浅谈复变函数中有限孤立奇点的类型判断

合集下载

复变函数的解析点与孤立奇点的运算性质

复变函数的解析点与孤立奇点的运算性质

复变函数的解析点是复变函数在某一点处可以被写成一系列幂级数的点,而孤立奇点是复变函数中只有单个奇次幂项且系数不为零的点。

解析点的运算性质
对于复变函数的解析点,有如下几条运算性质:
如果复变函数的解析点有公共部分,那么这些点就是复变函数的公共解析点。

如果复变函数的解析点不存在公共部分,那么这些点就是复变函数的交替解析点。

如果复变函数在某一点是解析的,那么在这一点处复变函数的导数也是解析的。

如果复变函数在某一点是解析的,那么在这一点处复变函数的导数的导数也是解析的。

孤立奇点的运算性质
对于复变函数的孤立奇点,有如下几条运算性质:
如果复变函数有孤立奇点,那么这些点就是复变函数的孤立奇点。

孤立奇点是复变函数中的特殊点,因为在这些点处复变函数的导数不存在。

如果复变函数有孤立奇点,那么在这些点处复变函数的导数不存在,但是如果将复变函数按照某种方式拓展,那么复变函数的导数可能在这些点处存在。

如果复变函数有孤立奇点,那么复变函数在这些点处的导数的导数也不存在。

如果复变函数有孤立奇点,那么复变函数在这些点处的导数的导数的导数可能存在。

对于复变函数的孤立奇点,如果复变函数在这些点处可以被写成一系列幂级数,那么这些点就不再是孤立奇点,而是解析点。

孤立奇点的类型及判断方1

孤立奇点的类型及判断方1

孤立奇点的类型及其判定方法摘要:本文归纳了孤立奇点的类型及其主要判定的方法.分别对函数在有限点和无限点的孤立奇点研究,得到了判定孤立奇点类型的三种方法:定义法、极限值法、极点与零点关系法.接着阐述了有两个函数的和、差、积、商所得的新函数与原函数在孤立奇点类型的关系,并且结合一下例子介绍了判定孤立奇点类型的三种方法的应用.关键词: 可去奇点 极点 本质奇点1.引言复变函数的孤立奇点是复变函数论中的重要概念.函数在孤立奇点的附近可以展示洛朗展开式,对一个函数而言,孤立奇点的个数往往不是很多的,但是这些不多的孤立奇点往往就决定着这个函数的性质了,因此,什么是孤立奇点,孤立奇点有哪些类型,怎么判定并快速的判定函数的孤立奇点的类型,对研究函数的孤立奇点去心邻域内的性质,复积分的计算等至关重要.但是函数的孤立奇点的类型往往很难判定,特别对复合函数等.这样就使得我们去探索新的方便的判定孤立奇点类型的方法.目前,已经有很多人对判定孤立奇点类型的问题做过研究了,也作出了很多成就.本文在此基础上,归纳诸多方法,旨在为判定孤立奇点类型提供参考.根据在孤立奇点某邻域的洛朗展开式判定孤立起点的类型,但是有些函数的洛朗展开式很难求出来,我们还可以根据函数在孤立奇点的极限值判定孤立奇点的类型.但是有些函数的倒函数很容易判定出倒函数的零点阶数,对于这样的函数我们可以根据极点和零点的关系判定孤立奇点的类型.本文论述的方法只是提供参考,在实际应用中应该根据孤立奇点类型的特点运用相应的方法,使得对孤立奇点的判定更加方便.2.孤立奇点的类型及判断方法 2.1孤立奇点的定义定义1 如果函数)(z f 在点a 的某一去心领域R a z a K <-<-||0:}{(即除去圆心a 的某圆)内解析,点a 是)(z f 的奇点,则称a 为)(z f 的一个孤立奇点.孤立奇点分有限孤立奇点和无穷孤立奇点.2.2 孤立奇点的类型和判断以解析函数的洛朗展式为工具,我们能够在孤立奇点的去心领域内充分研究一个解析函数的性质.如a 为函数)(z f 的孤立奇点,则)(z f 的某去心领域{}K a -内可以展成洛朗级数)(z f =∑∞-∞=-n n na z c)(.我们称非负幂部分∑∞=-0)(n nna z c为)(z f 在点a 的正则部分,而称负幂∑∞=---1)(n nn a z c 为)(z f 在点a 的主要部分.实际上非负幂部分表示在点a 的领域:||K z a R -<内的解析函数,故函数)(z f 在点a 的奇异性质完全体现在洛朗级数的负幂部分上.定义2如果)(z f 在点a 的主要部分为零,则称a 为)(z f 的可去奇点; 如果)(z f 在点a 的主要部分为有限多项,设为),0(,)()(11)1(≠-++-+-------m m m m m c a z c a z c a z c 则称a 为)(z f 的m 阶极点,一阶极点也称为单极点;如果)(z f 在点a 的主要部分为无限多项,则称a 为)(z f 的本质奇点;以下我们分别讨论三类孤立奇点的特征.如果a 为函数)(z f 可去奇点,则有),0(,)()()(2210R a z a z c a z c c z f <-<+-+-+=上式等号右边表圆:||K z a R -<内的解析函数.如果命,0)(c a f =则)(z f 在圆K 内与一个解析函数重合,也就是说,我们将)(z f 在点a 的值加以适当定义,则点a 就是)(z f 的解析点.这就是我们称a 为)(z f 的可去奇点的由来.定理1 如果a 为函数)(z f 可去奇点充要条件lim ()()z af z b →=≠∞.证明 充分性 因为a 为函数)(z f 可去奇点,则有)(z f =)0()()(2210R a z a z c a z c c <-<+-+-+ ,于是()()00lim z af z c c →=≠∞,必要性 ()()lim z af z b →=≠∞则对任给的0ε>,有δ0>,只要δ<-a z ,就有εη<-)(z f ,于是εη+<)(z f ,所以在点a 的某去心邻域{}K a -内)(z f 是以M 为界的,考虑)(z f 在点a 的主要部分+-++-+----nn a z c a z c a z )()(c 221,....)3,2,1()()(211=-=⎰Γ+--n d a f i c n n ξξξπ, 而Γ为全含于K 内的圆周ρρξ,=-a 可以充分小,n n n M M c ρπρρπ=≤+--2211,即知当1,2,n =时0n c -=,即是说)(z f 在点a 的主意部分为0,即a 为)(z f 的可去奇点.说明0=z 是sin zz的可去奇点,32sin 1()1,03!3!z z z z z z z =-+=-+<<∞,0sin lim1→=≠∞z zz.如果孤立奇点是极点时,孤立奇点的洛朗展开式的主要部分比为有限项,我们还有分级数,称为多少级极点.洛朗展开式中的负次方的项的系数必然满足一定的关系,总存在一个负最多的次数项,那么我们就把这个负多少次数的项称为函数的多少阶极点.比如,一个m 阶极点,表示洛朗展开式不是有m 个负次方的项,而是非零系数负次方的次数最大是m 次数了.定理2 如果函数)(z f 以a 为孤立奇点,则点a 是函数)(z f 的m 阶极点充要条件是下面两个条件中任意一条.① 在点a 的某一去心领域内能表成)(z f =ma z z )-()(λ其中()z λ在点a 领域内解析,且0)(≠a λ;② )(1)(z f z g =以点a 为m 阶零点(极点与零点的关系). 证明 充分性 点a 是函数)(z f 的m 阶极点,则在点a 的某去心邻域内有+-++-++-+-=-----)()()()(1011)1(a z c c az c a z c a z c z f m m m mmmm m a z z a z a z c c )()()()()1(-=-+-+=---λ,其中)(z λ显然在点a 的邻域内解析,且.0)(≠=-m c a λ所以在点a 的某去心邻域内有)()()(1)(z a z z f z g mλ-==,其中)(1z λ在点a 的某邻域内解析,且0)(1≠z λ,因此点a 位)(z g 的可去奇点,只要令()0g z =,a 就为)(z g 的m 阶零点.必要性 如果)(1)(z f z g =以点a 为m 阶零点,则在点a 的某邻域 )()()(z a z z g m ϕ-=,其中)(z ϕ在此邻域内解析,且0)(≠z ϕ,所以)(1)(1)(z a z z f mϕ⋅-=在此邻域内)(1z λ解析,在此邻域内命+-+=---)()(1)1(a z c c z m m ϕ, 则)(z f 在点a 的主要部分就是(1)111,(0),()()()m mm m m c c c c z a z a z a a ϕ------+++=≠--- 所以点a 是函数)(z f 的m 阶极点.在充分性中已经证明条件①可以推导出条件②,所以条件①可以推导出点a 是函数)(z f 的m 阶极点.定理3 函数)(z f 的孤立奇点a 为极点的充要条件是lim()z af z →=∞.证明 函数)(z f 以点a 为极点的充要条件是)(1z f 以点a 为零点(定理2),由此知定理为真.因此,若点a 为函数)(z f 的m 阶零点时,则点a 为函数1()f z 的m 阶极点;若点a 为函数)(z f 的m 阶极点,则点a 为函数1()f z 的m 阶零点.但是判断多少阶极点时要注意条件. 例如 函数21()z e f z z-=,0z =不是函数)(z f 的二阶极点,因为 231211()(),2!3!2!3!z z zf z z z z -=+++=+++所以,0z =是函数)(z f 的一阶极点.定理4 函数)(z f 的孤立奇点a 为本质奇点的充要条件是lim ()z af z →不存在. 这个可以由定理1和定理3得到证明.定理5若z a =为函数)(z f 的本质奇点,且在点a 的充分小的去心邻域内部不为零,则z a =必为)(1z f 的本质奇点. 证明:令)(1)(z f z =ϕ,有假设得z a =必为)(z ϕ的孤立奇点.若点a 为)(z ϕ的可去奇点,则点a 必为)(z f 的可去奇点或者极点,与假设矛盾;若点a 为)(z ϕ的极点,则点a 必为)(z f 的零点,与假设矛盾,故z a =必为)(z ϕ的本质奇点.2.3在∞点的孤立奇点定义3设函数)(z f 在无穷远点(去心)领域{}:||K z -∞+∞>内解析,则称点∞为)(z f 的一个孤立奇点.如果点∞为)(z f 的一个孤立奇点,令1t z =,1()()()g t f f z t==则函数()g t 某去心领域{0}:0||K t R -<<内解析,0t =就为()g t 之一孤立奇点.于是得到下面结论:(1)在对应点z 与t 上,函数)(z f 与()g t 的值相等; (2)0lim ()lim ()z t f z g t →∞→=,或两个极限都不存在.定义4 若0t =为()g t 的可去奇点,m 阶极点或本质极点,则我们相应的称z =∞为)(z f 的可去奇点,m 阶极点或本质极点.定理6 如果z =∞是函数)(z f 的可去奇点的充要条件lim ()z f z b →∞=≠∞;如果z =∞是函数)(z f 的m 阶极点的充要条件)(z f 在z =∞的某去心领域{}K -∞内能表成()()m f z z h z =其中()h z z =∞在)(z u 的领域K 内解析,且()0h z ≠或者1()()h z z f z ==∞以为m 阶零点或者lim ()z f z →∞=∞;函数)(z f 的孤立奇点∞为本质奇点的充要条件不存在lim ()z f z →∞.证明 令1t z =,1()()()g t f f z t==,再根据定理1,2,3,4可证. 综上所述①如果a 为函数)(z f 可去奇点充要条件lim ()()z af z b →=≠∞;②如果a 为函数)(z f 极点充要条件lim()z af z →=∞;③如果a 为函数)(z f 本质奇点充要条件lim ()z af z →不存在.3.复变函数中的应用定理7 若函数)(z f 在点z a =解析,点z a =为函数)(z g 的可去奇点,则点z a =也为函数)()(z g z f ±,)()(z g z f 的可去奇点;当()0f a ≠,()0g a ≠时,则z a =函数)()(z f z g ,)()(z g z f 的可去奇点. 证明 因为点z a =为)(z g 的可去奇点,所以lim ()z ag z b →=(有限复数)由)(z f 在点z a=解析知)(z f 在点z a =必连续,从而lim()()z af z f a →=,于是[]lim ()()()z af zg z f z b →±=±(有限复数),lim ()()()z af zg z bf z →=(有限复数),所以点z a =也为)()(z g z f ±,)()(z g z f 的可去奇点.因为z a =是函数)(z g 的可去奇点,则lim ()z ag z b →=(有限数),函数)(z f 在点z a =解析,所以lim()()z af z f a →=,因为()0f a ≠,所以()lim ()()z ag z bf z f z →=(有限数)所以点z a=是函数)()(z f z g 的可去奇点.同理可证点z a =是函数)()(z g z f 的可去奇点. 定理8 若函数)(z f 在点z a =解析,点z a =为函数)(z g 的m 阶极点,则点z a =也为函数)()(z g z f ±的m 阶极点;当()0f a ≠时,则点z a =也为函数的)()(z g z f ,)()(z f z g 的m 阶极点.证明:因为点z a =为)(z g 的m 阶极点,所以)(z g 在点a 的某去心邻域内能表成ma z z z g )()()(-=λ,其中)(z λ在点a 解析,且0)(≠a λ.于是()()()()()()m mz a f z z f z g z z a λ-±±=-,令)()()()(z z f a z z m λ±-=Φ则在点z a =解析,且0)()(≠±=Φa a λ所以点z a =也为)()(z g z f ±的m 阶极点.因为点z a =为)(z g 的m 阶极点,所以)(z g 在点a 的某去心邻域内能表成ma z z z g )()()(-=λ,其中)(z λ在点a 解析,且0)(≠z λ,于是()()()()()mf z z f zg z z a λ=-,这里)()()(z z f z λ=Φ在点z a =解析,且0)(≠Φa ,所以点z a =是函数)()(z g z f 的m 阶极点.同理可证点z a =是函数)()(z f z g 的m 阶极点. 定理9 若函数)(z f 在点z a =解析,点z a =为函数)(z g 的本质奇点,则点z a =也为函数)()(z g z f ±的本质奇点;当()0f a ≠时,则点z a =也为函数)()(z g z f ,)()(z f z g 的本质奇点.证明 因为函数)(z f 在点z a =解析,所以()f z b =,点z a =为函数)(z g 的本质奇点 所以lim ()z ag z →不存在,假设lim[()()]lim ()z a z ag z f z g z b →→+=+存在,则lim ()(z ag z b c →+=有限数)或者∞; lim ()(z ag z c b →=-∞有限数)或者 矛盾,所以点z a =也为函数)()(z g z f ±的本质奇点.因为点z a =为函数)(z g 的本质奇点,所以lim ()z ag z →不存在;函数)(z f 在点z a =解析,且()0f a ≠,所以lim ()()z af z f a →=,假z a =不是函数)()(zg z f 的本质奇点,则lim ()()(z af zg z b →=∞有限数)或,lim[()()]lim (=()(z az af zg z bg z f a f a →→=∞)或)相矛盾, 所以z a =是函数)()(z g z f 的本质奇点.同理可证也是)()(z f z g 的本质奇点. 定理10 若)(z f 在点a 的某去心邻域内能表示成)()()(z g z h z f =,a 为()h z 的n 阶零点,为)(z g 的m 阶零点,当m n >时,a 为)(z f 得m n -阶极点;当m n ≤时,a 为)(z f 的可去奇点.证明:0)()(,)()(,))(()(1111解析,且都不等于和z g z h a z g z g a z z h z h mn-=-=,于是,11()()()()n mh z z a f z g z --=,所以当m n >时,a 为)(z f 得m n -阶极点;当m n ≤时,a为)(z f 的可去奇点.例1 判断()2z z z f z e+=∞=点函数的孤立奇点类型.解 令z 1=ξ则得ξξ211)1(+=e f ,记函数为)(ξϕ所以点0=ξ是此函数的解析点()()⎥⎦⎤⎢⎣⎡+++=''+-='++432112112214218)()21(2)(ξξξϕξξϕξξee所以e e e 12)0(,2)0(,)0(=''-='=ϕϕϕ,()() ++-=2621ξξξϕe ,()()+∞<<⎪⎭⎫⎝⎛++-=z z z e z f 26212 ,这里∞=z 是函数)(z f 的可去奇点. 例2 求下列函数奇点的类型 ⑴z z cos sin 1+ ⑵()321iz + ⑶z 2tan ; 解:⑴4ππ-=k z () ,2,1±±=k 是原式的孤立奇点,41limsin cos z k z zππ→-=∞+,4ππ-=k z 是函数)(z f =z z cos sin +的一阶零点,所以4ππ-=k z () ,2,1±±=k 是一阶极点.⑵()i z -±=122是孤立奇点,()i z -±=122是函数()32i z +的3阶零点,所以()i z -±=122是三阶极点. ⑶π⎪⎭⎫ ⎝⎛+=21k z 是孤立奇点,π⎪⎭⎫ ⎝⎛+=21k z 是函数z z 22sin cos 的2阶零点,所以π⎪⎭⎫ ⎝⎛+=21k z 是二阶极点.例3求下列函数在扩大平面上的孤立奇点,并确定它们的类别.⑴226)1(1++z z z (2)21ze z+ (3)1111---z z ee (4)ztge1解:(1)令原式为)(z f ,则)(z f 是有理分式,显然0z =是单极点,当z i =±时,此时分子分母均为零,)1)(1(12426+-+=+z z z z ,))((1)1()1)(1()(2422242i z i z z z z z z z z z z f +-+-=++-+=, 可见z i =±也是)(z f 的一阶极点.当z =∞时))((1)1()1)(1()(2422242i z i z z z z z z z z z z f +-+-=++-+=,可见z =∞是)(z f 的一阶极点.(2)显然z i =±是)(z f 的一阶极点. 当z =∞时,令0z x =>211lim lim 0()x x x x f x e→∞→∞+==, ()()2110,lim lim x x x x z x x f x e-→∞→∞+=->==∞-,因此极限1lim()z f z →∞不存在(包括不为∞),所以,z =∞是)(1z f 的本性奇点,故z =∞是)(z f 的本质奇点.注:若lim ()z f z →∞不存在,则z =∞是)(z f 的本性奇点,这是显然的,否则若z =∞是可去奇点(正则点)或极点,则lim ()z f z →∞存在且有限,或lim ()z f z →∞=∞,矛盾.(3)显然k z =1+i k π2(0k =, ,2,1±±)是分母的零点,而分子仅有),0(10==k z 分子为零,所以k z =1+i k π2(0k =, ,2,1±±)是)(z f 的一阶极点. 当10==z z 时,令1,-==x y x z ,则()11lim lim 1yy x y ef x e ++→→==+∞-11lim ()lim 0,(),1pp x p ef x p y e -+--→→===--所以1lim ()z f z →不存在,故1=z 是)(z f 的本性奇点.又∞→k z (∞→k ),故z =∞不是孤立奇点.(4)由下列注知:函数ζe 仅有唯一的奇点∞=ζ,且它是本质奇点,于是令ztg1=ζ,则)(z f 仅为函数ζe 又由z 1cos =0知,当k z =π)12(2+k (0k =, ,1±)时,∞=ζ所以k z 是的)(z f 本质奇点.显然0z =是)(z f 的本质奇点.当z =∞时,若定义,01=∞则z =∞是)(z f 可去奇点.综上对孤立奇点的研究,要判断孤立奇点类型主要有2种方法:①根据主要部分,但有一些函数的洛朗展开式不容易求出;②函数的极限值,当极点时,无法判断极点的阶数.所以求函数的奇点类型一般方法先求函数在孤立奇点的极限值,如果我们求出的是极点,在根据极点和零点的关系求出极点的阶数.结束语本论文所论述的判定孤立奇点类型的方法只是为了判定孤立奇点的类型提供参考,在具体的判定孤立奇点类型时,可以根据函数的不同采用不同的判定方法判定孤立奇点类型.本文中的方法不一定是解题时最简便的判定孤立奇点的方法.参考文献[1]尹水仿,李寿贵,复变函数与积分变换[M],科学出版社,2009.[2]苏变萍,陈东立,复变函数与积分变换(第二版)[M], 高等教育出版社 ,2010. [3]陈宗煊,孙道椿,刘名生, 复变函数[M],科学出版社 ,2010. [4]钟玉泉, 复变函数论(第三版)[M], 高等教育出版社, 2004. [5]沈燮昌, 复变函数论基础[M], 上海科学技术出版社,1982. [6]庄圻泰, 复变函数[M], 北京大学出版社, 1984. [7]冯复科,复变函数与积分变换[M],科学出版社,2008.[8]Brown, James Ward., Complex variables and applications[M], China Machine Press , 2004.Types and Their Judgment of The Isolated SingularityAuthor :Dong Zhaolin Supervisor: Wu DaiyongAbstract :This article generalizes type and main determination way of the isolated singularity.Respectively studying function in finite number of points and infinite point of the isolated singularity, we get three to determine the method which are definition of law , limit law and poles and zeros relations act with isolated singularity type. This article describes relationship of new function which two functions and, difference, product, business receive with the original function in isolated singularity type. Combination of what the example describes the application of the three methods to determine the type of isolated singularity.Keywords: removable singularity extreme essential singularity。

浅析复变函数中的孤立奇点

浅析复变函数中的孤立奇点

浅析复变函数中的孤立奇点
复变函数有许多性质,其中一些比实变函数更加有趣,例如,复变函数的孤立奇点。

在数学中,孤立奇点是复数平面上某个点处的奇点,该点周围的一个充分小的半径范围内函数无定义。

孤立奇点可以被分类为三种类型:可去奇点、极点和本性奇点。

这些类型的定义如下:
1.可去奇点:如果一个函数在这个点处的极限是有限的,则该奇点为可去奇点。

孤立奇点的性质不止是一般奇点的性质。

对于孤立奇点,我们可以将整个函数拆分为主函数和解析部分。

主函数在孤立奇点处没有定义,而解析部分可以使用洛朗级数展开式表示。

这种展开式是一种类型的级数,可以帮助我们更好地理解和研究复变函数的行为。

当我们通过洛朗级数展开来研究孤立奇点时,我们发现级数中的常数项是解析部分。

这个解析部分没有奇点,可以扩展到整个复平面上,那么它就是整个函数的主函数。

这种展开式在很多数学和工程应用中都有很好的应用,例如电子电路和信号处理。

对孤立奇点的研究在数学和应用领域都有重要意义。

在数学研究中,这些奇点是理解多复变数函数的关键。

在物理学研究中,例如在量子力学中,对解析函数的研究也是重要的。

而在工程中,对展开式的应用则是帮助我们计算信号的傅立叶变换或者在电子电路中分析振荡器和滤波器的行为。

总结来说,复变函数中的孤立奇点是复杂数学的一个亮点。

它们有着很多有趣的性质和应用,对于研究多元函数和应用技术都有重要的意义。

因此,深入研究复变函数的孤立奇点,不仅只是一个数学课题,也是应用和工程领域探索的前沿。

复变函数论中的孤立奇点分类理论概述

复变函数论中的孤立奇点分类理论概述

复变函数论中的孤立奇点分类理论概述复变函数论(Complex Analysis)是数学分析领域的重要分支,研究复数域上的函数性质和相关理论。

在复变函数中,孤立奇点(Isolated Singularity)是指函数在某个点附近出现的特殊性质的点。

孤立奇点分类理论旨在系统地研究和分类这些孤立奇点。

本文将概述复变函数论中的孤立奇点分类理论。

孤立奇点可以分为可去奇点(Removable Singularity)、极点(Pole)和本性奇点(Essential Singularity)三类。

一、可去奇点若函数在某点z=a处的极限存在且有限,即lim_(z→a) f(z)=b(b为有限数),则称a处为可去奇点。

此时,可以通过定义一个新的函数,使得在a点附近没有奇异性,使函数在a点处得到有界的延拓。

换句话说,可去奇点可以通过在函数原有定义域上对函数进行连续地延拓来消除。

二、极点若函数在某点z=a处的极限存在,但是无穷大,即lim_(z→a)f(z)=∞或者lim_(z→a) |f(z)|=∞,则称a处为极点。

极点分为无穷级极点和有限级极点两种情况。

1. 无穷级极点:若函数在无穷远点(z→∞)处的极限存在,即lim_(z→∞) f(z)=∞或者lim_(z→∞) |f(z)|=∞,则称无穷远点为无穷级极点。

2. 有限级极点:若函数在某有限点z=a处的极限存在且为无穷大,即lim_(z→a) f(z)=∞或者lim_(z→a) |f(z)|=∞,则称a处为有限级极点。

极点可以通过定义一个新的函数,使得在极点附近的函数有有界的延拓。

通常情况下,极点构成了复变函数的奇异性中的一种较为简单的形式。

三、本性奇点若函数在某点z=a处的极限不存在(或为无穷大),则称a处为本性奇点。

本性奇点是最复杂的一类奇点,函数在这类点附近的行为相当不规则。

本性奇点不可能通过有界的延拓来消除其奇异性。

在复变函数论中,孤立奇点与数学实际应用密切相关,例如在物理学、电子工程、天文学和统计力学等领域中都有广泛的应用。

谈解析函数中有限孤立奇点的判定方法

谈解析函数中有限孤立奇点的判定方法

谈解析函数中有限孤立奇点的判定方法有限孤立奇点是一种重要的数学概念,它是一种有限、孤立的特殊点,具有解析函数的性质。

有限孤立奇点的存在及其判断具有重要的理论和应用价值。

本文主要就解析函数中的有限孤立奇点作一深入的研究,主要介绍以下内容:一、有限孤立奇点的定义有限孤立奇点是指一类有限的孤立的点,这些点具有解析函数的性质。

可定义为:若函数f(x)在x=x_0处及它的邻域内无有限值,则称x_0是f(x)的有限孤立奇点。

这里,f(x)一般指定义域上的可导分析函数,并且特征点x_0也要满足函数f(x)在有限范围内无有限值。

二、有限孤立奇点的重要性有限孤立奇点对于解析函数有着重要的意义。

首先,有限孤立奇点可以帮助数学研究人员更加深入地研究函数,从而有助于函数分析。

其次,有限孤立奇点也可以用来分析一些特定问题,比如求解方程。

在应用中,有限孤立奇点的存在也可以提供一种有力的理论基础,涉及到一些数学上的研究,如解析函数的求解、有限元素分析等。

三、有限孤立奇点的判定方法判断一个点是否为有限孤立奇点,有多种方法可以实现。

首先,是通过函数的求导,利用极值定理,从而判断函数是否有孤立的极值点,若是的话,这个点就可能是有限孤立奇点。

其次,还可以利用超参数曲面,观察曲面的拐点以及曲线的行为来判定。

再次,可以利用数值求解的方法,给定函数的定义域,进行穷举,并利用精确数值计算和迭代法,不断收敛,最后达到极值点。

最后,还可以通过分离变量法来进行求解。

四、总结本文讨论了解析函数中有限孤立奇点的判定方法,提出了多种判定方法,以便解析函数中有限孤立奇点的判断。

借助这些方法,可以更深入地了解函数的性质,为函数分析和应用提供有力的理论支持。

浅析复变函数中的孤立奇点

浅析复变函数中的孤立奇点

浅析复变函数中的孤立奇点复变函数中的孤立奇点是指在函数定义域内具有特殊性质的点,在这篇文章中,我们将对复变函数中的孤立奇点进行一次浅析。

我们需要了解什么是复变函数。

复变函数是指定义在复平面上的函数,它包含了实部和虚部两个变量。

通常表示为f(z),其中z是复平面上的变量。

复变函数在数学中有着广泛的应用,特别是在物理学、工程学和数学分析等领域中。

在复变函数中,孤立奇点是一个非常重要的概念。

孤立奇点是指在函数定义域内具有特殊性质的点,它可能是函数的奇点或者极点。

奇点是指函数在该点处不可导,而极点是指函数在该点处具有无穷级数的发散性质。

孤立奇点可以分为三种类型:可去奇点、极点和本质奇点。

可去奇点是指在该点处函数可以通过改变定义来使之变得连续,极点是指在该点处函数趋于无穷大,本质奇点是指在该点处函数无法通过局部解析式来表示。

在复变函数中,孤立奇点具有许多重要的性质和应用。

对于复变函数f(z),如果f(z)在孤立奇点处全纯(即在该点的领域内可以展开为幂级数),那么其必为可去奇点。

这一性质为我们研究复变函数的奇点提供了一个很好的判断条件。

孤立奇点也与柯西定理密切相关。

柯西定理是复变函数理论中非常重要的一个定理,它表明了全纯函数沿闭合曲线的积分为零。

在柯西定理中,孤立奇点的存在对于积分路径和积分结果有着重要的影响。

孤立奇点也与洛朗级数展开相关。

洛朗级数是一种复变函数在孤立奇点处的展开形式,它由幂级数和Laurent级数组成。

洛朗级数展开为我们研究复变函数在孤立奇点处的性质提供了一个非常有力的工具。

复变函数中的孤立奇点是一个非常重要而又复杂的概念。

它具有丰富的性质和广泛的应用,对于理解复变函数的性质和行为有着重要的作用。

在实际问题中,对于复变函数的解析和计算都离不开对孤立奇点的研究和分析。

对于复变函数中的孤立奇点有一个深入的理解和掌握是非常有必要的。

浅析复变函数中的孤立奇点

浅析复变函数中的孤立奇点

浅析复变函数中的孤立奇点孤立奇点是复变函数中的一种特殊情况,指的是某个点处的函数不连续且无法进行泰勒展开的点。

在实际应用中,孤立奇点经常出现在复函数的分母中,导致分母为零从而使得函数的值无法计算。

因此,了解孤立奇点及其性质对于理解复变函数的研究和应用至关重要。

首先,我们来看一个简单的例子:设$f(z)$为复变函数$\frac{1}{z}$。

此时,我们可以发现,当$z=0$时,函数$f$的值为无穷大,即$f$在$z=0$处有一个孤立奇点。

这是因为当$z$无限地接近于0时,分母会无限地接近于零,从而使得$f$的值趋向于无穷大或负无穷大。

因此,我们可以将孤立奇点定义为“使得函数无法在该点处连续的点”。

在复平面上,孤立奇点通常具有以下几个性质:1. 孤立奇点必须是函数的“独立点”。

也就是说,如果一个点是函数的“可去奇点”、“极限奇点”或“本性奇点”,那么它就不可能是孤立奇点。

2. 孤立奇点是函数的“聚点”。

也就是说,无论以任何方式接近孤立奇点,都必然会进入到“不可解析”的区域内。

3. 孤立奇点有限。

也就是说,一个复变函数的孤立奇点不能无限多。

有了这些性质,我们可以更好地理解孤立奇点的特性和行为。

例如,对于一个孤立奇点,我们可以通过求解$f$的洛朗级数来近似描述它附近的函数行为。

洛朗级数可以看做是泰勒级数在孤立奇点处的推广形式,是一种形如$\sum_{n=-\infty}^{+\infty}a_n(z-z_0)^n$的级数,其中$a_n$为常数,$z_0$为孤立奇点。

通过求解这个级数,我们可以得到$f$的近似值,并进一步研究其性质。

此外,我们还可以通过研究孤立奇点的类型来判断复变函数在该点附近的行为。

根据孤立奇点的定义,我们可以将其分为三类:可去奇点、极限奇点和本性奇点。

可去奇点指的是在该点附近可以重新定义函数使其连续的点;极限奇点指的是在该点附近函数的绝对值无限地增大或减小的点;本性奇点则是既非可去奇点也非极限奇点的孤立奇点,我们通常将这类点称为“真正的”孤立奇点。

浅析复变函数中的孤立奇点

浅析复变函数中的孤立奇点

浅析复变函数中的孤立奇点复变函数是指定义在复数域上的函数,与实数域上的函数不同,复变函数的值域也是复数域。

当一个复变函数在某一点处的值没有定义时,这个点就被称为该函数的奇点。

奇点按照其性质可以分为孤立奇点和本性奇点,本文将会着重讨论孤立奇点的性质及特征。

一、孤立奇点的定义孤立奇点是指函数在该点的邻域内不存在定义的情况下,该点对函数的解析延拓有着重要的作用。

换言之,孤立奇点是指在该点附近处于解析的函数,在该点却不连续或无定义。

孤立奇点可以分为可去奇点、极点和 essential 奇点三种不同类型,下面分别进行详细解释。

二、可去奇点可去奇点是指当函数在该点处可以解析扩张,即在该点有一个 Laurent 展开式的过程中,a-1 的系数为 0。

例如:函数 f(z)=-sinz/z,在 z=0 处可以解析扩张,因为该函数满足 Laurent 展开式,且 a-1=0,可以看做是在该点处的一个可去奇点。

在一些情况下,可去奇点可以视为函数在该点附近的一个极限。

也就是说,可去奇点并不会导致复变函数在在该点的解析性的丧失,而只是在该点的一个小区域内不连续,可以理解为函数在该点的极限。

三、极点极点是指在一些点附近,函数存在一个无限趋近于某一值的现象,而不是像可去奇点一样在该点处没有定义。

极点又可以分为一阶、二阶,三阶等不同阶次的极点。

四、essential 奇点本性奇点,或称 essential 奇点,是指不能通过解析扩张而消除的奇点,这表明在这些点附近,函数的行为非常难以预测。

比如,当函数 f(z)=exp(1/z) (其中 z=0),我们无法使用 Laurent 展开式表示它,因此我们可以将这个点视为一个 essential 奇点。

五、总结可以看到,在复变函数中,孤立奇点被分为可去奇点、极点和 essential 奇点三种不同类型。

这些奇点在函数的解析延拓中起着重要的作用,通过对不同类型孤立奇点的认识及使用,可以在复杂且不可解释的情况下对函数进行更加深入的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈复变函数中有限孤立奇点的类型判断
桂林电子科技大学!王会勇
!摘!要"本文就工科复变函数课程中有关孤立奇点类型判断的教学提出了建议"
!关键词"极点!判断!解析
!!留数与留数定理是复变函数课程中的重要内容!同时也是
一个难点"在实际的教学中!笔者发现!很多学生在完成’留数
定理在定积分计算上的应用(部分的学习后!对本章内容感觉
很生涩!并难于下手解题"笔者调查发现!多数同学反映此部
分的难点在于对孤立奇点的类型的判断和计算极点处的留数
两方面"这与现行通用教材%如文献#和文献)&中对该部分的
总结和选取有关"根据实际的教学经验!并参考相关文献!笔
者建议该部分教学内容和顺序简列如下$
简捷报数起卦
佛山科学技术学院!谭伟良
!摘!要"本文介绍一些报数快速起卦的八卦预测方法!文中透露了一些起卦等预测方面的奥妙" !关键词"易!起卦!预测!占卜
#C什么是报数起卦
本文重点介绍报两数起卦$要起卦时!想一下有关要预测的事!然后报或想出两个数!其中小的数除以E余数作外%上&卦!大的数除以E余数作内%下&卦!报或想出的两个数的和除以Q余数作动爻位"报数起卦法还有一数时辰法#两数时辰法和二数多数法"
"C报数起卦法的特点和注意事项
报数起卦法不用知方向!纯两数起卦法则连时间也不用知道#不用时辰的运算!相当吸引人"用两数时辰法计算变爻位的方法设定了所问事物的存在值由所报两数和时辰三部分的组成!而纯两数起卦法则设定了所问事物的存在值分别由报出的两数组成"由于各个人的敏感点不一定相同!因工作或体育爱好而习惯腰#身转动的人!可能容易体会到转动身体起卦!%用多方向或方位起卦时!如果提问包含的时间和空间太长#太大或界定不太清楚!则变数很多!身体转很多次)一个多爻变的卦相当于一口气起了多个卦!可根据变爻出现先后分为多个卦&!方向和报数两种方法灵活运用也行"天机不可泄露!就像还没有到站的时候不要下车一样!什么时候出现什么都有一定的规则或惯性或过程!所以知道某些预测结果时!不要轻易泄露!以知而不太知#不太执着等技巧调整自我!以保安全!请参考本人其他文章"
)C介绍某些重要原理
%#&设定原理$设起卦的方法为<!外卦为]!内卦为F!则我们可以在<#]和F中定义不同的模式"所以同时报出的两个数!有人把先报的数设定为外卦!有人却把先报的数设定为内卦"刚运用某种方法起卦时!应该想一下本次预测所用方法的具体内容!除非你一直只用某种方法来预测!形成了习惯"所以!起卦时可以设定自己的时间系统!如外国人到我国旅游!要起卦!他可以以他在自己国家的时间系统来计算时辰数!也可以以我国的北京时间或当地的地方时来计算时辰数"设定的行为与自然助力有关系"
%"&自然助力原理$将自然界中或大众中存在的某种思想或运动模式作为起卦时的设定模式!如用身体起卦中的身体前后左右法的设定值可以为地图方向模式!结果是身体前面或上方设定为’北(!先天卦数为Q!身体的左边为’西(!先天卦数为""也可以让设定值为南阳北阴模式!因为人的前面为阳面!背面为阴面!所以人的前面或上方为’南(!先天卦数为)!身体的左边为’东(!先天卦数为I"一般而言!一个模式越多人知道#支持或运用!则那个模式就越容易或越值得为我们去采用!一个模式存在的自然气势越明显!则那个模式就越容易或越值得为我们去采用"因为从中我们得到的助力较大!办事助力大!有如顺水行舟!较顺利"就如运算中的加法!在推测彩票号码的某些时候是很多人采用的方法!前期彩票号码)和A!我们就可能会在这期想到)L A M E!而)!A M#A就较少想到!)L A M E的助力#气势或场比) !A M#A大!因为懂得)L A M E的人比懂得)!A M#A的人多"但自然助力原理受多方面关系影响着!不是凡有)和A就一定是E"
%)&存在值原理$这是本人目前较为难以说明的原理"所问事物所包含的运动或活动的能量单位!即所问事物赖以存在或生存的能力数值"如问同一事时!如果设定用纯二数法!报数E和E#!则所问之事赖以存在的总能量单位为E L E# M EW)若设定用两数时辰法!则所问之事的场会规定我们报出两数!使存在的时辰数与所报出两数的和等于EW!这是理解计算变爻位的思路"一个有点象!又不完全象的比喻!如两人先后负责挑同一东西上山!一人的体力允许他挑着走)DD 米!另一人能挑着走ADD米!则’两人先后挑同一东西上山的事(的存在值就是)DD L ADD M EDD米"一走到EDD米!’两人先后挑同一东西上山的事(就发生变化或不能继续存在了"
IC实际例子
某天在商家那里发现某产品与广告宣传状况有出入!不知道要改变事先设定的购买方案否1有点犹豫!于是轻易报出"#)!革!知道要改变方案
"。

相关文档
最新文档