复变函数 第五章 解析函数的罗朗展式与孤立奇点
《复变函数》第五章习题全解钟玉泉版

第五章 解析函数的洛朗展开与孤立奇点(一)1.解:(1):1)10<<z ,∑∞=---=-⋅+=-+0222221111)1(1n n z z z z z z z z z2)111<⇒+∞<<z z , ∑∞=++=-⋅+=-+032321211111)1(1n n z z zz z z z z (2)222121121()1212112f z z z z z z -=-=--+-+ =20012()(1)22n n n n n z z ∞∞+==---∑∑ (3)()f z =2(1)z e z z +231......!nz z z z n z z+++++=+ =2151 (26)z z z +-- 2.解:(1)2222])2)()1([)(41)1(1n n n n i i z i z z ∑∞=----=+ )20()2))(1()1()(412<-<-+---=∑∞=i z i i z n i z nn n n(2))0(1)!2(1!102212+∞<<⋅+==∑∑∞=∞-=+-z zn z n e z n n n n z(3) 令1zξ=,则21(1...)112ze eeξξξξξ-+++--==234542(1...)(1...)23!4!5!2ξξξξξξξ=-+-+--+345(1...)(1...)(1) (2)3!4!ξξξ---=23451 (2)385114ξξξξξ--+--=234511111141...8235z z z z z --+--+3.证明:根据洛朗定理,可设)0()]1(sin[0+∞<<=+∑∞=z z c z z t n nn其中 ⎰=+±=+=11),1,0()]1(sin[21ξξξξξπ n d t i c n n这里 )20(,1πθξξθ≤≤==i e于是 θθπθππθθπθθθd ed ie e e e t i c in i n i i i n ⎰⎰+=+=+-2020)1()cos 2sin(21)](sin[21 4.解:(1)因为函数为有理函数,且分子,分母无公共零点,因此分母的零点就是函数的极点,令分母0)4(2=+z z ,得0=z 以及i 2±,分别是分母的一级和二级零点,从而分别是函数的一级和二级极点,又因0)4(12∞→+-z z z z ,所以∞=z 为可去奇点.(2)由定理5.4(3)知函数z z cos sin +的m 级零点,就是zz cos sin 1+的m 级极点,且分母零点的极限点必为函数的极限点,因为)4sin(2cos sin π+=+z z z则令0cos sin =+z z ,得),1,0(4 ±=-=k k z ππ且又因),1,0(0)1(2cos 2])4sin([4±=≠-=='+-=k k z z k k z ππππ故),1,0(4±=-=k k z ππ各为分母z z cos sin +的一级零点即为zz cos sin 1+的一级极点.又因∞→-=4ππk z ,即∞=z 是极点的极限点,即为函数的非孤立奇点.(3)因i k z π)12(+=时,分母01=+z e ,且 01)1()12(≠-='++=ik z z e π所以i k z π)12(+=是分母的一级零点,而此时分子0)1()12(≠-+=ik z z e π故i k z π)12(+=各为函数的一级极点,因分母,分子在平面解析,所以除此之外在平面上无其他奇点. (4)令分母为0,解得)i 1(22z -±=,即为所给函数的极点. 且因,0])i z [(,0])i z [()i 1(22z 32)i 1(22z 32≠'+='+-±=-±=故)i 1(22z -±=均为所给函数的三级极点. 又因0z )1z (132∞→+,所以∞=z 为可去奇点. (5)因为zzz 222cos sin t an =,分子分母均在z 平面解析且无公共零点,所以分母的零点即为z 2tan 的极点,令0cos 2=z ,解得 0)(cos ,222='+=+=ππππk z z k z),1,0(0)(cos 22 ±=≠''+=k z k z ππ所以2ππ+=k z 是z 2cos 的二级零点,从而是z 2tan 的二级极点.(6) ++-=+2)(!2111cosi z i z 所以i z -=为其本性奇点,又因 11coslim =+∞→iz z ,所以∞=z 为可去奇点. (7)因21)2(22sin lim cos 1lim 2202==-→∞→z z z z z z 故0=z 为可去奇点, ∞=z 为本性奇点.(8)因为当且仅当i k z π2=时,分母0)1(,012≠'-=-=i k z z z e e π,所以i k z π2=为分母的一级零点,而分子是常数1,因此i k z π2=为其一级奇点. 5.解:先判断各函数的奇点类型. (1) 0=z ,∞=z 为奇点.(2) 0=z ,∞=z 为奇点.(3) 0=z 不是孤立奇点,是极点的极限点.(4)分母的零点是πk z =,这是ctgz 的极点,且01)(sin ≠-='πk z所以πk z =是分母的一级零点,因此是ctgz 的一极点,而∞=z 不是孤立奇点,是极点的极限点.由三个函数均为单值函数,由洛朗定理,在孤立奇点的去心邻域内均能展开成洛朗级数,在非孤立奇点的邻域内则不能.6.解:(1)当m n ≠时,a 为()()f z g z +的max(,)m n 级极点,为,f g 的m n +级极点,为fg的m n -()m n >级极点与n m -()m n <级零点 (2)当m n =时,a 为f g +的至多m 级极点(此时各种情况均有可能产生) 例:11,()()()kk m mf zg z k N z a z a +-=+=+∈-- a 为,f g 的m n +级极点,为fg的可去奇点. 7.证明:因)(z f 不恒等于零,如果a z =为)(z f 的零点,a z =只能为)(z f 的孤立奇点.(反证)如果a z =不是)(/)(),()(),()(z f z z f z z f z ϕϕϕ⋅±的本性奇点,则由上题的结论知,)(z ϕ就以a z =为可去奇点或极点,矛盾.8.解:(1) 1()(1)zzz e f z z e +-=-,奇点为0z =为一级极点, 2(1,2,...)z k i k π==±±为一级极点,z =∞为非孤立奇点(2) 0z =为函数的本性奇点, z =∞为函数的本性奇点. (3) z =∞是可去奇点, 0z =为本性奇点.(4) 0z =,z =∞为本性奇点. (5) 1=z 为本性奇点, i k z π2=为一级极点, z =∞为非孤立奇点.9.证明:因)(z f 在z 平面上解析,则)(z f 必为整函数,而整函数只以z =∞点为孤立奇点,而)(z f 在z =∞点解析,故z =∞点只能是)(z f 的可去奇点,由定理5.10知, )(z f 为常数.10.证明:(反证)设)(z f w =为整函数且非常数,若值全含于一圆之外,即存在0,00>εw ,使得对任何z ,恒有00)(ε>-w z f ,则有非常数整函数)(1)(w z f z g -=,所以在z 平面上任何点z ,分母不等于0,从而)(z g 在z 平面上解析,即为整函数.又因)(z f 非常数,所以)(z g 非常数,其值全含于一圆1)(ε<z g 之内,与刘维尔定理矛盾.11.证明:由题意,)(z f 在0z 的去心邻域内的洛朗展开式可设为∑∞=--≠-+-=01001)0()()(n n n c z z c z z c z f令01)()(z z c z f z g --=-,因01),(z z cz f --在r z ≤上除去0z 外解析,所以)(z g 在r z ≤上除去0z 外解析.又可知∑∞=-=00)()(n n n z z c z g )(z f 在0z 的邻域内解析,故)(z g 在r z ≤上解析.函数)(z g 在r z <内的泰勒展开式为∑∑∞=∞=+-+=0111)(n n n n nn z z c z a z g而直接法又给出∑∑∞=∞===00)(!)0()(n n n n nn z b z n g z g从而][0110101001z c z b z c z b z a a n n nn n n-++-+--=因为∑∞==0)(n nn z b z g 在r z ≤上解析,所以当0z z =时,级数∑∞=00n nn z b 是收敛的,一般项)(00∞→→n z b nn ,故即知01limz a a n nn =+∞→.(二)1.解:(1)不能(2)能,指定点不是所给函数的支点 (3)不能 (4)不能(5)能,指定点不是所给函数的支点2.解:不正确。
五章解析函数的洛朗展式与孤立奇点

0 z 1 1
内
f
z
z
1
2
z
1
2 1
1
1n z 2n
z 2 n0
5.2 解析函数的孤立奇点
• 1孤立奇点的分类 可去奇点、极点、本性奇点。
• 定义5.3 设 a 是 f z 的孤立奇点,
• ( 1 ) 若 主 要 部 分 为 0 , 则 称 f z 是 的可去奇点 f(z)。
• 定义5.4 设函数 f z 在无穷远点
(去心)邻域
N : r z
内解析,则称 为 f z 的一个孤
立奇点。
• 作变换 1 于是函数
z
f
1
f z
在去心邻域 K 0: 0 1
内解析。即 0 是 r
的一孤立奇点,
依此可规定 的类型。
• 定义5.5 若 0 为 的可去
1 1 z 1
故
z
2
f
z
1 2
1 1
z
1 z
1
1
1
2
z
1 z n 1 1
2 n0 2 n z n1 z n1
zn
1
2 z n1
n
n0
n1
• (3)在圆环 2 z 上
1 1
2 1
故
z
z
fz1 z源自1 121 z
1 1
1
z
z
1 2n 1 1
z n0 z n z n0 z n
z a R 0 R
• 对于主要部分 可作代换
, cn z an n1
z
1
a
• 成为一幂级数 C1 C2 2
• 它的收敛区域为 1
复变函数第四版余家荣答案

复变函数第四版余家荣答案【篇一:1第一章复数与复变函数】京1第一章复数与复变函数1 复数及其代数运算1.复数的概念①在解方程时,有时会遇到负数开方的问题,但在实数范围内负数是不能开平方的。
为此,需要扩大数系。
我们给出如下的代数形式的复数定义:复数的代数定义:把有序实数对(x,y)作代数组合所确定的形如x?iy的数称为(代数形式的)复数,记为z?x?iy,2其中,i满足i??1。
我们称i为虚单位;实数x和y分别称为复数z 的实部和虚部,并记为x?rez,y?imz。
特别地,当imz?0时,z?x?i0?rez?x是实数;当rez?0时且imz?0时,z?iimz?iy称为纯虚数;虚部不为零的复数称为虚数(即不为实数的复数称为虚数);z?0当且仅当rez?0且imz?0,即复数0?0?i?0。
z1?z2当且仅当rez1?rez2且imz1?imz2。
2.复数的代数运算2.1 四则运算设z1?x1?iy1,z2?x2?iy2为任意两个复数,它们的四则运算定义为: 加法:z1?z2?(x1?x2)?i(y1?y2) 减法:z1?z2?(x1?x2)?i(y1?y2) 乘法:z1z2?(x1x2?y1y2)?i(x1y2?x2y1) 除法:z1x1x2?y1y2y1x2?x1y2(z2?0) ??i2222z2x2?y2x2?y22【注】:(1).可见,复数的四则运算,可以按照多项式的四则运算进行,只要注意将i换成?1。
(2).关于除法的具体操作可以按两种方法来进行:①.先看成分式的形式,然后分子分母同乘以一个与分母的实部相等而虚部只相差一个正负号的复数(在后面将会看到,这被定义为共轭复数),再进行简化;②.用复数z1?x1?iy1除以非零复数z2?x2?iy2,就是要求出这样一个复数z?x?iy,使得z1?z2?z。
按乘法的定义,为求出z需要解方程组?x2x?y2y?x1??x2y?xy2?y12.2 共轭复数复数x?iy和x?iy互称为对方的共轭复数,如果记z?x?iy,则用记其共轭复数,即?x?iy?x?iy。
复变函数论第三版 5 解析函数的洛朗展式与孤立奇点

整理课件
1. 整函数
在整个z平面上解析的函数f(z)称为整函数. 设f(z)为一整函数,则f(z)只以z=∞为孤立
奇点,且可设 f(z) cnzn(0|z| ). (5.14) n0
整理课件
在整个z平面上解析的函数f(z)称为整函数.
设f(z)为一整函数,则f(z)只以z=∞为孤立
c 展式(5.14)有无穷多个 n不等于零.(我们称这
样的f(z)为超越整函数). 整理课件
2. 亚纯函数
定义5.6 在z平面上除极点外无其他类型 奇点的单值解析函数称为亚纯函数.
定理5.11 一函数f(z)为有理函数的充 要条件为:f(z)在扩充平面z平面上除极点外 没有其它类型的奇点.
整理课件
奇点,且可设 f(z) cnzn(0|z| ). (5.14)
于是显然有
n0
定理5.10 若f(z)为一整函数,则 (1)z=∞为f(z)的可去奇点的充要条为:f(z)=c. (2)z=∞为f(z)的m级极点的充要条件:f(z)是
一个m次多项式 c0c 1z cm zm (cm0 ).
(3)z=∞为f(z)的本性奇点的充要条件为:
1982年获全国自然科学二等奖。
整理课件
整理课件
张广厚 与华罗庚、杨乐、陈景润在一起
整理课件
两人长期从事复变函数论的研究,
特别在函数模分布论、辐角分布论、正规族
等方面取得一系列重要成果。 两人密切合作,在国际上首次提出并建立了值分布论中
过去被认为彼此无关的两个基本概念─ “亏值”和“奇异方向”的联系,
且作出了定量的表达。 他们的研究,推动了函数理论的发展,受到了国内外数学界的高度评价,
复变函数论 第五章 解析函数的洛朗展式与孤立奇点

第五章 解析函数的洛朗展式与孤立奇点§1 解析函数的洛朗展式教学目的与要求: 了解双边幂级数,了解洛朗级数与泰勒级数的关系,掌握解析函数在孤立奇点邻域内的洛朗展式的求法.重点: 解析函数的洛朗展式;解析函数在孤立奇点邻域内的洛朗展式的求法. 难点:解析函数的洛朗展式的证明. 课时:2学时定义5.1 级数101()()()n n n nn C C C z a C C z a z a z a+∞--=-∞-=⋅⋅⋅++⋅⋅⋅+++-+⋅⋅⋅--∑(5.1) 称洛朗()Laurent 级数,n C 称为(4.22)的系数.对于点z ,如果级数01()()()nn nn n C z a C C z a C z a +∞=-∞-=+-+⋅⋅⋅+-+⋅⋅⋅∑ (5.2)收敛于1()f x ,且级数1()()n n n n n C C C z a z a z a+∞--=-∞-=⋅⋅⋅++⋅⋅⋅+--∑ (5.3) 收敛于2()f x ,则称级数(4.22)在点z 收敛,其和函数为1()f x +2()f x 当0n C -=(1,2,)n =⋅⋅⋅时,(5.1)即变为幂级数.类似于幂级数,我们有定理5.1 设()f z 在圆环12:D R z a R <-<12(0)R R ≤<<+∞内解析,则在D 内()()nn n f z C z a +∞=-∞=-∑(5.4)其中11()2()n n f z C dz i z a π+Γ=-⎰ (0,1,)n =±⋅⋅⋅ (5.5) :z a ρΓ-=,且12R R ρ<<,系数n C 被()f z 及D 唯一确定.(5.4)称为()f z 的洛朗展式.证明:对:z H ∀∈作1:1z a ρΓ-=,2:2z a ρΓ-=,(其中12r R ρρ<<<) 且使z D ∈:12z a ρρ<-<,(如图5.1)由柯西积分公式,有()()2112f f z d i z ξξπξ-Γ+Γ==-⎰()212f d i z ξξπξΓ-⎰+()112f d i z ξξπξΓ-⎰图5.1对于第一个积分,只要照抄泰勒定理证明中的相应部分,即得:()212f d i z ξξπξΓ-⎰=()0nn n C z a ∞=-∑ 其中()()1212n n f C d i a ξξπξ+Γ=-⎰()!n f a n = 对于第二个积分()112f d i z ξξπξΓ-⎰: ()()()()()()1f f f z z a a z a z a a ξξξξξξ==----⎛⎫---⎪-⎝⎭当1ξ∈Γ时11az az aρξ-=<--1111n n a a z a z aξξ-∞=-⎛⎫∴=⎪--⎝⎭--∑ (右边级数对于1ξ∈Γ是一致收敛)上式两边乘上()f z a ξ-得:()f z ξξ=-()11n n f a z a z a ξξ-∞=-⎛⎫ ⎪--⎝⎭∑=()()()111n n n f z a a ξξ∞-+=--∑ 右边级数对1ξ∈Γ 仍一致收敛,沿1Γ逐项积分,可得()112f d i z ξξπξΓ-⎰=()11n n z a ∞=-∑()()1112n f d i a ξξπξ+Γ-⎰ 其中n C =()()1112n f d i a ξξπξ-+Γ-⎰113. 3.10P Th ()()112n f d i a ξξπξ-+Γ-⎰ 于是:()()nn n f z C z a +∞=-∞=-∑, 其中n C =()()112n f d i a ξξπξ+Γ-⎰ (n=0,1,± ) 下面证明展式唯一,若在H 内()f z 另有展开式()()'nnn f z C z a +∞=-∞=-∑右边级数在Γ上一致收敛,两边乘上()11m z a +-得:()()1m f z z a +-=()'1nm n n C z a ∞-+=-∞-∑,右边级数在Γ上仍一致收敛,沿Γ逐项积分,可得:()()112m f d i a ξξπξ+Γ-⎰=()'1112n m n n C d i a ξπξ+∞-+Γ=-∞-∑⎰ ∴'n C =n C 即展式是唯一的.注:1)定理中的展式称为洛朗展开式,级数称为洛朗级数. n C 称为洛朗系数.2)泰勒展式是洛朗展式的特例. 例1.求()()()112f z z z =--在(1)1,(2)12,(3)2(4)011z z z z <<<<<∞<-<中的洛朗展开式. 解:()1121f z z z =--- (1)()00111122212nnn n z f z z z z ∞∞==⎛⎫=-=-=⎪-⎛⎫⎝⎭- ⎪⎝⎭∑∑12nn n n n z z ∞∞+==-∑∑=10112n n n z ∞+=⎛⎫- ⎪⎝⎭∑ (1z <).(2) ()1121f z z z =---1112112z z z =--⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭100112n n n n n z z z ∞∞+==⎛⎫=-- ⎪⎝⎭∑∑ 110012n n n n n z z∞∞++==⎛⎫=-- ⎪⎝⎭∑∑. (12z <<)(3) ()1121f z z z =-=--112111z z z z -⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭()1000121121n n n n n n n n z z z z∞∞∞+===⎛⎫=-=- ⎪⎝⎭∑∑∑ . (2z <<∞) (4)()()()0111111211111nn f z z z z z z z ∞==-=-=---------∑. (011z <-<)此例子说明:同一个函数在不同的圆环内的洛朗展式可能不同. 例2 求2sin z z 及sin zz在0z <<+∞内的洛朗展式 解 2s i n z z 3211(1)3!5!(21)!n n z z z z n --=-++⋅⋅⋅++⋅⋅⋅+ sin z z 242(1)13!5!(21)!n nz z z n -=-++⋅⋅⋅++⋅⋅⋅+例3 1ze 在0z <<+∞内的洛朗展式为 解 1z e 211112!!n z z n z=+++⋅⋅⋅++⋅⋅⋅ 作业: 第217页 1 (1) (3), 2(1)(3)§2解析函数的孤立奇点教学目的与要求: 掌握洛朗定理及孤立奇点的分类及判断方法. 重点:孤立奇点的分类及判断方法. 难点:函数在本质奇点的邻域的性质. 课时:2学时 一 . 定义:1.设()f z 在点a 的某去心邻域内解析,但在点a 不解析,则称a 为f 的孤立奇点.例如sin zz,1z e 以0=z 为孤立奇点.0=z 为奇点,但不是孤立奇点,是支点.11sin z以0=z 为奇点(又由1sin0=z ,得1(1, 2...,)π==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有1()()(),∞∞-===+-∑∑-nnnnn n f z c z a c z a 称()n=1∞-∑-nnc z a 为()f z 在点a 的主要部分,称()∞=-∑nnn z a c 为()f z 在点a 的正则部分,当主要部分为0时,称a 为()f z 的可去奇点;当主要部分为有限项时,设为(1)11(0)()()------+++≠--- m m m m m c c c c z a z a z a称a 为()f z 的m 级极点;当主要部分为无限项时,称a 为本性奇点.二.判定 1.可去奇点定理5.3 设a 为()f z 的孤立奇点,则下列条件等价(1)a 为f 的可去奇点 (2)lim ()()→=≠∞z af z b3()f 在a 的某去心邻域内有界证明:"(1)(2)"⇒设条件1()成立,则在a 的某一去心邻域内,有0()lim ()()∞→==∴=≠∞-∑nnz an f z f z z a c c"(2)(3)":⇒显然成立."(3)(1)"⇒设f 在a 的去心邻域{}:0-<-<k a z a R 内以M 为界考虑()f z 在点z 的主要部分:11()(1,2,): 02()ξξξρρπξ-+-Γ==Γ-=<<⎰- n n f d n a R i c a()112002πρρρπρ--+≤=→→n n n MC M 120--∴===∴ a c c 为可去奇点.例:说明0=z 是sin zz的可去奇点. 法一:324sin 1()1 03!3!5!=-+=-+<<∞ z z z z z z z z法二:0sin lim 1→=≠∞z zz2.极点定理5.4 设a 为()f z 的孤立奇点.则下列条件等价:1()a 为f 的m 级极点2()f 在a 的某去心邻域:{}:0-<-<k a z a R 内可表示为()()()λ=-mz f z z a 其中()λz 在k 内解析,且()0λ≠a1(3).()()=g z f z 从a 为m 级零点(可去奇点作为解析点看) 证明:"(1)(2)"⇒设条件(1)成立,即()f z 在a 的某去心邻域内有:101()()()--=++++-+-- m m c c f z c c z a z a z a(0)-≠m c1110()()()()---+-+-++-+-+=-m m m m mc c z a c z a c z a z a ()()记λ-mz z a(()λz 为幂级数的和函数,故解析)其中()λz 在a 的某邻域内解析,且从()0λ-=≠m a c"(2)(3)"⇒:设条件(2)成立,即f 在a 的某去心邻域{}:0-<-<k a z a R内有()()()λ=-mz f z z a ,其中()λz 满足已知的两个条件.由例知存在:.()ρ'-<≤'⊂K z a R K K ,使得在'K 内()0λ≠z . 故在'K 内1()λz 解析,且1()0()ϕλ=≠a a .即a 为1()f z 的m 级零点. "(3)(1)"⇒设条件(3)成立,即1()(),()ϕ=-m z a z f z 其中()ϕz 在a 的某领域内解析,且()0ϕ≠a ,由33P 的例1.28知:,ρ∃'-<K z a 使在K 内1()0,()ϕϕ≠∴z z 在'K 内解析.由Taylor 定理, 在'K 内有011()()ϕ=+-+ b b z a z∴在{}'-K a 内有0111()()[()]()()ϕ==+-+-- m mf z z b b z a z a z a01()()=++-- m mb b z a z a 0(0)≠b作业: 第218-219页 4(1) (3) (5), 5(1) (3).§3解析函数在无穷远点的性质教学目的与要求:掌握解析函数在无穷远点的性质. 重点: 解析函数在无穷远点的性质. 难点:解析函数在无穷远点的性质. 课时:2学时1. 基本概念1.1 2 3 2.如证令数引理:设()f z 在K :z <1内解析,且(0)0,()f f z =<1则 a )()f z z ≤, b )(0)1f '≤, c )若(0)1f '=,或00z∃≠,使00()f z z =则()()i f z z R e αα=∈.证明:由已知得:12()f z z z c c =++ (1)z <令212(),(0)()(0)f z c c z z z z c z ϕ⎧=++≠⎪=⎨⎪=⎩则()z ϕ在:1K z <内解析.对0,z K ∀∈取r ,使01,z r <<由最大模原理有:0()1()max ()maxz rz rf z z z zrϕϕ==≤=≤. 令1r →得0()1z ϕ≤,特别地,1(0)(0)1f c ϕ'==≤即(b )成立,又若00z ≠,由0()1z ϕ≤,得00()1f z z ≤,即00().f z z ≤以及(0)0f =,故对z K ∀∈,有()f z z ≤,即(a )成立.几何意义:在引理条件下,z 的象都比z 本身,距坐标原点要近.若有00z ≠,0z 的象与0z 本身距原点的距离相等,则变换仅仅是一个旋转.作业: 第219页6, 7, 8 (1) (3).。
《复变函数》教学大纲

《复变函数》课程教学大纲一教学大纲说明(一)课程的性质、地位、作用和任务《复变函数》是数学与应用数学(教师教育)专业的一门重要的专业限选课程,它是重要的基础课程。
本课程的任务是使学生掌握复分析的基本思想,加深对数学分析、解析几何以及高等代数相关知识的理解,培养学生的数学素质,为进一步学习近代数学理论打下良好的基础。
(二)课程教学的目的和要求在学习本课程之前,学生已经学过数学分析。
本课程本质上是复分析的基本内容。
通过本课程的学习,使学生掌握复分析的基本思想,加深对数学分析、解析几何以及高等代数的理解,培养学生的数学素质,为进一步学习近代数学理论打下良好的基础。
掌握:解析函数概念及几个与解析函数相关的等价命题、残数理论及其应用、最大模原理及其应用。
理解:复积分、复级数理论。
了解:复几何的基本思想。
(三)课程教学方法与手段本课程的教学以课堂教学为主,辅以习题练习与自学相结合的方法进行。
基本知识与重要内容如基本定理与重要定理从叙述到详细证明,应用等由教师讲授,其它由学生自学。
为了贯彻少而精的原则,本大纲在内容选取上注意突出基本理论与基本方法。
对与数学分析中平行的概念和结果,既指出其相似之处,更强调其不同之点。
对本课程所具有的新内容,包括其证明方法,在课程教学中教师都将给予较详尽的讲解。
有*号的内容,可视教学情况而取舍。
(四)课程与其它课程的联系本课程的先行课程是数学分析,而本课程所讨论的内容和研究方法是其它许多数学理论的基础。
例如在微分几何、偏微分方程、动力系统、计算数学、近代物理、工程技术等理论中都有广泛的应用。
(五)教材与教学参考书教材:钟玉泉编,《复变函数论》,高等教育出版社,2004年第三版教学参考书:余家荣编,《复变函数》,高等教育出版社,1988年第二版二课程的教学内容、重点和难点第一章复数与复变函数教学内容:复数及其表示、几何上的应用,复平面点集,复变函数,复球面与无穷远点重点:复平面点集,复变函数难点:复球面与无穷远点第二章解析函数教学内容:解析函数的概念与柯西-黎曼条件、初等解析函数、初等多值函数重点:解析函数的概念与柯西-黎曼条件难点:支点的概念与初等多值函数第三章复变函数的积分教学内容:复积分的概念及其简单性质、柯西积分定理、柯西积分公式及其推论、解析函数与调和函数的关系、*平面向量场——解析函数的应用(一)重点:柯西积分定理、柯西积分公式及其推论难点:柯西积分公式及其推论第四章解析函数的幂级数表示法教学内容:复级数的基本性质、幂级数、解析函数的泰勒展式、解析函数零点的孤立性及唯一性定理重点:解析函数零点的孤立性及唯一性定理难点:解析函数的泰勒展式与唯一性定理第五章解析函数的罗朗展式与孤立奇点教学内容:解析函数的罗朗展式、解析函数的孤立奇点、解析函数在无穷远点的性质、*平面向量场——解析函数的应用(二)重点:解析函数的罗朗展式难点:解析函数的孤立奇点,解析函数在无穷远点的性质第六章残数理论及其应用教学内容:残数、用残数定理计算定积分、辐角原理及其应用重点:用残数定理计算定积分难点:辐角原理及其应用*第七章保形变换教学内容:解析变换的特性、线性变换、某些初等函数所构成的保形变换重点:线性变换难点:某些初等函数所构成的保形变换三建议学时分配。
第五章解析函数罗的朗展式

2 zi 5 2 5
1 i
1
1
1
1 1
i
课程名称:复变函数
2007.09.01 主讲教师:卢 谦
9
西南科技大学大学本科理科数学类专业课程
2
1
(1
i
)n
1i 1
n0
eated
with
A即spose.S1i lEid1veaslnuf0oa(r1ti.onNin1)EnoTnl3y..5
(1)
Client Profile
5.2.0
Copyright 2004-2011 Aspose Pty Ltd. 又因 5
1 i
2
E1zvaluna0tioz1nn
onnly.0
1 z n1
eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0
f (zC) opyr1ight 20104-2011 Aspose Pty Ltd. z 2 z 1
no
(1)n
(2i)n1
n
n1
(1)n n (2i)n1
n1
eated withAspfo(sze).SlEidv2e(asluf1oar2tii.o)Nn2EoTnl3y..5 Client Profile 5.2.0
Copyright
f (z) 在2 z 内可展开成罗朗级数,即
复变函数与积分变换第五章

解 函数 f (z) 除点 z 0, 1, 2 外,
在 z 内解析 . 因(sin z) cos z 在 z 0, 1, 2, 处均不为零.
所以这些点都是 sin z 的一阶零点,
故这些点中除1, -1, 2外, 都是 f (z)的三阶极点.
30
因 z2 1 (z 1)(z 1), 以1与- 1为一阶零点,
展开式的前m项系数都为零 ,由泰勒级数的系数
公式知: f (n)(z0 ) 0, (n 0,1,2, m 1);
并且
f
(m)(z0 ) m!
c0
0.
(充分性) 由于 f (n)(z0 ) 0, (n 0,1,2, m 1);
f
( m ) ( z0 m!
)
c0
0.
故
邋 f (z) =
ゥ f (n) (z0 ) (z n= m n!
6
例3 sin z 1 1 z2 1 z4 中不含负幂项,
z
3! 5!
z
0
是
sin z z
的可去奇点
.
如果补充定义:
z 0 时, sin z 1, z
那末 sin z 在 z 0 解析. z
7
例4 说明 z 0 为 ez 1 的可去奇点. z
解 ez 1 1(1 z 1 z2 1 zn 1)
zz
2!
n!
1 1 z 1 zn1 , 0 z
2!
n!
无负幂项
所以 z 0 为 ez 1 的可去奇点. z
另解 因为 lim e z 1 lim ez 1, 作业2.4.8(洛必达法则)
z0 z
z0
所以 z 0 为 e z 1 的可去奇点. z
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 解析函数的罗朗展式与孤立奇点
第一阶 解析函数的罗朗展式
一、双边幂级数
212
00102002
00()()()()()
n n n n n c c c z z c c z z c z z c z z z z z z ∞
--=-∞
-=+-+-+-+
++--∑L L 定理 双边幂级数
()
n
n
n c z z ∞
=-∞
-∑的收敛圆环为:H r z a R <-<,则该级数满足
(1) 在H 内绝对且内闭一致收敛于函数()f z 。
(2)函数()f z 在H 内解析 (2) 在H 内可逐项求导 (4)可沿H 内的曲线逐项积分。
定理 在圆环:H r z a R <-<内解析的函数()f z 可展为双边幂级数
()
n
n
n c z z ∞
=-∞
-∑,其中
11()
2()
n n f c d i a ζζπζ+Γ=
-⎰ (0,1,2,n =±±)Γ为圆环内的圆周a ζρ-=,并且展式是唯一的。
例如 将函数1
()(1)(2)
f z z z =
--在以下三个圆环内展成罗朗展式
(1)1z <, (2)12z << (3)21z <<+∞。
解11()21
f z z z =
--- (1)10
111111()()(1)2112212
n n n f z z z z z z ∞
+==
-=-=-----∑。
(2)1101011111111111()()1212222112n n n n n n n n n z z f z z z z z z z z
z ∞∞∞∞
-+=====
-=-=-=-----∑∑∑∑。
(3)1002111111121121()212111n n n n n
n n n f z z z z z z z z z z z z
-∞∞∞
===-=-=-=-=----∑∑∑。
二、 解析函数在孤立奇点邻域内的罗朗展式
定义 如果函数()f z 在z a =点的去心邻域0z a R <-<内解析,点a 是奇点,则称a 是()f z 的孤立奇点。
如果z a =为()f z 的孤立奇点,则必存在正整数R ,使得()f z 在z a =点的去心邻域0z a R <-<内展为罗朗展式。
例如 1
()(1)(2)
f z z z =--在z 平面内只有两个奇点1,2z z ==,试分别求()f z 在此两点去心邻域内的
罗朗展式。
解(1)在011z <-<内,0
111111
()(1)(1)(2)121(1)11n n f z z z z z z z z z ∞
=---==+=+=----------∑
(2)在021z <-<内,0
1111
()(1)(2)(1)(2)2212n n n f z z z z z z z ∞
===-+=-------+-∑
(3)在∞点的去心邻域11z <-<+∞内,
1
01
11111111111()()()1121(1)111111111
n n n n f z z z z z z z z z z z z ∞∞+==----=+=+=+=+=-------------∑∑ (3) 在在∞点的去心邻域12z <-<+∞内
101
111111111()(1)()()122122222212
n
n n n n f z z z z z z z z z z ∞∞+===-=-=--=---+------+-∑∑。
例如 sin ()z
f z z
=
在z 平展式为面上只有点奇0z =,在去心邻域0z <<+∞内的罗朗 20
(1)()(21)!n n
n z f z n ∞
=-=+∑ 。
例如 1z
z
e e +在z 展式为面上只有点奇0z =,在去心邻域0z <<+∞内的罗朗为
1
11
1
!!n z
z
n
n n z e e n n z ∞
∞==+=+∑∑。
第二阶 解析函数的孤立奇点
一、孤立奇点的三种类型
000
1
()()()n
n
n
n n n n n n c z z c z z c z z ∞
∞
∞
--=-∞
==-=-+-∑∑∑。
前部分叫正则部分,后部分叫主要部分。
1.可去奇点
定义 设a 为函数()f z 的孤立奇点,则(1)如果()f z 在a 点展式的主要部分为零,则称a 为函数()f z 的可去奇点。
例如sin ()z
f z z
=
在0z =点。
定理 如果z a =是()f z 的可去奇点,则下列三条等价:
(1) 如果()f z 在a 点展式的主要部分为零。
(2)lim ()z a
f z b →= (3)在z a =的邻域有界。
2.极点
如果()f z 的主要部分为有限项 122()()
m
m
c c c z a z a z a ---++---L ,就称a 为函数()f z 的m 阶极点。
一阶极点又叫单极点。
例如1
()(1)(2)
f z z z =
--,在1,2z z ==点。
定理 如果a 为()f z 的m 阶极点,则
(1)()f z 在点a 的主要部分有m 项。
(2)()f z 在点a 的去心邻域内能表成()
()()m
z f z z a λ=
-,其中
()0a λ≠,且在a 的邻域内解析。
(3)
1
()
f z 以点a 为m 阶零点。
定理 a 为()f z 的m 阶极点的充要条件是lim ()z a
f z →=∞。
例如 2
51
()(1)(21)z f z z z +=
-+的一阶极点为1z =,二阶极点为12z =-。
3. 本性奇点
如果()f z 的主要部分为无限项,则称称a 为函数()f z 的本性奇点。
例如1
z
z
e e +在z 面上的展式含有z 的负指数幂有无限项。
因此只有本性奇点0z =。
定理 a 为()
f z 的本性奇点的充要条件是lim ()z a
f z →不存在。
定理 a 为()f z 的本性奇点,则a 也为
1
()
f z 的本性奇点。
第三阶 解析函数在无穷远点的性质
定义 如果函数()f z 在无穷远点的邻域内解析,就说∞点是()f z 的孤立奇点。
例如 2()21f z z z =++,在整个有限复平面解析,所以∞点是()f z 的孤立奇点。
例如 1
()(1)(2)
f z z z =
--在2z <<+∞内解析,所以∞点是()f z 的孤立奇点。
说明 : 无穷原点的罗朗展式是关于0z z -=的正整数幂或负整数幂。
例如 2()21f z z z =++在无穷远点的罗朗展式是2()12f z z z =++
1
()(1)(2)
f z z z =
--在无穷远点的罗朗展式如下:
111000
111111211
()(21)212111n n n n n n n n f z z z z z z z z z z
+∞+∞+∞
+++====-=-=-=-----∑∑∑
定义 设1z z
'=,1
()()z f z ϕ'=,则()z ϕ'在0z '=奇点分类就是()f z 在无穷远点相应的分类。
例如 求出函数tan(1)
()1
z f z z -=-的奇点。
解tan(1)sin(1)
()1(1)cos(1)
z z f z z z z --=
=---,1z =是可去奇点,211(0,1)2k k z k π+=+=±
为一阶极点,z =∞为这些极点的聚点,不是孤立奇点。
例如 问1
()sec
1f z z =-在1z =的去心邻域能否展为罗朗级数? 解 11()sec 11cos 1f z z z ==-- ,奇点为1
11()2
k z k π=++ (0,1)k =±,1z =是奇点的聚点
因此()f z 在1z =的去心邻域不能展为罗朗级数。