A .负数B .负整数C .正数或负数D .以上结论都不对13.下列各数用科学记数法表示正确的是( )A .0.58×105B . 12.3×107C .D . 3.06×10614.数a 的相反数是-a,那么a 表示( )A. 任意一个数B.正有理数C.正分数D. 负有理数15.下列说法错误的个数是( )①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数 ③正数和零的绝对值都等于它本身;④互为相反数的绝对值相等A .3个B .2个C .1个D .0个16.如果,下列成立的是( )A .B .C .D .18.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是( )A.a>bB.a<bC.ab>0D.三、解答题(76分)19.把下列各数填入它所属的集合内:(6分)15 ,-,-5 ,,0 ,-5.32 ,2 ,(1)分数集合{ . . .}(2)整数集合{ . . .}(3)正数集合{ . . .}20.比较大小:-(-0.3)和∣-∣(4分)21.计算下列各题(24分)(1) (-3)+(-9)(2) (-4.7)+3.9(3) (4)(5) (6)22.用简便方法计算下列各题(8分)(1)(2)23.(8分)在数轴上表示下列各数,并用“<”号把它们连接。
有理数单元测试题及答案

有理数单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是有理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 有理数-3和5的和是多少?A. -8B. 2C. -2D. 83. 哪个是有理数的相反数?A. 3B. -3C. 0D. 1/24. 绝对值是5的有理数有几个?A. 1B. 2C. 3D. 45. 下列哪个表达式等于0?A. -3 + 3B. -3 - 5C. -3 × 0D. -3 ÷ 3二、填空题(每题2分,共20分)6. 有理数-7的绝对值是________。
7. 有理数-2和4的差是________。
8. 有理数-6和-3的乘积是________。
9. 有理数-4的倒数是________。
10. 若a是有理数,且a的相反数是-5,则a=________。
三、计算题(每题5分,共30分)11. 计算下列表达式的值:(-3) × (-2) + 4 ÷ (-2)。
12. 解下列方程:3x - 7 = 8。
13. 计算下列各数的绝对值:-12,0,5.5。
14. 求下列数的相反数:-9,3/4,0。
四、解答题(每题10分,共30分)15. 某商店在一天内卖出了价值为-500元的商品(亏损),同时又购入了价值为300元的商品。
请问这一天商店的净亏损是多少?16. 某工厂在一个月内生产了200件产品,每件产品的成本是5元,销售价格是10元。
请问工厂这个月的纯利润是多少?17. 某学生在一次数学测验中得了85分,第二次测验得了90分,第三次测验得了75分。
请问该学生这三次测验的平均分是多少?答案一、选择题1. D2. C3. B4. B5. A二、填空题6. 77. -68. 189. -1/410. 5三、计算题11. 412. x = 513. 12,0,5.514. 9,-3/4,0四、解答题15. 净亏损200元16. 纯利润1000元17. 平均分81.67分(保留两位小数)结束语本测试题旨在检验学生对有理数的基本概念、运算规则和实际应用的理解。
有理数单元测试及答案

有理数单元测试及答案有理数单元检测试题一、填空题(本题共有9个小题,每小题2分,共18分)1、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么惯上将2楼记为1;地下第一层记作-1;数-2的实际意义为地下第三层,数+9的实际意义为地面上的第十层。
2、如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为-5.3、某数的绝对值是5,那么这个数是-5或5.(保留四个有效数字)4、(4/3)²=16/9,(-4/3)²=16/9.5、数轴上和原点的距离等于3的点表示的有理数是-3或3.6、计算:(-1)+(-1)=-2.7、如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m=-1.8、(+5.7)的相反数与(-7.1)的绝对值的和是12.8.9、已知每辆汽车要装4个轮胎,则51只轮胎至多能装配12辆汽车。
二、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)10、下列说法正确的是(C)。
A。
整数就是正整数和负整数B。
负整数的相反数就是非负整数C。
有理数中不是负数就是正数D。
零是自然数,但不是正整数11、下列各对数中,数值相等的是(A)。
A。
-2与(-2)B。
-3与(-3)C。
-3×2与-3×2D。
-( -3)与-( -2)12、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是(D)。
A。
-12B。
-9C。
-0.01D。
-213、如果一个数的平方与这个数的差等于1,那么这个数只能是(B)。
A。
-1B。
1C。
0D。
或114、绝对值大于或等于1,而小于4的所有的正整数的和是(C)。
A。
8B。
7C。
6D。
515、计算:(-2)+(-2)的是(D)。
A。
2B。
-1C。
-2D。
有理数单元测试题及答案
有理数单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是有理数?A. πB. √2C. 1/3D. 0.33333(无限循环)答案:C2. 如果a和b都是有理数,且a > b,那么下列哪个选项是正确的?A. a + b > 0B. a - b > 0C. a × b > 0D. a ÷ b > 0答案:B3. 两个负有理数相加的结果是什么?A. 正数B. 负数C. 零D. 无法确定答案:B4. 下列哪个数是无理数?A. 0.5B. √3C. 1/7D. 3.1415答案:B5. 有理数a和b的绝对值相等,且a < b,那么a和b的和是多少?A. aB. bC. 0D. -2a答案:D二、填空题(每题2分,共10分)6. 如果一个有理数的绝对值是5,那么这个数可以是______或______。
答案:5,-57. 两个有理数相除,如果商是正数,那么这两个数的符号必须______。
答案:相同8. 如果一个有理数的平方是9,那么这个数可以是______或______。
答案:3,-39. 有理数的加法运算满足交换律,即a + b = ______ + a。
答案:b10. 有理数的乘法运算满足结合律,即(a × b) × c = a ×(______ × c)。
答案:b三、计算题(每题5分,共15分)11. 计算下列表达式的值:(-3) × 2 + 4 × (-2) - 6。
答案:原式 = -6 - 8 - 6 = -2012. 计算下列表达式的值:(-4)² - 3 × 2 - 5。
答案:原式 = 16 - 6 - 5 = 513. 计算下列表达式的值:(-2)³ + 3 × (-1/3) - 1。
答案:原式 = -8 - 1 - 1 = -10四、解答题(每题10分,共20分)14. 某商店在一天内卖出了10件商品,每件商品的售价为x元,成本为y元。
有理数单元测试题(含答案)
有理数单元测试题(含答案)有理数单元测试题⼀、选择题(本⼤题共10⼩题,共30分) 1.下列各数表⽰准确数的是()A. ⼩明同学买了6⽀铅笔B. ⼩亮同学的⾝⾼是1.72mC. 教室的⾯积是60m2D. ⼩兰在菜市场买了3⽄西红柿1.下列说法:①近似数3.45精确到百分位;②近似数0.50精确到百分位,③2019.5精确到个位是2019.其中说法正确的个数有()A. 1个B. 2个C. 3个D. 0个2.关于(?3)4的正确说法是()A. ?3是底数,4是幂B. ?3是底数,4是指数,?12是幂C. 3是底数,4是指数,81是幂D. ?3是底数,4是指数,81是幂3.在算式|5□(?3)|+4中的□所在位置,填⼊下列哪种运算符号,计算出来的值最⼤()A. +B. ?C. ×D. ÷4.已知xy>0,x+y<0,则()A. x>0,y>0B. x<0,y<0C. x>0,y<0D. x<0,y>05.若a+b<0,baB. a<0,b<0C. a>0,b<0D. a<0,b>06.计算1357×316最简便的⽅法是()A. (13+57)×316B. (14?27)×316C. (10+357)×316D. (16?227)×3167.计算(?1)2017?(?1)2018等于()A. 0B. 2C. ?2D. ?18.⽤科学记数法表⽰136000,其结果是()A. 0.136×106B. 1.36×105C. 136×103D. 136×1069.有理数a、b在数轴上的对应位置如图所⽰,则a+b的值为()B. 负数C. 0D. ⾮正数⼆、填空题(本⼤题共10⼩题,共30分)10.四舍五⼊求近似值:0.7951≈__________ (精确到0.01)11.已知2.73×10n是⼀个7位数,则n=________,原数为________.12.已知a,b互为相反数,c,d互为倒数,m的绝对值等于2.则a+ba+b+c2cd+m=0的值为________.13.若|m|=7,|n|=4,那么mn=________.14.计算:(?22)×57×(?311)×(?21)=______.15.计算:1+(?2)+3+(?4)+5+(?6)+?+99+(?100)=______.16.已知两个数的和为?225,其中⼀个数为?134,则另⼀个数是________.17.已知|x|=7,|y|=2,且x18.若a是?[?(?7)]的相反数,则a=________.19.如果2a?5与?7互为相反数,则a=________.三、计算题21、(本⼤题共1⼩题,共6×4=24分)(1)(?1)100×5+(?2)4÷4;(2)(?3)3?3×(?13)4;(3)76×(1613)×314÷3;(4)(?10)3+[(?4)2?(1?32)×2];(5)?23÷49×(?23)2;(6)4+(?2)3×5?(?0.28)÷4.四、解答题(本⼤题共6⼩题,共36分)20.已知数轴上有点A,B,A,B两点之间的距离是1个单位长度,点A到原点O的距离是3个单位长度,那么点B对应的数可能是多少?(5分)21.在活动课上,有6名学⽣⽤橡⽪泥做了6个乒乓球,直径可以有0.02毫⽶的误差,超过规定直径的毫⽶数记作正数,不⾜的记为负数,检查结果如下表:(1)请你指出哪些同学做的乒乓球是合乎要求的?(2)指出合乎要求的乒乓球中哪个同学做的质量最好?哪个同学做的质量较差?(3)请你对6名同学做的乒乓球质量按照最好到最差排名;(4)⽤学过的绝对值知识来说明以上问题.(1+2+2+1=6分)22.已知a=?212,b=?314,c=413,求下列各式的值.(3+3=6分)(1)a?b+c;(2)a?b?c.23.已知a、b互为相反数,c、d互为倒数,m是绝对值等于2的数,求:a+ba+b+c+m2?cd 的值.(5分)24.观察下⾯三⾏数.(2+2+3=7分)2,4,?8,16,?32,64,…;4,2,?10,14,?34,62,…;4,?8,16,?32,64,?128,….(3)取每⾏的第100个数,计算这三个数的和.25.观察下列等式:(4+3=7分)第1个等式:a1=11×3=12×(1?13);第2个等式:a2=13×5=12×(1315);第3个等式:a3=15×7=12×(1517);第4个等式:a4=17×9=12×(1719);……请解答下列问题:(1)按以上规律列出第5个等式:a5=________=________;(2)⽤含n的式⼦表⽰第n个等式:a n=____________=____________(n为正整数);有理数测试题答案【答案】1. A2. B3. D4. C5. B6. B7. D8. C9. B10. A11. 0.8012. 6;273000013. 0或?414. ±2815. ?9016. ?5017. ?132018. ?9或?519. 720. 621. 解:(1)原式=1×5+16÷4 =5+4=9;(2)原式=?27?3×181=?27?1 27=?27127;(3)原式=76×(?16=?572;(4)原式=?1000+[16?(?8)×2]=?1000+(16+16)=?1000+16+16 =?968;(5)原式=?8×94×49=?8;(6)原式=4+(?8)×5+0.07=4?40+0.07 =?35.93.22. 解:当点A 表⽰3时,点B 表⽰的数是2或4,当点A 表⽰?3时,点B 表⽰的数是?2或?4.23. 解:(1)∵绝对值⼩于0.02的数有?0.017,?0.011,∴张兵、蔡伟做的乒乓球是合乎要求的; (2)∵|?0.011|<|?0.017|,∴蔡伟做的质量最好,张兵做的质量较差;(3)∵|?0.011|<|?0.017|<|?0.021|<|+0.022|<|+0.023|<|+0.031|,∴从最好到最差排名为:蔡伟、张兵、余佳、赵平、王敏、李明; (4)这是绝对值在实际⽣活中的应⽤,对误差来说绝对值越⼩越好.24. 解:(1)原式=(?212)?(?314)+413=?52+134+133=30+39+5212=6112;(2)原式=(?212)?(?314)?41=30+395212=?4312.25. 解:∵a 、b 互为相反数,c 、d 互为倒数,m 是绝对值等于2的数,∴a +b =0,cd =1,m 2=4,∴a+ba+b+c +m 2?cd =0+4?1=3.26. 解:(1)第⼀⾏数的规律是:从第⼀个数开始,后⾯⼀个数是前⾯⼀个数乘?2得到的,即?2,(?2)2,(?2)3,(?2)4……,则第n 个数为(?2)n ;(2)第⼀⾏数?2对应得出第⼆⾏的数,即(?2)n ?2;第⼀⾏数×(?2)对应得出第三⾏的数,即(?2)n+1; (3)∵第⼀⾏的第100个数为(?2)100,第⼆⾏的第100个数为(?2)100?2,;第三⾏的第100个数为(?2)100×(?2)=(?2)101(?2)100+[(?2)100?2]+(?2)101=(?2)100+(?2)100+(?2)101?2 =(?2)100(1+12)2=?2.27. 解:(1)19×11 12×(19?111);1×(12n?112n+1);(3)a1+a2+a3+a4+?+a100=12×(1?13)+15)+12×(1517)+12×(1719)+···+ 12×(1 1991 201 ) =3+1315+1517+1719 +···+ 1 1991 201 )=1×(1? 1)12×200 201 =100 201.。
有理数单元测试题(含答案)
第一章有理数单元测试一、选择题(共10小题)1.在,﹣2,0,﹣3.4这四个数中,属于负分数的是()A. B. -2 C. 0 D. ﹣3.4【答案】D2.下列四个数中,其倒数的相反数是正整数的是()A. 3B.C. -2D.【答案】D3.2018年五一小长假,杭州市公园、景区共接待游客总量617.57万人次,用科学计数法表示617.57万的结果是( )A. B. C. D.【答案】B4.a,b是有理数,它们在数轴上的对应点的位置如图所示,则下列结论正确的是()A. a+b>0B. a+b<0C. a﹣b=0D. a﹣b>0【答案】B5.若有理数a与3互为相反数,则a的值是()A. 3B. -3C.D. -【答案】B6.数据26000用科学记数法表示为2.6×10n,则n的值是()A. 2B. 3C. 4D. 5【答案】C7.在一次数学测试中,七(2)班的平均分为85分,把高于平均分的高出部分数记为正数,老师将某一小组的美美、多多、田田、乐乐四位同学的成绩记为+7,-4,-11,+13,则这四位同学实际成绩最高的是()A. 美美B. 多多C. 田田D. 乐乐【答案】D8.下列说法中正确的是()A. 减去一个数等于加上这个数B. 两个相反数相减得0C. 两个数相减,差一定小于被减数D. 两个数相减,差不一定小于被减数【答案】D9.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)= ;④(﹣4)÷×(﹣2)=16.其中正确的个数()A. 4个B. 3个C. 2个D. 1个【答案】C10.下列说法中正确的是()A. 若a+b>0,则a>0,b>0B. 若a+b<0,则a<0,b<0C. 若a+b>a,则a+b>bD. 若|a|=|b|,则a=b或a+b=0【答案】D二、填空题(共10小题)11.若约定向北走5km记作+5km,那么向南走3km记作________ km.【答案】﹣312.比较大小:4 ________5【答案】<13.若x=4,则|x﹣5|=________.【答案】114.(2016•镇江)计算:(﹣2)3=________.【答案】-815.设[x]表示不超过x的最大整数,计算[2.7]+[﹣4.5]=________.【答案】﹣316.到原点的距离不大于3的整数有________ 个【答案】717. 截止2017年4月28日,电影《美人鱼》的累计票房达到大约3390000000元,数据3390000000用科学记数法表示为________【答案】3.39×10918.﹣1减去与的和,所得的差是________【答案】19.数轴上A点表示原点左边距离原点3个单位长度、B点在原点右边距离原点2个单位长度,那么两点所表示的有理数的和与10的差是________【答案】—1120.对有理数a、b定义运算“﹡”如下:a﹡b= ,则(﹣3)﹡4=________.【答案】-12三、解答题(共5题)21.写出数轴上所有大于-4,且小于2的整数;【答案】—3、—2、—1、0、122.规定a※b=a﹣b,求4※(﹣6)的值.【答案】解:4※(﹣6)=4﹣(﹣6)=4+6=10.23.计算:(1)4×(﹣5)+|5﹣8|+24÷(﹣3)(2).【答案】(1)解:原式=﹣20+3﹣8=﹣25(2)解:原式=﹣1﹣=﹣24.今年的“十•一”黄金周是8天的长假,某风景区在8天假期中每天旅游人数变化如表(正号表示人数比前一天多,符号表示比前一天少)日期1日2日3日4日5日6日7日8日人数变化单位:万人+1.8 ﹣0.6 +0.2 ﹣0.7 ﹣1.3 +0.5 ﹣2.4 ﹣1.2(1)若9月30日的游客人数为4.2万人,则10月4日的旅客人数为________万人;(2)八天中旅客人数最多的一天比最少的一天多________万人?(3)如果每万人带来的经济收入约为100万元,则黄金周八天的旅游总收入约为多少万元?【答案】(1)4.9(2)4.3(3)解:根据表格得:每天旅客人数分别为6万人、5.4万人、5.6万人、4.9万人、3.6万人、4.1万人、1.7万人,则黄金周七天的旅游总收入约为(6+5.4+5.6+4.9+3.6+4.1+1.7)×100=3130(万元).25.检修组乘汽车,沿公路检修线路,约定向东为正.向西为负,某天自A出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、+7、﹣2、﹣10、+19、﹣3 回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?【答案】(1)解:+8﹣9+4+7﹣2﹣10+19﹣3=14,东边14千米(2)解:(+8+|﹣9|+4+7+|﹣2|+|﹣10|+19+|﹣3|)×0.3=18.3升,答:从A地出发到收工时,共耗油18.3升。
人教版数学七年级上册第一章有理数《单元测试》附答案
人教版数学七年级上学期第一章有理数测试时限:100分钟满分:120分一.选择题(本大题共12个小题,每小题3分,共36分内)1.下列说法不正确的是( )A. 0是最小数B. 0的相反数是0C. 0没有倒数D. 0是绝对值最小的数2.下列各对数中,互为相反数的是( )A. +(-3)与-3B. +(+3)与-3C. -(-3)与3D. 3 与+(+3)3.若两个有理数的和是正数,那么一定有结论( )A. 两个加数都是正数B. 两个加数有一个是正数C. 一个加数正数,另一个加数为零D. 两个加数不能同为负数4.两个非零有理数的和是0,则它们的商为:( )A. 0B. -1C. +1D. 不能确定5.下列各组数中,数值相等是()A. 32和23B. ﹣23和(﹣2)3C. ﹣32和(﹣3)2D. ﹣3×22 和(﹣3×2)26.绝对值相等的两个数在数轴上对应两点的距离为10,则这两个数为( )A. 10和-10B. 0和10C. 5和-5D. 5和07.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是( )A. b<0B. a+c<0C. a﹣b>0D. b﹣c<08.计算16×(-6)÷(-16)×6值为( )A. 1B. 36C. -1D. +69.下列交换加数的位置的变形中,正确的是A. 1-4+5-4=1-4+4-5B.13111311 34644436 -+--=+--C. 1-2+3-4=2-1+4-3D. 4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.710.学校、家、书店依次坐落在一条东西走向的大街上,学校在家的东边200米,书店在家西边1000米,某同学从家里出发,向西走了500米,接着又向西走了-700米,此时该同学的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方11.比较大小:-22,(12-)2,(13-)3,正确的是( )A. -22>(12-)2>(13-)3 B. (13-)3>-22>(12-)2C. (12-)2>-22>(13-)3 D. (12-)2>(13-)3>-2212.若(-1)2=4,那么的值为()A. 27B. 3或-1C. 25或-1D. -1或27二、填空题(本大题共4个小题,每小题3分,共12分)13.月球距地球约为38万千米,用科学计数法表示为____________千米.14.绝对值小于6的所有数的积是_____________.15.如果数轴上的点A对应的数为-5,那么与A点相距3个单位长度的点所对应的有理数为__________.16.在﹣3,﹣2,﹣1,4,5中取出三个数,把三个数相乘,所得到的最大乘积是_.三、解答题(本大题共6个题,共72分)17.(1)将下列各数填入相应的圈内:212,5 , 0 ,1.5 ,+2 ,-3 .(2 )说出这两个圈的重叠部分表示的是什么数的集合:.18.数轴上表示下列各数,并用“<”号把它们连起来:1.5, 3, -2.5, 0 , -1 1 319.计算下列各题(1)15+(-14)-15-(-025) (2)(-81)÷94×49÷(-32)(3)292324×(-12) (4)25×34-(-25)×12+25×(-14)(5)-24-(-4)2 ×(-1)+(-3)3(6)3.25-[(-12)-(-52)+(-54)+243]20.按要求解答下列各题(1)已知a、b 互为相反数,c、d 互为倒数,x=(-2)2.试求x2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016的值.(2)已知有理数a、b、c 满足|a-1|+|b-3|+|3c-1|=0,求(a×b×c)178 ÷(a36×b7×c6)的值.21.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?22.陈老师在上周五买进某公司股票1000股,每股28元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)星期三收盘时,每股是多少?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知陈老师买进股票时付了1.5%的手续费,卖出时需付成交手续费和交易税共2.5%,如果陈老师在星期五收盘时将全部股票卖出,他的收益情况如何?答案与解析一.选择题(本大题共12个小题,每小题3分,共36分内)1.下列说法不正确的是( )A. 0是最小的数B. 0的相反数是0C. 0没有倒数D. 0是绝对值最小的数【答案】A【解析】【分析】根据有理数0的意义进行分析.【详解】0不是最小的数,比0小的数是负数;0的相反数是0;0没有倒数;0是绝对值最小的数.故选A【点睛】本题考核知识点:0的意义. 解题关键点:理解有理数0的意义.2.下列各对数中,互为相反数的是( )A. +(-3)与-3B. +(+3)与-3C. -(-3)与3D. 3 与+(+3)【答案】B【解析】【分析】根据:只有符号不同的两个数互为相反数.逐个化简分析即可.【详解】A .+(-3)=-3与-3, 不是互为相反数;B.+(+3)=3与-3 , 是互为相反数;C.-(-3)=3与3, 不是互为相反数;D.3 与+(+3)=3, 不是互为相反数.故选B【点睛】本题考核知识点:相反数. 解题关键点:理解相反数的定义.3.若两个有理数的和是正数,那么一定有结论( )A. 两个加数都是正数B. 两个加数有一个是正数C. 一个加数正数,另一个加数为零D. 两个加数不能同为负数【答案】D【解析】试题分析:若两个有理数的和为正数,两个加数可能都为正数,也可能一个为正数,也可能一个加数为正数,另一个加数为0,不可能两加数为负数.故选D.考点:有理数的加法.4.两个非零有理数的和是0,则它们的商为:( )A. 0B. -1C. +1D. 不能确定【答案】B【解析】【分析】根据“互为相反数的两个数的和是0”判断出这两个数是互为相反数,互为相反数的两个数的商为-1.【详解】∵两个非零有理数的和是0∴这两个数互为相反数∴互为相反数的两个非零数的商为-1故选B【点睛】本题考查“互为相反数的两数相加得0”以及有理数除法法则,熟练掌握相关知识点是解题关键5.下列各组数中,数值相等的是()A 32和23 B. ﹣23和(﹣2)3 C. ﹣32和(﹣3)2 D. ﹣3×22 和(﹣3×2)2【答案】B【解析】【分析】原式各项利用乘方的意义计算得到结果,即可做出判断.【详解】A、32=9,23=8,数值不相等;B、﹣23=(﹣2)3=﹣8,数值相等;C、﹣32=﹣9,(﹣3)2=9,数值不相等;D、﹣3×22=﹣12,(﹣3×2)2=36,数值不相等,故选B6.绝对值相等的两个数在数轴上对应两点的距离为10,则这两个数为( )A. 10和-10B. 0和10C. 5和-5D. 5和0【答案】C【解析】【分析】绝对值相等的两个不同的数互为相反数,因为他们的距离是10,所以他们的绝对值是5.【详解】依题意可得,这两个数的绝对值是5,所以这两个数是5和-5.故选C【点睛】本题考核知识点:绝对值. 解题关键点:理解绝对值的意义.7.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是( )A. b<0B. a+c<0C. a﹣b>0D. b﹣c<0【答案】C【解析】试题分析:根据数轴上点的特点,可知a<b<0<c,且︱a︱>︱c︱>︱b︱,因此a+b<0,故A正确;a+c<0,故B正确;a-b<0,故C错误;b-c<0,故D正确.故选C考点:数轴8.计算16×(-6)÷(-16)×6的值为( )A. 1B. 36C. -1D. +6 【答案】B【解析】【分析】先把除法运算化为乘法运算,再根据有理数乘法法则进行计算.【详解】16×(-6)÷(-16)×6=16×(-6)×(-6)×6=36故选B【点睛】本题考核知识点:有理数乘除法. 解题关键点:把除法转化为乘法.9.下列交换加数的位置的变形中,正确的是A. 1-4+5-4=1-4+4-5B.13111311 34644436 -+--=+--C. 1-2+3-4=2-1+4-3D. 45-1.7-2.5+1.8=4.5-2.5+1.8-1.7 【答案】D【解析】【详解】A. 1−4+5−4=1−4−4+5,故错误;B.13111311=-34644436-+--+--,故错误;C. 1-2+3-4=-2+1-4+3,故错误;D. 4.5−1.7−2.5+1.8=4.5−2.5+1.8−1.7,故正确.故选D.10.学校、家、书店依次坐落在一条东西走向的大街上,学校在家的东边200米,书店在家西边1000米,某同学从家里出发,向西走了500米,接着又向西走了-700米,此时该同学的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方【答案】B【解析】【分析】某同学从家里出发,向西走了500米,接着又向西走了-700米,相当于向东走700米,最后离家向东200米. 【详解】依题意分析可得,向西走了-700米,相当于向东走700米,所以,该同学最后离家向东200米.即在学校.故选B【点睛】本题考核知识点:负数的意义,数轴. 解题关键点:理解负数的意义.11.比较大小:-22,(12-)2,(13-)3,正确的是( )A. -22>(12-)2>(13-)3 B. (13-)3>-22>(12-)2C. (12-)2>-22>(13-)3 D. (12-)2>(13-)3>-22【答案】D 【解析】解:∵﹣22=﹣4,(﹣12)2=14,(﹣13)3=﹣127,∴(﹣12)2>(﹣13)3>﹣22;故选D.点睛:本题考查了有理数大小的比较,不是最简的化到最简,然后根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小得出答案.12.若(-1)2=4,那么的值为()A. 27B. 3或-1C. 25或-1D. -1或27【答案】D【解析】由题意得:-1=2解得:x=3或x=-1那么=27或-1故选D二、填空题(本大题共4个小题,每小题3分,共12分)13.月球距地球约为38万千米,用科学计数法表示为____________千米.【答案】3.8×105【解析】【分析】把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| <10 )的记数法.【详解】38万=3.8×105.故答案为3.8×105【点睛】本题考核知识点:科学记数法. 解题关键点:理解科学计数法的意义.14.绝对值小于6的所有数的积是_____________.【答案】0【解析】【分析】先求出绝对值小于6的所有数,再求他们的积.要注意,其中有一个是0.【详解】绝对值小于6的所有数有无数个,但其中一个是0,所以,他们的积是0.故答案为0【点睛】本题考核知识点:有理数乘法. 解题关键点:记住0与任何数相乘等于0.15.如果数轴上的点A对应的数为-5,那么与A点相距3个单位长度的点所对应的有理数为__________.【答案】-8或-2【解析】【分析】与A点相距3个单位长度的点可能在A的左侧或在A的右侧.【详解】与A点相距3个单位长度的点可能在A的左侧或在A的右侧,所以,对应的数是:-5-3=-8,或-5+3=-2. 故答案为-8或-2【点睛】本题考核知识点:数轴上两点距离、有理数加减. 解题关键点:运用有理数加减法求两点的距离.16.在﹣3,﹣2,﹣1,4,5中取出三个数,把三个数相乘,所得到最大乘积是_.【答案】30 ;【解析】根据正数大于一切负数,同号得正,异号得负,找出乘积是正数绝对值最大的三个数相乘即可.解:最大乘积是:(-3)×(-2)×5=3×2×5=30.故答案为30.“点睛”本题考查了有理数的乘法,以及有理数的大小比较,比较简单,熟记运算法则是解题的关键.三、解答题(本大题共6个题,共72分)17.(1)将下列各数填入相应的圈内:212,5 , 0 ,1.5 ,+2 ,-3 .(2 )说出这两个圈的重叠部分表示的是什么数的集合:.【答案】(1)见解析;(2)正整数的集合【解析】【分析】根据有理数的分类解答即可.【详解】(1)如图,(2)∵5,+2是正整数,∴两个圈的重叠部分表示的是正整数的集合.【点睛】本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键. 有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.18.在数轴上表示下列各数,并用“<”号把它们连起来:1.5, 3, -2.5, 0 , -1 1 3【答案】见解析【解析】【分析】先按要求画好数轴,在数轴上表示各数,根据数轴上右边的数大于左边的数进行连接. 【详解】解:如图:-2.5<-1.3<0<1.5<3.【点睛】本题考核知识点:利用数轴表示数的大小. 解题关键点:画好数轴,表示各数.19.计算下列各题(1)15+(-14)-15-(-025) (2)(-81)÷94×49÷(-32)(3)292324×(-12) (4)25×34-(-25)×12+25×(-14)(5)-24-(-4)2 ×(-1)+(-3)3(6)3.25-[(-12)-(-52)+(-54)+243]【答案】(1)0 (2)12(3)-35912(4) 25(5)-27 (6)-136【解析】【分析】根据有理数的运算法则,逐个计算.【详解】解:(1)15+(-14)-15-(-0.25)=15-15- 14+0.25=0(2)(-81)÷94×49÷(-32)=81×49×49×132= 1 2(3)292324×(-12)= (30- 124) ×(-12)= 30×(-12) -1 24× (-12)=-35912(4)25×3 4-(-25)×12+25×(-14) =25×(34+1 2-1 4) =25×1=25 (5)-24-(-4)2 ×(-1)+(-3)3 = -16+16-27= -27(6)3.25-[(-12)-(-52)+(-5 4)+243] =31 4+1 2 -5 2+5 4-243 1515234442231242423122423136=++--=--=-=- 【点睛】本题考核知识点:有理数混合运算. 解题关键点:掌握有理数运算法则.20.按要求解答下列各题(1)已知a 、b 互为相反数,c 、d 互为倒数,x=(-2)2.试求x 2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016的值. (2)已知有理数a 、b 、c 满足|a-1|+|b-3|+|3c-1|=0,求(a×b×c)178 ÷(a 36×b 7×c 6)的值.【答案】(1)13 (2)13【解析】【分析】(1)由已知可得a+b=0,cd=1,x=4,再代入原式可得;(2)由非负数性质得a-1=0,b-3=0,3c-1=0.求出a,b,c,再代入求值.【详解】解:(1)因为a 、b 互为相反数,c 、d 互为倒数,x=(-2)2所以,a+b=0,cd=1,x=4,所以,x 2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016=42-(0+1)×4+02015+(-1)2016=16-4+0+1=13.(2)因为|a-1|+|b-3|+|3c-1|=0,所以,根据非负数性质得:a-1=0,b-3=0,3c-1=0.所以,a=1,b=3,c=13, 所以,(a×b×c)178 ÷(a 36×b 7×c 6) =(1×3×13)178 ÷[136×37×(13)6] =1÷3 =13. 【点睛】本题考核知识点:非负数、倒数、相反数的应用. 解题关键点:理解非负数、倒数、相反数的性质. 21.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?【答案】(1)这批样品的质量比标准质量多,多24克;(2)9024克【解析】【分析】(1)根据表格列出算式,计算得到结果,即可做出判断;(2)根据每袋标准质量为450克列出算式,计算即可得到结果.【详解】(1)根据题意得:﹣5×1﹣2×4+0×3+1×4+3×5+6×3=﹣5﹣80+4+15+18=24(克), 则这批样品的质量比标准质量多,多24克;(2)根据题意得:20×450+24=9024(克),则抽样检测的总质量是9024克.【点睛】此题考查了正数与负数,弄清题意是解本题的关键.22.陈老师在上周五买进某公司股票1000股,每股28元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)星期三收盘时,每股是多少?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知陈老师买进股票时付了1.5%的手续费,卖出时需付成交手续费和交易税共2.5%,如果陈老师在星期五收盘时将全部股票卖出,他的收益情况如何?【答案】(1)34.5元 (2)36.5元、30元(3)盈利830元.【解析】【分析】(1)根据题意得:28+4+4.5−2=34.5(元);(2)算出每天股价,再作比较;(3)根据题意得:1000×(30−28)−1000×28×1.5%−30×1000×2.5%=830(元),可得收益.【详解】解:(1)根据题意得:28+4+4.5−2=34.5(元),则星期三收盘时,每股34.5元;(2)本周的股价分别为28+4=32(元);32+4.5=36.5(元);36.5−2=34.5(元);34.5+1.5=36(元);36−6=30(元),则本周内最高价是每股36.5元,最低价是每股30元;(3)根据题意得:1000×(30−28)−1000×28×1.5%−30×1000×2.5%=830(元),则张先生在星期五收盘时将全部股票卖出,他的收益情况为830元.【点睛】本题考核知识点:有理数运算的应用.解题关键点:理解题意,根据实际列出算式并正确运算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数单元测试及答案一.选择题(共20小题,满分40分,每小题2分)1.(2分)(2014•新华区模拟)下列各式中,结果为负数的是()A.﹣(﹣1)B.(﹣1)2C.|﹣1| D.﹣|﹣1|2.(2分)(2013•丽水)在数0,2,﹣3,﹣1.2中,属于负整数的是()A.0B.2C.﹣3 D.﹣1.23.(2分)(2012•莱芜)如图,在数轴上点A表示的数可能是()A.1.5 B.﹣1.5 C.﹣2.4 D.2.44.(2分)(2014•广州)a(a≠0)的相反数是()A.﹣a B.a2C.|a| D.5.(2分)(2014•余姚市模拟)﹣6的绝对值是()D.6A.﹣6 B.C.﹣6.(2分)(2014•老河口市模拟)若a与2互为相反数,则|a+2|等于()A.0B.4C.D.7.(2分)(2010•越秀区二模)若(a﹣2)2+|b+3|=0,则(a+b)2008的值是()A.0B.1C.﹣1 D.20088.(2分)已知a、b都是有理数,且|a﹣1|+|b+2|=0,则a+b=()A.﹣1 B.1C.3D.59.(2分)(2014•桂林)2014的倒数是()A.B.C.|2014| D.﹣2014﹣10.(2分)(2014•本溪)﹣的倒数是()A.﹣4 B.4C.D.﹣11.(2分)(2014•扬州)下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0D.112.(2分)(2014•绍兴)比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1 B.﹣2<﹣3<1 C.1<﹣2<﹣3 D.1<﹣3<﹣213.(2分)(2014•大庆)已知a>b且a+b=0,则()A.a<0 B.b>0 C.b≤0D.a>014.(2分)计算1﹣2+3﹣4+5﹣6+…+2007﹣2008的结果是()A.﹣2008 B.﹣1004 C.﹣1 D.015.(2分)(2013•黄冈)﹣(﹣3)2=()A.﹣3 B.3C.﹣9 D.916.(2014•河北模拟)我们知道地球的半径大约为6.4×103千米,下列对近似数6.4×103描述正确的是()(2分)A.精确到十分位,有2个有效数字B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字D.精确到千位,有4个有效数字17.(2分)(2014•德州一模)2013年德州市参加学业水平考试的学生人数为43259人,那么数据43259用科学记数法并保留到百位可以表示为()A.0.432×105B.4.32×104C.4.326×104D.4.33×10418.(2分)(2014•台湾)算式17﹣2×[9﹣3×3×(﹣7)]÷3之值为何?()A.﹣31 B.0C.17 D.10119.(2分)(2013•德城区二模)下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2,计算结果为负数的个数有()A.4个B.3个C.2个D.1个20.(2分)(2011•台湾)计算﹣+(﹣2)之值为何?()A.﹣B.﹣2C.﹣D.﹣14二.填空题(共5小题,满分20分,每小题4分)21.(4分)(2009•沈阳)如图,数轴上A,B两点表示的数分别为a,b,则a,b两数的大小关系是a _________ b.22.(4分)(2002•南昌)若m、n互为相反数,则|m﹣1+n|= _________ .23.(4分)(2013•牡丹江)定义一种新的运算a﹠b=a b,如2﹠3=23=8,那么请试求(3﹠2)﹠2= _________ .24.(4分)(2014•无锡新区一模)一台计算机硬盘容量大小是20180000000字节,请用科学记数法将该硬盘容量表示为_________ (保留三个有效数字).25.(4分)(2011•密云县一模)若|m﹣3|+(n+2)2=0,则m+2n的值为_________ .三.解答题(共5小题,满分50分)26.(8分)计算:(1)(2).27.(8分)把下列各数填在相应的集合里:﹣3、、6、0、﹣25、3、2、正数集合:{ } 负整数集合:{ }负数集合:{ } 分数集合:{ }.28.(8分)某检修小组乘坐一辆汽车沿公路修输电线路,约定前进为正,后退为负,他们从A地出发到收工时,走+15,﹣6,+7,﹣2.5,﹣9,+3.5,﹣7,+12,﹣6,﹣11.5问:(1)他们收工时距A地多远?(2)汽车每千米耗油0.3升,从出发到返回A地共耗油多少升?29.(8分)画出数轴,把下列各数0,(﹣2)2,﹣|﹣4|,﹣1.5,﹣12在数轴上表示出来,并用“<”号把这些数连接起来.30.(8分)已知5(a+2)2+|b﹣3|+(c﹣1)2=0,求(a+b+c)2的值.2014年第三阶段—有理数单元测试参考答案与试题解析一.选择题(共20小题,满分40分,每小题2分)1.(2分)(2014•新华区模拟)下列各式中,结果为负数的是()A.﹣(﹣1)B.(﹣1)2C.|﹣1| D.﹣|﹣1|考点:正数和负数.分析:根据小于0的数是负数,可得答案.解答:解:A、﹣(﹣1)=1,故A错误;B、负数的平方是正数,故B错误;C、|﹣1|=1,故C错误;D、﹣|﹣1|=﹣1,故D正确;故选:D.点评:本题考查了正数和负数,小于0的数是负数.2.(2分)(2013•丽水)在数0,2,﹣3,﹣1.2中,属于负整数的是()A.0B.2C.﹣3 D.﹣1.2考点:有理数.分析:先在这些数0,2,﹣3,﹣1.2中,找出属于负数的数,然后在这些负数的数中再找出属于负整数的数即可.解答:解:在这些数0,2,﹣3,﹣1.2中,属于负数的有﹣3,﹣1.2,则属于负整数的是﹣3;故选C.点评:此题考查了有的相关概念及其分类方法进行解答,然后判断出属于负整数的数即可.3.(2分)(2012•莱芜)如图,在数轴上点A表示的数可能是()A.1.5 B.﹣1.5 C.﹣2.4 D.2.4考点:数轴.分析:根据数轴上的点表示数的方法得到点A表示的数大于﹣3且小于﹣2,然后分别进行判断即可.解答:解:∵点A表示的数大于﹣3且小于﹣2,∴A、B、D三选项错误,C选项正确.故选C.点评:本题考查了数轴:数轴有三要素(正方向、原点、单位长度),原点左边的点表示负数,右边的点表示正数.4.(2分)(2014•广州)a(a≠0)的相反数是()A.﹣a B.a2C.|a| D.考点:相反数.分析:直接根据相反数的定义求解.解答:解:a的相反数为﹣a.故选:A.点评:本题考查了相反数:a的相反数为﹣a,正确掌握相反数的键.5.(2分)(2014•余姚市模拟)﹣6的绝对值是()D.6A.﹣6 B.C.﹣考点:绝对值.分析:根据绝对值实数轴上的点到原点的距离,可得答案.解答:解:|﹣6|=6,故选:D.点评:本题考查了绝对值,负数的绝对值是它的相反数.6.(2分)(2014•老河口市模拟)若a与2互为相反数,则|a+2|等于()A.0B.4C.D.考点:绝对值;相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据有理数的加法,可得和,根据绝对值的意义,可得答案案.解答:解:a与2互为相反数,a=﹣2,|a+2|=|﹣2+2|=0,故选:A.点评:本题考查了绝对值,先求出相反数,再求出绝对值.7.(2分)(2010•越秀区二模)若(a﹣2)2+|b+3|=0,则(a+b)2008的值是()A.0B.1C.﹣1 D.2008考点:非负数的性质:的性质:偶次方;代数式求值.分析:已知等式为两个非负数的和为0的形式,只有这两个非负数都为0.解答:解:因为(a﹣2)2+|b+3|=0,根据非负数的性质可知,a﹣2=0,b+3=0,即:a=2,b=﹣3,所以,(a+b)2008=(2﹣3)2008=1.故选B.点评:几个非负数的和为0,只有这几个非负数都为0.8.(2分)已知a、b都是有理数,且|a﹣1|+|b+2|=0,则a+b=()A.﹣1 B.1C.3D.5考点:非负数的性质:绝对值.分析:根据绝对值的非负性,先求a,b的值,再计算a+b的值.解答:解:∵|a﹣1|+|b+2|=0,∴a﹣1=0,b+2=0,解得a=1,b=﹣2.∴a+b=1+(﹣2)=﹣1.故选A.点评:理解绝对值的非负性,当绝对值相加和为0时,必须满足其中的每一项都等于0,根据这个结论可以求解这类题目.9.(2分)(2014•桂林)2014的倒数是()C.|2014| D.﹣2014 A.B.﹣考点:倒数.分析:根据倒数的定义求解.解答:解:2014的倒数是.故选:A.点评:本题主要考查了倒数的定义,解题的关键是熟记定义.10.(2分)(2014•本溪)﹣的倒数是()A.﹣4 B.4C.D.﹣考点:倒数.专题:常规题型.分析:根据负数的倒数是负数,结合倒数的定义直接求解.解答:解:﹣的倒数是﹣4,故选:A.点评:本题考查了倒数的定义,理解定义是关键.11.(2分)(2014•扬州)下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0D.1考点:有理数大小比较.分析:根据题意,结合实数大小的比较,从符号和绝对值两个方面分析可得答案.解答:解:比﹣2小的数是应该是负数,且绝对值大分析选项可得,只有A符合.故选:A.点评:本题考查实数大小的比较,是基础性的题目.12.(2分)(2014•绍兴)比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1 B.﹣2<﹣3<1 C.1<﹣2<﹣3 D.1<﹣3<﹣2考点:有理数大小比较.分析:本题是对有理数的大小比较,根据有理数性质即可得出答案.解答:解:有理数﹣3,1,﹣2的中,根据有理数的性质,∴﹣3<﹣2<0<1.故选:A.点评:本题主要考查了有理数大小的判定,难度较小.13.(2分)(2014•大庆)已知a>b且a+b=0,则()A.a<0 B.b>0 C.b≤0D.a>0考点:有理数的加法.专题:计算题.分析:根据互为相反数两数之和为0,得到a与b互为相反数,即可做出判断.解答:解:∵a>b且a+b=0,∴a>0,b<0,故选:D.点评:此题考查了有理数的加法,熟练掌握互为相反数两数的性关键.14.(2分)计算1﹣2+3﹣4+5﹣6+…+2007﹣2008的结果是()A.﹣2008 B.﹣1004 C.﹣1 D.0考点:有理数的加减混合运算.专题:规律型.分析:认真审题不难发现:相邻两数之差为﹣1,整个计算式中共有2008个数据,所以可以得到2008÷2=1004个﹣1.解答:解:1﹣2+3﹣4+5﹣6+ (2007)2008=(1﹣2)+(3﹣4)+(5﹣6)+…+(2007﹣2008)=(﹣1)×1004=﹣1004.故选B.点评:本题是寻找规律题,认真审题,找出规律,是解决此类问题的关键所在.15.(2分)(2013•黄冈)﹣(﹣3)2=()A.﹣3 B.3C.﹣9 D.9考点:有理数的乘方.分析:根据有理数的乘方的定义解答.解答:解:﹣(﹣3)2=﹣9.故选C.点评:本题考查了有理数的乘方的定义,是基础题,熟记概念是16.(2分)(2014•河北模拟)我们知道地球的半径大约为6.4×103千米,下列对近似数6.4×103描述正确的是( )A . 精确到十分位,有2个有效数字B . 精确到个位,有2个有效数字C . 精确到百位,有2个有效数字D . 精确到千位,有4个有效数字考点: 近似数和有效数字.专题: 计算题.分析: 将近似数的科学记数法变形为普通计数法,找出4在百位上,且从左边第一个不为0的数字起,到精确的数位百位为止,数字的个数即为有效数字的个数.解答: 解:∵近似数6.4×103=6400,∴4在百位上,且有2个有效数字,则近似数6.4×103描精确到百位,有2个有效数字.故选C点评:此题考查了近似数与有效数字,熟练掌握近似数与有效数字的定义是解本题的关键.17.(2分)(2014•德州一模)2013年德州市参加学业水平考试的学生人数为43259人,那么数据43259用科学记数法并保留到百位可以表示为( )A . 0.432×105B . 4.32×104C . 4.326×104D . 4.33×104考点: 科学记数法与有效数字.分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值是易错点,由于43259有5位,所以可以确定n=5﹣1=4.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:43259=4.3259×104≈4.33×104.故选D.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.18.(2分)(2014•台湾)算式17﹣2×[9﹣3×3×(﹣7)]÷3之值为何?()A.﹣31 B.0C.17 D.101考点:有理数的混合运算.专题:计算题.分析:先算括号内的乘法运算,再算括号内的加法运算得到原式=17﹣2×72÷3,然后进行乘除运算.最后进行减法运算.解答:解:原式=17﹣2×(9+63)÷3=17﹣2×72÷3=17﹣144÷3=17﹣48=﹣31.故选A.点评:本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.(2分)(2013•德城区二模)下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2,计算结果为负数的个数有()A.4个B.3个C.2个D.1个考点:有理数的乘方.分析:根据相反数、绝对值的意义及乘方运算法则,先化简各数,再由负数的定义判断即可.解答:解:①﹣(﹣2)=2,②﹣|﹣2|=﹣2,③﹣22=﹣4,④﹣(﹣2)2=﹣4,所以负数有三个.故选B.点评:本题主要考查了相反数、绝对值、负数的定义及乘方运算法则.20.(2分)(2011•台湾)计算﹣+(﹣2)之值为何?()A.﹣B.﹣2C.﹣D.﹣14考点:有理数的加减混合运算.分析:根据有理数的运算法则,可以首先计算﹣和﹣2的和,再进一步根据绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并让较大的绝对值减去较小的绝对值.解答:解:﹣+(﹣2),=﹣(+2),=﹣3,=﹣2.故选B.点评:此题考查了有理数的加减运算法则,注意其中的简便计算方法:分别让其中的正数和负数结合计算.二.填空题(共5小题,满分20分,每小题4分)21.(4分)(2009•沈阳)如图,数轴上A,B两点表示的数分别为a,b,则a,b两数的大小关系是a <b.考点:有理数大小比较.分析:本题考查用数轴比较有理数的大小,比较简单.数轴上右边的点所表示的数比左边的点所表示的数大,所以a<b.解答:解:如图,根据数轴上右边的数总是比左边的数大的规律可知答案为a<b.点评:由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.22.(4分)(2002•南昌)若m、n互为相反数,则|m﹣1+n|= 1 .考点:有理数的加减混合运算;相反数;绝对值.分析:相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.解答:解:∵m、n互为相反数,∴m+n=0.∴|m﹣1+n|=|﹣1|=1.点评:主要考查相反数,绝对值的概念及性质.23.(4分)(2013•牡丹江)定义一种新的运算a﹠b=a b,如2﹠3=23=8,那么请试求(3﹠2)﹠2= 81 .考点:有理数的乘方.专题:新定义.分析:首先根据运算a﹠b=a b,把所求的式子转化为一般形式的运算,然后计算即可求解.解答:解:(3﹠2)﹠2=(32)2=92=81.故答案是:81.点评:本题考查了有理数的乘方运算,理解题意是关键.24.(4分)(2014•无锡新区一模)一台计算机硬盘容量大小是20180000000字节,请用科学记数法将该硬盘容量表示为 2.02×1010(保留三个有效数字).考点:科学记数法与有效数字.专题:应用题.分析:较大的数保留有效数字需要用科学记数法来表示.用科学记数法保留有效数字,要在标准形式a×10n中a的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.解答:解:将20180000000用科学记数法表示为2.02×1010.点评:用科学记数法表示一个数的方法是:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上零).25.(4分)(2011•密云县一模)若|m﹣3|+(n+2)2=0,则m+2n的值为﹣1 .考点:非负数的性质:偶次方;非负数的性质:绝对值.专题:计算题.分析:根据非负数的性质列出方程求出m、n的值,代入所求代数式计算即可.解答:解:∵|m﹣3|+(n+2)2=0,∴,解得,∴m+2n=3﹣4=﹣1.故答案为﹣1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.三.解答题(共5小题,满分50分)26.(8分)计算:(1)(2).考点:有理数的混合运算.分析:(1)先化简,再通分计算即.可求解;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:(1)解:原式==﹣﹣=;(2)解:原式=4﹣6+2+1=﹣2+3=1.点评:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.27.(10分)把下列各数填在相应的集合里:﹣3、、6、0、﹣25、3、2、正数集合:{ } 负整数集合:{ } 负数集合:{ } 分数集合:{ }.考点:有理数.分析:根据正数、负数、整数及分数的定义,结合所给数据进行解答即可.解答:解:整数集合:{};负数集合:{﹣3,﹣25,﹣};负整数集合:{﹣3,﹣25};分数集合:{}.点评:本题考查了有理数的知识,关键是掌握正数、负数、整数及分数的定义,属于基础题,比较简单.28.(10分)某检修小组乘坐一辆汽车沿公路修输电线路,约定前进为正,后退为负,他们从A地出发到收工时,走过的路程记录如下:(单位:千米)+15,﹣6,+7,﹣2.5,﹣9,+3.5,﹣7,+12,﹣6,﹣11.5问:(1)他们收工时距A地多远?(2)汽车每千米耗油0.3升,从出发到返回A地共耗油多少升?考点:正数和负数.分析:(1)将各数相加所得的数即是距出发点A的距离.(2)耗油量=每千米的耗油量×总路程,总路程为出发所走路程的绝对值的和加上收工时返回A所走的路程.解答:解:(1)+15﹣6+7﹣2.5﹣9+3.5﹣7+12﹣6﹣11.5=﹣4.5千米答:他们收工时距A点4.5千米.(2)总路程为出发所走路程的绝对值的和加上收工时返回A所走的路程,又耗油量=每千米的耗油量×总路程∴耗油量=0.3×(15+|﹣6|+7+|﹣2.5|+|﹣9|+3.5+|﹣7|+12+|﹣6|+|﹣11.5|+4.5)=0.3×86=25.8升答:从出发到返回A地共耗油25.8升.点评:本题考查正数和负数的加减法,注意总路程为所走路程的绝对值的和加上收工时返回A所走的路程,千万不要忘记加上收工时返回的路程.29.(10分)画出数轴,把下列各数0,(﹣2)2,﹣|﹣4|,﹣1.5,﹣12在数轴上表示出来,并用“<”号把这些数连接起来.考点:有理数的乘方;数轴;有理数大小比较.分析:首先要把这些数化简,这些数分别是0,4,﹣4,﹣1.5,﹣1,然后从数轴上描出各点即可.解答:解:数轴上各数可表示为:∴﹣|﹣4|<﹣1.5<﹣12<0<(﹣2)2.点评:由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.30.(12分)已知5(a+2)2+|b﹣3|+(c﹣1)2=0,求(a+b+c)2的值.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质,可求出a、b、c的值,然后将代数式化简再代值计算.解答:解:根据题意得:,解得:.则(a+b+c)2=(﹣2+3+1)2=22=4.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.古希腊哲学大师亚里士多德说:人有两种,一种即“吃饭是为了活着”,一种是“活着是为了吃饭”.一个人之所以伟大,首先是因为他有超于常人的心。